【精编文档】内蒙古通辽实验中学2018-2019学年高一数学下学期第一次月考试卷.doc
【精编文档】内蒙古通辽市实验中学2018-2019学年高一化学下学期第一次月考试卷及答案.doc

2018—2019学年度下学期月考考试高一年级化学试题本试卷分为第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间90分钟。
可能用到的原子量:Cu-64第Ⅰ卷(共50分)一、选择题(每题只有一个正确答案,每题2分,共20分)1.化学与生活,社会发展息息相关,下列有关说法不正确的是()A. 14C可用于文物年代的鉴定,12C和14C互为同位素B. 甲烷的燃烧热很高,是较清洁的燃料,但它是温室气体C. 在元素周期表中所含元素种类最多的族是IIIB族D. 碱金属元素自上而下金属性逐渐增强,熔沸点依次升高【答案】D【解析】【详解】A. 12C和14C的质子数相同中子数不同,互为同位素,故A正确;B. 甲烷的燃烧热高,是较清洁的燃料,是温室气体,故B正确;C. IIIB族包含镧系和锕系元素,含元素种类最多,故C正确D. 碱金属元素自上而下金属性逐渐增强,熔沸点依次降低,故D错误;故选D。
2.我国科学家首次合成的一种过渡金属的新核素,不易被腐蚀,可应用于高科技领域。
185Hf可由180Hf转化而成,下列说法正确的是( )A. 185Hf与180Hf质量数相同B. 180Hf、185Hf在周期表中的位置不同C. 1 mol 180Hf比1 mol 185Hf的中子数少5N AD. 180Hf 和185Hf核外电子数分别为108、113【答案】C 【解析】【详解】A. 85Hf 与180Hf 质量数不相同,故A 错误;B. 180Hf 、185Hf 是同种元素,在周期表中的位置相同,故B 错误;C.1个 180Hf 比1个185Hf 的中子数少5 ,故1 mol 180Hf 比1 mol 185Hf 的中子数少5N A ,故C 正确;D. 180Hf 和185Hf 核外电子数都为72,故D 错误; 故选C 。
3.下列有关化学用语正确的是( ) A. H 、D 、T 互为同素异形体B. Cl -的结构示意图:C. 16O 与18O 互为同位素;H 216O 、D 216O 、H 218O 、D 218O 互为同素异形体D. 质量数为37的氯原子【答案】B 【解析】【详解】A. H 、D 、T 互为同位素,故A 错误; B. 氯原子的原子序数为17,Cl -的结构示意图:,故B 正确;C. 同素异形体的前提必须是单质,H 216O 、D 216O 、H 218O 、D 218O 是化合物,故C 错误D. 质量数为37的氯原子,故D 错误;故选B 。
2018-2019学年内蒙古通辽实验中学(原通辽铁路中学)高二下学期第一次月考数学(理)试题 解析版

绝密★启用前内蒙古通辽实验中学(原通辽铁路中学)2018-2019学年高二下学期第一次月考数学(理)试题一、单选题1.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()A.4.56% B.13.59% C.27.18% D.31.74%【答案】B【解析】【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【详解】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,∴P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选B.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查正态曲线的对称性。
2.袋中有2个红球5个白球,取出一个白球放回,再取出红球的概率是()A.B.C.D.【答案】B【解析】【分析】取出一个白球再放回,相当于情况不变。
用红球个数除以球的总数即为摸到红球的概率。
【详解】解:所有机会均等的可能有7种,摸到红球的可能有2种,因此取出红球的概率为,故选B.【点睛】本题考察古典概型,概率等于所求情况数与总情况数之比。
3.已知函数的导函数,且满足,则=() A.B.C.1 D.【答案】B【解析】【分析】对函数进行求导,然后把代入到导函数中,得到一个方程,进行求解。
【详解】对函数进行求导,得把代入得,直接可求得。
【点睛】本题主要是考查求一个函数的导数,属于容易题。
本题值得注意的是是一个实数。
4.从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步从一楼到二楼共有()走法。
A.12 B.8. C.70. D.66【答案】C【解析】【分析】一步上一级或者一步上两级,8步走完楼梯,可以从一级和两级各几步来考虑.【详解】解:设一步一级x步,一步两级y步,则故走完楼梯的方法有种.故答案为:C.【点睛】8步中有多少一步上两级是解题关键.通过列方程找到突破口.5.通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:随机变量经计算,统计量K2的观测值k0≈4.762,参照附表,得到的正确结论是()A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”C.有97.5%以上的把握认为“爱好该项运动与性别有关”D.有97.5%以上的把握认为“爱好该项运动与性别无关”【答案】A【解析】【分析】题目的条件中已经给出这组数据的观测值,只要把所给的观测值同节选的观测值表进行比较,发现它大于3.841,在犯错误的概率不超过5%的前提下,认为“爱好这项运动与性别有关”.【详解】解:由题意算得, 4.762>3.841,参照附表,可得在犯错误的概率不超过5%的前提下,认为“爱好这项运动与性别有关”.故选:A.【点睛】本题考查独立性检验的应用,题干给出了观测值,只要进行比较就可以得出正确选项。
【精编文档】内蒙古通辽实验中学2018-2019学年高一英语下学期第一次月考试卷.doc

2018-2019学年第二学期月考试题高一英语(本卷分第一卷和第二卷满分150分时间120分钟)第一卷(满分90分)第一部分听力(共两节,每小题1分,满分20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. How did the woman get home?A. By train.B. By air.C. By bus.2. What does the man often put on a Christmas tree?A. A doll.B. A star.C. An angel.3. How did the woman get to work?A. She took a taxi.B. Somebody gave her a ride.C. She drove her own car.4. How did the woman know about the restaurant?A.A friend told her about it.B. She read about it.C. Her mother took her there before.5. What are the speakers talking about?A. Exercise.B. A bus ride.C. Some earphones. 第二节: 听下面5段对话或独白。
每段对话或独白后有2至4个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有5秒钟的时间阅读各个小题;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. When will the movie Cars start showing?A. Tonight.B. Tomorrow.C. This weekend.7. Where will the speakers go tonight?A. To a concert.B.To a gym.C. To a movie theater. 听第7段材料,回答第8至10题。
内蒙古通辽实验中学2018_2019学年高一英语下学期第一次月考试题

2018-2019学年第二学期月考试题高一英语(本卷分第一卷和第二卷满分150分时间120分钟)第一卷(满分90分)第一部分听力(共两节,每小题1分,满分20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. How did the woman get home?A. By train.B. By air.C. By bus.2. What does the man often put on a Christmas tree?A. A doll.B. A star.C. An angel.3. How did the woman get to work?A. She took a taxi.B. Somebody gave her a ride.C. She drove her own car.4. How did the woman know about the restaurant?A.A friend told her about it.B. She read about it.C. Her mother took her there before.5. What are the speakers talking about?A. Exercise.B. A bus ride.C. Some earphones.第二节: 听下面5段对话或独白。
每段对话或独白后有2至4个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有5秒钟的时间阅读各个小题;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. When will the movie Cars start showing?A. Tonight.B. Tomorrow.C. This weekend.7. Where will the speakers go tonight?A. To a concert.B.To a gym.C. To a movie theater.听第7段材料,回答第8至10题。
内蒙古自治区通辽市第一中学2023-2024学年高一下学期第一次月考(4月)数学试题(含答案)

通辽一中2023级高一下学期第一次月考数学试题注意事项:1、答卷前,考生务必将自己的姓名、考生号涂写在答题卡上。
本试卷满分150分,考试时间120分钟.2、做选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效.3、回答非选择题时,将答案写在答题卡上,写在本试卷上无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. AB BC AD +-=( )A .ADB .CDC .DBD .DC 2. 在△ABC 中,已知a =8,B =45°,C =75°,则b 等于( ) A .46B .45C .838- D .8633.已知向量()1,2a =,()2,1b =,则a b -=( ) A .2B .2C .5D .54.已知π,π2α⎛⎫∈ ⎪⎝⎭,1sin 3α=,则πsin 6α⎛⎫+= ⎪⎝⎭( )A .1266- B .1266+ C .3226- D .3226+ 5.已知向量a ,b 满足2,3,3a b a b ==⋅=-,则b 在a 上的投影向量为( ) A .34a -B .32a -C .13a -D .23a -6.已知函数()2sin 22sin 1f x x x =-+=,给出下列四个结论:①函数()f x 的最小正周期是2π;②函数()f x 在区间π,85π8⎡⎤⎢⎥⎣⎦上是减函数;③函数()f x 的图象关于直线π8x =对称;④函数()f x 的图象可由函数2sin 2y x =的图象向左平移π4个单位得到. 其中正确结论的个数是( ) A .1B .2C .3D .47.在锐角ABC ∆中,1b =,2c =,则a 的取值范围是( ) A .()1,3B .()1,5C .()3,5D .不确定8.已知M 是边长为1的正△ABC 的边AC 上的动点,N 为AB 的中点,则BM MN ⋅的取值范围是( ) A .[34-,2364-] B .[34-,12-] C .[25-,15-] D .[35-,12-]二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分). 9.下列各式中,值为32的是( ) A .1cos1202-︒B .22cos sin 1212ππ-C .cos15 sin 45 sin15cos45︒︒-︒︒D .2tan151tan 15︒-︒10.在ABC 中,3AB =,1AC =,6B π=,则角A 的可能取值为( )A .6πB .3πC .23π D .2π11.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .B .0PB PC += C .PA AB PB +=D .0PA PB PC ++=12.已知锐角ABC 三个内角A ,B ,C 的对应边分别为a ,b ,c ,且3C ∠=,c =2.则下列结论正确的是( )A .ABC 的面积最大值为2B .AC AB ⋅的取值范围为()0,4 C .cos cos 2b A a B +=D .cos cos BA的取值范围为()0,∞+三、填空题(本题共4小题,每小题5分,共20分).13.已知角α的终边经过点()3,4-,则cos2=α . 14.如图,平行四边形ABCD 中,AB a =,AD b =,M 是DC 的中点,以,a b 为基底表示向量AM =15.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45︒方向,相距12公里的水面上,有蓝方一艘小艇正以每小时10公里的速度沿南偏东75︒方向前进,若侦察艇以每小时14公里的速度,沿北偏东45α︒+方向拦截蓝方的小艇.若要在最短的时间内拦截住,则红方侦察艇所需的时间为 小时,角α的正弦值为 .16.已知ABC 所在平面内一点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC 的 心(填“内”、“外”、“重”、“垂”),若ABC 的内角π3A =,边2BC =,则OB BA CO CA BA CA⋅⋅+的最大值是 .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤).17.(满分10分)已知()1,0a =-,()2,1b =.(1)若2AB a b =-,BC a mb =+且A 、B 、C 三点共线,求m 的值. (2)当实数k 为何值时,ka b -与2a b +垂直?18.(满分12分)已知ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且.(1)求A 的大小;(2)若223b c a +==,试判断ABC 的形状.19.(满分12分)已知函数()2sin()0,22f x x ππωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()3f A =,2b =,且ABC 的面积为332,求a .20.(满分12分)如图,支座A 受12,F F 两个力的作用,已知1F 与水平线成θ角,140F N =,2F 沿水平方向,270F N =,1F 与2F 的合力F 的大小为100N ,求cos θ以及F 与2F 的夹角β的余弦值.21.(满分12分)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c sin cos b A B +. (1)求A ;(2)若点D 是BC 上的点,AD 平分BAC ∠,且2AD =,求ABC 面积的最小值.22.(满分12分)已知O 为坐标原点,对于函数()sin cos f x a x b x =+,称向量(),OM a b =为函数()f x 的伴随向量,同时称函数()f x 为向量OM 的伴随函数. (1)设函数()2ππsin cos 32g x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,试求()g x 的伴随向量OM ;(2)记向量()1,3ON =的伴随函数为()f x ,求当()65f x =且ππ,36x ⎛⎫∈- ⎪⎝⎭时,sin x 的值; (3)已知将(2)中的函数()y f x =的图象上各点的横坐标缩短到原来的12倍,再把整个图象向右平移π3个单位长度得到()h x 的图象,若存在π0,2x ⎛⎫∈ ⎪⎝⎭,使()()2412h x a h x ⎡⎤+=⋅-⎣⎦成立,求a 的取值范围.通辽一中 2023级高一下学期第一次月考数学试题参考答案一、单选题答案(每题5分,共40分) 1 2 3 4 5 6 7 8 D DACABCA7.解:ABC ∆为锐角三角形,c b >,则角B 不是最大角,从而可知角A 或角C 为锐角, 由222cos 02b c a A bc +-=>,得250a ->,05a ∴<<. 由222cos 02a b c C ab+-=>,得230a ->,3a ∴>.综上,35a <<,因此,a 的取值范围是()3,5.故选:C.8.解:取AC 的中点O ,以O 为原点,直线AC 为x 轴,建立如图所示的平面直角坐标系,则:1313,0,0,,,2244A B N ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设11(,0),22M x x -≤≤, 313,,,244BM x MN x ⎛⎫⎛⎫∴=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,2BM MN x ∴⋅=-12x =时,BM MN ⋅取最小值时,BM MN ⋅取最大值BM MN ⋅的取值范围是故选:A.二、多选题答案(每题全部选对的得5分,部分选对的得9 10 11 AB AD12.解:A 选项,由余弦定理得222cos 2a b c C ab +-=,即224122a b ab +-=,所以224a b ab +=+,由基本不等式得222a b ab +≥,当且仅当a b =时,等号成立, 此时ABC 为锐角三角形,满足要求,故42ab ab +≥,解得4ab ≤, 故1sin 2ABC S ab C ==≤△,A 错误; B选项,由正弦定理得sin sin sin a b c A B C ===b B ,c os cos 2cos cos B A AC AB AC A bc A b A A B ==⋅==⋅ π1cos sin cos 32A A A A A =⎫⎛⎫+=⎪ ⎪⎪⎝⎭⎝⎭2cos 4cos 22cos 22A A A A A =+=++π223A ⎛⎫=++ ⎪⎝⎭, 因为ABC 为锐角三角形,所以π0,2A ⎛⎫∈ ⎪⎝⎭,2ππ0,32B A ⎛⎫=-∈ ⎪⎝⎭,解得ππ,62A ⎛⎫∈ ⎪⎝⎭, 则π2π4π2,333A ⎛⎫+∈ ⎪⎝⎭,πsin 23A ⎛⎛⎫+∈ ⎪ ⎝⎭⎝⎭,()43π220,433AC A A B ⎛ ⋅⎫=++∈⎪⎝⎭,B 正确; C 选项,()sin sin sin cos cos sinC A B A B A B =+=+,由正弦定理得cos cos 2b A a B c +==,C 正确;D 选项,πππcos sin sin cos cos cos 1333cos cos cos 2A A A B A A A A ⎛⎫-+- ⎪⎝⎭==-, 由C 选项可知ππ,62A ⎛⎫∈ ⎪⎝⎭,所以tan A ⎫∈+∞⎪⎪⎝⎭,故()cos 31tan 0,cos 22B A A =-∈+∞,D 正确.故选:BCD 二、填空题(每空5分,共20分) 13.-; 14. 12b a + 15. 2 5314; 16. 垂316.【答案】 垂 3【解析】OA OB OB OC ⋅=⋅,()0OA OC OB ∴-⋅=,即0CA OB ⋅=,AC OB ∴⊥, 同理可得:BC OA ⊥,AB OC ⊥,O ∴是ABC 的垂心,延长BO 交AC 于D ,延长CO 交AB 于E ,则BD AC ⊥,CE AB ⊥,π3A =,π6ABD ACE ∴∠=∠=, ()5ππ3coscos 662OB BA CO CA OB OC OC OB BACA⋅⋅∴+=⋅+⋅=-, 显然当O 与B 重合时,OC OB -取得最大值2BC =, 故OB BA CO CA BACA⋅⋅+的最大值为3232⨯=. 故答案为:垂,3三、解答题(70分) 17.(满分10分)(1)由题意可得,()()4,1,21,AB BC m m =--=-, 2分且A 、B 、C 三点共线,则可得//AB BC ,即()()42110m m ----=, 4分解得12m =-; 5分 (2)由题意可得,()()2,1,23,2ka b k a b -=---+=, 7分因为ka b -与2a b +垂直,则可得3(2)2(1)0k ⨯--+-=, 9分 解得83k =-. 10分 18.(满分12分) (1)解:,222b c a bc +-=, 2分由余弦定理可得2221cos 222b c a bc A bc bc +-===, 4分 又因为()0,πA ∈,故π3A =. 6分 (2)解:因为2b c a +=,由余弦定理可得由余弦定可得222222cos a b c bc A b c bc =+-=+-, 8分即2222b c b c bc +⎛⎫=+- ⎪⎝⎭, 整理可得()20b c -=, 10分 则b c =,故ABC 为等边三角形. 12分 12分) 解:(1)据图象可得35341234T πππ⎛⎫=--= ⎪⎝⎭,故T π= 2分 由2T ππω==得:2ω=. 3分由552sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭得:5sin 16πϕ⎛⎫+= ⎪⎝⎭.由22ππϕ-<<知,54363πππϕ<+<, 562ππϕ∴+=,解得3πϕ=-, 5分()2sin 23f x x π⎛⎫∴=- ⎪⎝⎭; 6分(2)()2sin 233f A A π⎛⎫=-= ⎪⎝⎭,3sin 232A π⎛⎫∴-= ⎪⎝⎭,(0,2A π∈23A π∴-由题意得ABC 的面积为由余弦定理得2a =满分12分)解:12F F F += 2()2212F F F +=即22212122F F F F F ++⋅=. 4222407024070cos 100θ++⨯⨯⨯=,解得5cos 8θ=. 6又21F F F -=, 8()2212F F F -=,即2222122F F F F F -⋅+=, 10222100210070cos 7040β-⨯⨯⨯+=,解得19cos 20β=. 1221. (满分12分)解:(1)由题意知ABC sin cos b A B +=,cos cos sin )sin sin cos A B A B B A A B ++=,(2)由于点D 是BC 上的点,AD 平分BAC ∠,且2AD =, 则1π23BAD CAD BAC ∠=∠=∠=,由ABC ABD ADC S S S =+,得12π1π1πsin 2sin 2sin 232323bc c b =⨯⨯⨯+⨯⨯⨯,即ABC 面积的最小值为22. (满分12分)解:(1)()2ππsin cos 32g x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭11sin sin sin 2222x x x x x =-++=+, 2分所以12OM ⎛= ⎝⎭. 3分(2)依题意()πsin 2sin 3f x x x x ⎛⎫==+ ⎪⎝⎭, 4分 由()65f x =得π6π32sin ,sin 3535x x ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, ππππ,,0,3632x x ⎛⎫⎛⎫∈-+∈ ⎪ ⎪⎝⎭⎝⎭,所以π4cos 35x ⎛⎫+= ⎪⎝⎭, 5分所以ππ1ππsin sin sin 33233x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+-=++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 6分(3)将()π2sin 3f x x ⎛⎫=+ ⎪⎝⎭图象上各点的横坐标缩短到原来的12倍得π2sin 23y x ⎛⎫=+ ⎪⎝⎭, 再把整个图象向右平移π3个单位长度,得πππ2sin 22sin 2333y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()π2sin 23h x x ⎛⎫=- ⎪⎝⎭, 7分若π0,2x ⎛⎫∈ ⎪⎝⎭,则ππ2π2,333x ⎛⎫-∈- ⎪⎝⎭,所以()(π2sin 223h x x ⎛⎫⎤=-∈ ⎪⎦⎝⎭ 8分令(()t h x ⎤=∈⎦,则()()2412h x a h x ⎡⎤+=⋅-⎣⎦可化为()2412t a t +=⋅-, 即2122a t t =++, 9分 因为函数2122y t t =++是开口向上,对称轴为1t =-的二次函数,所以(1t ⎤∈-⎦时,函数2122y t t =++单调递减;(]1,2t ∈-时,函数2122y t t =++单调递增, 所以2min 11(1)222y =--+=-,又当t =72y =-2t =时,172y =, 所以211172,222y t t ⎡⎤=++∈-⎢⎥⎣⎦; 11分 因为存在π0,2x ⎛⎫∈ ⎪⎝⎭,使()()2412h x a h x ⎡⎤+=⋅-⎣⎦成立,所以存在(1t ⎤∈-⎦使2122a t t =++成立, 因此只需117,22a ⎡⎤∈-⎢⎥⎣⎦. 12分。
内蒙古通辽实验中学2018-2019学年高一数学上学期期中试题

通辽实验中学2018--2019学年度第一学期高一期中考试数学试题第I 卷(选择题 ,共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{0,3,5}A =,{(2)0}B x x x =-=,则A B =( )A .∅B .{0}C .{0,2,3,5}D .{0,3}2. 下列函数为奇函数的是( )A. 2x y =B. 2y x =-C. 3y x = D. lg y x = 3. 函数()3lg f x x x =-++的零点所在区间为( )A. ()0,1B. ()1,2C. ()2,3D. ()3,44. 若232a =,b=134,c=3log 0.99,则a ,b ,c 的大小关系是( )A. a=b<cB. c<b=aC. b<a<cD. c<a<b 5. 若幂函数()y f x =的图象经过点1(,9)3,则()f x 在定义域内( ) A. 为增函数 B. 为减函数 C. 奇函数 D. 偶函数6.图像与函数y =log 2x 的图象关于直线y x =对称函数是( )A .f (x )=2xB .f (x )=-2xC .f (x )=log 2(-x )D .f (x )=-log 2x 7. 已知函数()()lg(21),16,1x x f x f x x -≥⎧=⎨+<⎩,则()2002f -=( )[ A .1 B .lg 5 C .lg 2 D .lg 38.已知()()31c g x f x ax bx x=+-+-,且()f x 是奇函数,()36g =,则()3g -的值为( )A .-2B .2C .-8D .89. 的定义域是R ,则实数m 的取值范围是( ) A.04m << B.04m ≤≤ C.04m ≤< D.4m ≥10. 近年来,通辽市各行业蓬勃发展,GDP 总值大约年平均增长率为20%. 请预测,再经过_____年发展,年GDP 总量将翻两番(4倍).(参考数据:,)A. 4B.6C.8D.10 11. 已知f (x )是偶函数,它在[0,+∞)上是减函数.若()()ln 2f x f <,则x 的取值范围是( )A .()12,e e -B .()()22,,e e --∞+∞C .()()220,,e e -+∞D .()22,e e -12. 设奇函数f (x )在(0,+∞)上为减函数,且f (-3)=0,则不等式()30xf x -<的解集为( )A .()()(),00,36,-∞+∞B .()()(),33,03,-∞--+∞C .(-∞,-3)∪(3,+∞)D .(-6,0)∪(0,6)第II 卷(非选择题 共90分) 二、填空题:(请数字作答,否则不给分)本大题共4小题,每小题5分,共20分.13.函数()1x f x a-= 的是增函数,则a 范围是______. 14. 若11333x x -+=,则1x x -+的值是______.15. 若函数()1ln f x x a x ⎛⎫=++ ⎪⎝⎭的值域域为R,则a 的取值范围是______. 16.已知函数()f x 为R 上的增函数,且对于任意实数x ,都有[()5]6x f f x -=,则(2)f 的值为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本题满分10分)已知函数()[]()22,61f x x x =∈- . (1)判断()f x 单调性并证明;(2)求()f x 最值.18. (本题满分12分)已知指数函数()f x 过点12,4⎛⎫ ⎪⎝⎭.(1)求函数()f x 解析式;(2)若()1,x ∈+∞,求()f x 值域.19.(本小题满分12分)(1)12183,log 23x y == ,求1x y -+的值.(2)求)0ln311122e +-+ 的值 .20. (本题满分12分)已知函数f (x )=4x -a 2x +4.(1)当a =5时,求方程f (x )=0的根; (2)若f (x )=0有根,求a 的取值范围. 21. (本题满分12分)已知()f x 为R 上奇函数,()g x 是R 上偶函数,且()()x f x g x e +=.(1).求()f x 、()g x 的解析式;(2).求()f x 的值域.22.(本小题满分12分)已知函数f (x )=log a (1-4x ),g (x )=log a (1+4x )(a >0且a ≠1),(1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由;(3)确定x 为何值时,有f (x )-g (x )>0.1. 已知集合{0,3,5}A =,{(2)0}B x x x =-=,则A B =( )BA .∅B .{0}C .{0,2,3,5}D .{0,3}2. 下列函数为奇函数的是( )CA. 2x y =B. 2y x =-C. 3y x =D. lg y x =3. 函数()3lg f x x x =-++的零点所在区间为( )CA. ()0,1B. ()1,2C. ()2,3D. ()3,44. 若232a =,b=134,c=3log 0.99,则a ,b ,c 的大小关系是 BA. a=b<cB. c<b=aC. b<a<cD. c<a<b 5. 若幂函数()y f x =的图象经过点1(,9)3,则()f x 在定义域内( )D A. 为增函数B. 为减函数C. 奇函数D. 偶函数6.图像与函数y =log 2x 的图象关于直线y x =对称函数是( )AA .f (x )=2xB .f (x )=-2xC .f (x )=log 2(-x )D .f (x )=-log 2x 7. 已知函数()()lg(21),16,1x x f x f x x -≥⎧=⎨+<⎩,则()2002f -=( )[ A .1 B .lg 5 C .lg 2 D .lg 3 【答案】D8.已知()()31c g x f x ax bx x=+-+-,且()f x 是奇函数,()36g =,则()3g -的值为( ) CA .-2B .2C .-8D .89. 的定义域是R ,则实数m 的取值范围是( ) A.04m << B.04m ≤≤ C.04m ≤< D.4m ≥ 【答案】A10. 近年来,通辽市各行业蓬勃发展,GDP 总值大约年平均增长率为20%. 请预测,再经过_____年发展,年GDP 总量将翻两番(4倍).(参考数据:,)A. 4B.6C.8D.10 C11. 已知f (x )是偶函数,它在[0,+∞)上是减函数.若()()ln 2f x f <,则x 的取值范围是( )CA .()12,e e- B .()()22,,e e --∞+∞ C .()()220,,e e -+∞ D .()22,e e -12. 设奇函数f (x )在(0,+∞)上为减函数,且f (-3)=0,则不等式()30xf x -<的解集为( )A .()()(),00,36,-∞+∞B .()()(),33,03,-∞--+∞ AC .(-∞,-3)∪(3,+∞)D .(-6,0)∪(0,6)13.函数()1x f x a -= 的是增函数,则a 范围是______. ()1,+∞14. 若11333x x -+=,则1x x -+的值是______.1815. 若函数()1ln f x x a x ⎛⎫=++ ⎪⎝⎭的值域域为R,则a 的取值范围是______.(],2-∞- 16.已知函数()f x 为R 上的增函数,且对于任意实数x ,都有[()5]6x f f x -=,则(2)f 的值为______.2617. 已知函数()[]()22,61f x x x =∈- .(1)判断()f x 单调性并证明;(2)求()f x 最值 18.已知指数函数()f x 过点12,4⎛⎫ ⎪⎝⎭.(1)求函数()f x 解析式;(2)若()1,x ∈+∞,求()f x 值域19.(1)12183,log 23x y == ,求1x y -+的值 3- (2)求)0ln31112e +-+ 的值 3e 20. 已知函数f (x )=4x -a 2x +4.(1)当a =5时,求方程f (x )=0的根. (2)若f (x )=0有根,求a 的取值范围.(1)0x =或1x = (2)4a ≥21.已知()f x 为R 上奇函数,()g x 是R 上偶函数,且()()x f x g x e +=. (1).求()f x 、()g x 的解析式;(2).求()g x 的值域.(1)()2x x e e f x --=、()2x xe e g x -+= (2)[)1,+∞ 22. 已知函数f (x )=log a (1-4x ),g (x )=log a (1+4x )(a >0且a ≠1),(1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由;(3)确定x 为何值时,有f (x )-g (x )>0.[解] (1)要使函数有意义,则有140140x x ->⎧⎨+>⎩解得1144x -<<∴函数F (x )的定义域为11,44⎛⎫- ⎪⎝⎭. (2)F (x )=f (x )-g (x )=log a (1-4x )-log a (1+4x ), F (-x )=f (-x )-g (-x )=log a (1+4x )-log a (1-4x )=-F (x ). ∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (1-4x )-log a (1+4x )>0,即log a (1-4x )>log a (1+4x ). ①当0<a <1时,有0<1-4x <1+4x ,∴10,4⎛⎫ ⎪⎝⎭. ②当a >1时,有1-4x >1+4x >0,∴1,04⎛⎫- ⎪⎝⎭综上所述,当0<a <1时,有x ∈10,4⎛⎫⎪⎝⎭,使得f (x )-g (x )>0;当a >1时,有x ∈1,04⎛⎫- ⎪⎝⎭,使得f (x )-g (x )>0.。
内蒙古通辽实验中学2018-2019学年高二下学期第一次月考数学(理)试题(精编含解析)

内蒙古通辽实验中学2018-2019学年高二下学期第一次月考数学(理)试题第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )A. 4.56%B. 13.59%C. 27.18%D. 31.74%【答案】B【解析】【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【详解】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,∴P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选B.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查正态曲线的对称性。
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)2.袋中有2个红球5个白球,取出一个白球放回,再取出红球的概率是()A. B. C. D.【答案】B【解析】【分析】取出一个白球再放回,相当于情况不变。
用红球个数除以球的总数即为摸到红球的概率。
【详解】解:所有机会均等的可能有7种,摸到红球的可能有2种,因此取出红球的概率为,故选B. 【点睛】本题考察古典概型,概率等于所求情况数与总情况数之比。
3.已知函数的导函数,且满足,则=( )A. B. C. 1 D.【答案】B【解析】【分析】对函数进行求导,然后把代入到导函数中,得到一个方程,进行求解。
【详解】对函数进行求导,得把代入得,直接可求得。
【点睛】本题主要是考查求一个函数的导数,属于容易题。
本题值得注意的是是一个实数。
4.从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步从一楼到二楼共有()走法。
内蒙古通辽市奈曼旗实验中学208_209学年高一数学下学期期末考试试题

内蒙古通辽市奈曼旗实验中学2018—2019学年高一数学下学期期末考试试题一、选择题(12×5=60分)1.函数f(x)=2sin(ωx+φ)的部分图象如图所示,则ω=()A. π B。
C。
2 D。
2。
设向量与向量共线,则实数( )A. 2 B。
3 C. 4 D。
63。
已知向量的夹角是,,则的值是( ) A. B。
C. D。
4。
已知平面向量a,b满足a·(2a-b)=5,且|a|=2,|b|=3,则向量a与向量b的夹角余弦值为()A。
1 B. -1 C. D。
—5。
函数的单调递增区间是( )A. B. C. D.6。
的值为( )A. B. C. D.7。
为了解育才中学学生的体重状况,打算抽取一个容量为n 的样本,已知该校高一、高二、高三学生的数量之比依次为4∶3∶2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为()A. 50B. 45 C。
40 D。
208. 甲、乙两校各有3名教师报名支教,若从这6名教师中任选2名,选出的2名教师来自同一学校的概率为()A. B. C. D。
9。
已知sin,则sin 2θ=()A. B。
- C. D. —10。
若,则等于()A。
B. C。
D.11. 如图,正方形内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B。
C。
D。
12. 若,则( )A。
B。
C。
D.二、填空题( 6×5=30分)13.如图所示,输出的x的值为13.已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1 000颗黄豆,数得落在阴影部分的黄豆为600颗,则可以估计阴影部分的面积约为。
15. 已知函数的部分图象如图所示,其中(点为图象的一个最高点),则函数=___________.16。
设向量满足,则__________.17. 已知向量,, 若,则__________. 18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018--2019学年度第二学期第一次月考
数学试题
第I 卷(选择题 ,共60分)
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.
的值是( )
A .
B .
C .
D .
2. 已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点P(2,-1),则cos α=( )
A .-
B .
C .
D .-
3.面积和弧长都是4的扇形,其圆心角的弧度数是( ) A. 4 B. 3 C. 2 D.1
4.函数 f(x)=sin 2
x-cosx-1的最小值是 ( )
A. -
B. 1
C.
D.-2
5.下列说法错误的是( ) A .第一象限角的三角函数值都是正值. B .三角形的内角必是第一、二象限的角. C .直线y=x 与正弦曲线y=sinx 只有一个交点.
D .},90180|{},90360|{Z k k Z k k ∈︒+︒∙==∈︒±︒∙=ββαα.
6.函数的大致图象为
A. B. C.
D.
7.若函数f(x)=sin(,则f(x) A .图象关于对称 B .图象关于
对称
C .在
上单调递减 D .单调递增区间是
(k
)
8.要得到函数
的图象,需将函数
的图象上所有的点
A. 横坐标伸长到原来的2倍纵坐标不变,再向右平行移动个单位长度
B. 横坐标缩短到原来的倍纵坐标不变,再向左平行移动个单位长度
C. 横坐标缩短到原来的倍纵坐标不变,再向左平行移动个单位长度
D. 横坐标伸长到原来的2倍纵坐标不变,再向右平行移动个单位长度
9. 已知,则
的值为
A. B. C. D.
10.已知函数
部分图象如图所示.若方程m x f =)(在
点(6,0)右侧的半个周期上有两个不同的实数解21,x x ,则21x x +的值为( ) A.4 B .8 C . 16 D .20 11. 已知函数
满足
,若
在
上为偶函数,且其
解析式为
,则
的值为
A.
B.
C. D.
12. 已知
,
的最大值为a ,最小值为b ,
的最大 值
为c ,最小值为d ,则
A.
B.
C.
D.
第II 卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分. 13.函数
的周期是______.
14.函数f(x)=log 3(2cosx+1)的定义域为______.
15.若
3
是偶函数,且
,则
______.
16.单位圆上有点P(m,n),现将OP 顺时针旋转900得到OP ’,则点P ’的坐标为______. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本题满分10分)
(1)化简(1+tan 2x)cos 2x; (2) 化简.
18. (本题满分12分)
若函数()sin()(0,0,)2
f x A wx A w π
ϕϕ=+>><
的部分图象如图所示.
(1)求f(x)解析式;(2)求f()的值.
19.(本小题满分12分)
(1)已知
.求
的值;
若角终边在上,求的值.
20. (本题满分12分) 已知函数f(x)=tan(
,其周期为2.
求:(1)f(x)解析式和定义域;(2)f(x)的对称中心和单调区间.
21. (本题满分12分) 已知函数,
其中
,
,
的周期为,且图象上
的一个最低点为
求
的解析式及单调递增区间;
当
时,求
的值域
22.(本小题满分12分)
若在闭区间上的最大值是.
(1)求的值和函数f(x)的周期;
将f(x)
横坐标缩短到原来的倍
纵坐标不变
,再向左平移个单位长度后得到函数
g(x),
求g(x)的解析式和对称轴方程.
1-5 ACCDB 6-10 DCABD 11-12 DB
1.的值是()
A .
B .
C .
D .【答案】A
2. 已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边过点P(2,-1),则cosα=()
A.- B . C.
D.-【答
案】C
3.面积和弧长都是4的扇形,其圆心角的弧度数是()【答案】 c
A. 4
B. 3
C. 2
D.1
4.函数f(x)=sin2x-cosx-1的最大值是( ) 【答案】D
A. -
B. 1
C.
D.-2
5.下列说法错误的是()
【答案】B
A.第一象限角的三角函数值都是正值.
B.三角形的内角必是第一、二象限的角.
C.直线y=x与正弦曲线y=sinx只有一个交点.
D.}
,
90
180
|
{
}
,
90
360
|
{Z
k
k
Z
k
k∈
︒
+
︒
∙
=
=
∈
︒
±
︒
∙
=β
β
α
α.
6.函数的大致图象为
A.
B.
C.
D.
【答案】D
7.若函数f(x)=sin(,则f(x) 【答案】 C
A .图象关于对称
B .图象关于对称
C .在
上单调递减 D .单调递增区间是
(k
)
8.
要得到函数
的图象,需将函数
的图象上所有的点
【答案】 A
A. 横坐标伸长到原来的2倍纵坐标不变,再向右平行移动个单位长度
B.
横坐标缩短到原来的
倍
纵坐标不变
,再向左平行移动
个单位长
度
C.
横坐标缩短到原来的
倍
纵坐标不变
,再向左平行移动
个单位长
度
D. 横坐标伸长到原来的2倍
纵坐标不变
,再向右平行移动
个单位长度
9. 已知,则
的值为
【答案】 B
A. B.
C.
D.
10.已知函数
部分图象如图所示.若方程m x f =)(
在点(6,0)右侧的半个周期上有两个不同的实数解21,x x ,则21x x +的值为( ) D A.4 B .8 C . 16 D .20
11. 已知函数满足,若在上为偶函数,且其
解析式为
,则的值为
D
A.
B.
C. D.
12. 已知
,
的最大值为a ,最小值为b ,
的最大 值为
c ,最小值为
d ,则
B
A.
B.
C.
D.
13.函数
的周期是______.
14.函数f(x)=log 3(2cosx+1)的定义域为______.
15.若
3
是偶函数,且
,则
______.
16.单位圆上有点P(m,n),现将OP 顺时针旋转900得到OP ’,则点P ’的坐标为
______.
17. (1)化简(1+tan 2x)cos 2x; 1
(2) 化简
. -1
18.若函数()sin()(0,0,)2
f x A wx A w π
ϕϕ=+>><
的部分图象如图所示.
(1)求f(x)解析式;(2)求f()的值.
(1)
(2) - 1
19.(1)已知
.求
的值;
角终边在
上,求
的值.
【答案】解:
,
,
.
.
角终边在
上,则根据三角函数的定义得到
.
=
20.已知函数f(x)=tan(
,其周期为2. 求:(1)f(x)解析式和定义域;(2)f(x)的对称中心和单调区间.
21.
已知函数
,
其中
,
,
的周期为,且图
象上的一个最低点为
求
的解析式及单调递增区间;
当
时,求
的值域.
【答案】解:
由
,且
,可得
;
又
的最低点为
,
,且
;
,
,
,
;
令,
,解得,,的单调增区
间为,;
,
当
,即时,,
当
,即
时,
; 函数在上的值域是.
22.若
在闭区间上的最大值是.
(1)求的值和函数f(x)的周期;
将f(x)横坐标缩短到原来的倍纵坐标不变,再向左平移个单位长度后得到函数g(x),求g(x)的解析式和对称轴方程.
(1)f(x)=2sin T=
(2)g(x)= 2sin x= k。