小学六年级奥数教案比和比例 2
六年级下册同步奥数比和比例(二)

六年级下册同步奥数 比和比例(二)1、在比例尺是1:500000的地图上,量得甲、乙两地之间的距离是3.5厘米,甲、乙两地相距多少千米?2、在比例尺是8000001的地图上,量得A 、B 两地距离是15厘米,一辆汽车以每小时45千米的速度从A 地出发,经过多少小时才能到达B 地?3、在一幅1:3000000的地图上,量得甲、乙两地公路长14厘米,一辆汽车从甲地到乙地行驶了7小时,平均每小时行多少千米?4、在比例尺是60000001的地图上,量得甲、乙两地的距离为25厘米,上午9点30分有一架飞机从甲地飞往乙地,上午1 0点45分到达。
问:这架飞机每小时飞行多少千米?1、在比例尺1:6000000的地图上,量得济南到青岛的距离是8厘米。
在比例尺1:8000000的地图上,济南到青岛的距离是多少厘米?2、在比例尺5000001的地图上,量得两地间的距离是4厘米,实际距离是多少千米?如果将这段实际距离画在比例尺为2000001的地图上,应画几厘米?3、在比例尺是1:8000000的地图上,量得A 、B 两个城市的距离是12厘米,在比例尺是1:6000000的地图上,量得A 、B 两个城市的距离是几厘米?4、比例尺是50:1的图纸上,量得某个零件的长是20厘米。
如果把这个零件画在比例尺是40:1的图纸上,应画多少厘米?一、填空。
1、一张10:1的图纸上量得某零件长4.5厘米,这个零件实际长是( )。
2、一个圆柱与一个圆锥底面半径比是2:3,高的比是3:2,体积比是( )。
3、如果3A=4B ,那么A :B=( ):( )4、下面( )表示χ和y 成反比例的关系。
A .4χ=y B .y=χ4C .χ+y = 45、圆A 与圆B 的一部分重叠,重叠部分的面积是圆A 的52。
圆B 的51,求A 、B 两圆面积的比是( ):( )。
6、两个长方形,它们面积的比是8:7,长的比是4:5,那么宽的比是( )。
7、小军走的路程比小红多41,而小红行走的时间比小军多101,小红与小军的速度比是( ):( )。
六年级数学下册教案第2单元比例2

六年级数学下册教案第2单元比例2.1比例的认识(1)北师大版教学目标1. 知识与技能:学生能够理解比例的概念,掌握比例的基本性质,能够识别和构建比例。
2. 过程与方法:通过实例分析,学生能够运用比例知识解决实际问题,培养逻辑思维能力和问题解决能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养合作精神和探究精神,增强对数学美的感知。
教学内容本节课主要内容包括比例的概念、比例的性质、比例的应用等。
具体包括:1. 比例的定义:比例是表示两个比相等的式子。
2. 比例的基本性质:比例中,两内项之积等于两外项之积。
3. 比例的应用:在生活实例中,如何识别和运用比例解决问题。
教学重点与难点教学重点比例的概念及其性质的理解。
比例在实际问题中的应用。
教学难点比例性质的推导和理解。
学生对比例应用题的识别和解决能力。
教具与学具准备教具:多媒体教学设备、比例模型、挂图等。
学具:练习本、笔、直尺、计算器等。
教学过程1. 导入:通过生活中的实例引入比例的概念,激发学生的学习兴趣。
2. 新授:详细讲解比例的定义、性质,通过例题示范比例的应用。
3. 互动练习:设计小组活动,让学生在合作中探究比例的应用,解决实际问题。
4. 巩固练习:通过课堂练习,让学生独立完成比例题目的求解,加深理解。
板书设计1. 六年级数学下册第2单元比例2.1比例的认识(1)2. 主要内容:比例的定义、性质、应用。
3. 关键点:比例中两内项之积等于两外项之积的规律。
4. 示例:至少一个详细的例题解析。
作业设计作业设计应具有针对性,帮助学生巩固所学知识。
包括:1. 基础题:比例的基本性质练习。
2. 应用题:结合实际情境,设计比例问题求解。
3. 拓展题:探索比例在其他数学领域中的应用。
课后反思课后反思是提高教学质量的重要环节。
教师应反思:1. 教学方法:是否有效地促进了学生对比例概念的理解和应用。
2. 学生反应:学生对新知识的接受程度,是否存在理解上的困难。
六年级奥数-第二讲.比和比例.教师版

比和比例(二)例题精讲:模块一、比例转化【例1】某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【例2】 (2007年华杯赛总决赛)A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【巩固】某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【例3】①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?模块二、按比例分配与和差关系(一)量倍对应【例4】一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【巩固】小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【巩固】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐元,乙捐元,丙捐元.【巩固】有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【例5】一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【例6】幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【巩固】参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【巩固】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【例7】甲乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?【例8】师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?【巩固】师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?【例9】A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?【巩固】学而思学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。
六年级总复习教案比和比例

六年级总复习教案比和比例教学目标:1. 理解比和比例的概念,掌握比和比例的基本性质和运算方法。
2. 能够运用比和比例解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
教学内容:一、比的概念和性质1. 复习比的概念:两个数相除又叫做两个数的比。
2. 掌握比的基本性质:比的前项和后项乘或除以一个相同的数(0除外),比值不变。
二、比例的概念和性质1. 复习比例的概念:表示两个比相等的式子叫做比例。
2. 掌握比例的基本性质:在比例中,两内项之积等于两外项之积。
三、求比值的方法1. 复习求比值的方法:用比的前项除以后项,所得的商叫做比值。
2. 掌握求比值的方法:将比的前项和后项分别除以它们的最大公约数,再进行约分。
四、比例尺的概念和性质1. 复习比例尺的概念:图上距离与实际距离的比叫做比例尺。
2. 掌握比例尺的性质:比例尺是图上的距离与实际距离的比例。
五、解决实际问题1. 复习解决实际问题的方法:先设定未知数,根据题意列出比例式,解比例式求解未知数。
2. 举例讲解如何运用比和比例解决实际问题,如长度转换、速度与时间的关系等。
教学步骤:1. 导入新课,回顾比和比例的概念和性质。
2. 讲解比和比例的基本运算方法,进行示例演示。
3. 进行小组讨论,让学生互相交流比和比例的运用方法。
4. 老师提出实际问题,学生独立解决,分享解题过程和答案。
5. 总结比和比例的重要性和运用方法,进行课堂小测。
教学评估:1. 课堂问答:检查学生对比和比例概念的理解。
2. 课后作业:布置有关比和比例的练习题,巩固所学知识。
3. 小组讨论:评估学生在团队合作中的表现和解决问题的能力。
教学资源:1. 比和比例的PPT演示文稿。
2. 实际问题练习题和答案。
3. 小组讨论指导材料。
教学建议:1. 注重学生的基础知识巩固,加强对比和比例概念的理解。
2. 鼓励学生在课堂上积极发言,提高逻辑思维能力。
3. 结合实际情况,让学生能够将比和比例运用到生活中解决问题。
六年级下册数学教案-6.2.1 比和比例∣人教新课标

标题:六年级下册数学教案-6.2.1 比和比例∣人教新课标一、教学目标1. 让学生理解比和比例的概念,掌握比和比例的基本性质。
2. 培养学生运用比和比例解决实际问题的能力。
3. 培养学生的逻辑思维能力和合作意识。
二、教学内容1. 比的概念和性质2. 比例的概念和性质3. 比和比例的应用三、教学重点与难点1. 教学重点:比和比例的概念、性质及应用。
2. 教学难点:比例尺的应用、解决实际问题。
四、教学过程1. 导入新课通过生活中的实例,引导学生理解比的概念,激发学生的学习兴趣。
2. 探究新知(1)比的概念通过举例,让学生理解比的意义,掌握比的表达方式。
(2)比的基本性质引导学生探究比的基本性质,如比的两个数相乘、相除的关系。
(3)比例的概念通过实例,让学生理解比例的意义,掌握比例的表达方式。
(4)比例的基本性质引导学生探究比例的基本性质,如比例中各项的乘除关系。
3. 实践应用(1)比例尺的应用通过实际操作,让学生掌握比例尺的使用方法,解决实际问题。
(2)解决实际问题引导学生运用比和比例的知识,解决生活中的实际问题。
4. 总结提升通过课堂小结,让学生回顾本节课所学内容,巩固知识点。
5. 课后作业布置课后作业,让学生巩固所学知识,提高运用能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、发言情况,了解学生对知识点的掌握程度。
2. 作业完成情况:检查学生课后作业的完成情况,了解学生对知识点的运用能力。
3. 单元测试:通过单元测试,评估学生对本节课知识点的掌握程度。
六、教学反思在教学过程中,要注意引导学生主动参与、积极思考,关注学生的个体差异,因材施教。
同时,要注重培养学生的实际应用能力,让学生在实际问题中发现数学的价值。
本节课结束后,教师应认真反思教学效果,针对存在的问题进行调整,以提高教学质量。
需要重点关注的细节是“实践应用”部分。
因为这部分内容直接关系到学生能否将理论知识转化为实际应用能力,是本节课的核心环节。
小学六年级奥数教案比和比例2

小学六年级奥数教案比和比例2小学六年级奥数教案比和比例2小学六年级比和比例姓名:例1 已知3∶(x-1)=7∶9,求x。
例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。
求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。
由此求出女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为24∶20=6∶5。
在例2中,我们用到了按比例分配的方法。
将一个总量按照一定的比分成若干个分量叫做按比例分配。
按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,答:生石灰、硫磺粉、水分别需要180,360和2160千克。
在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。
如例3中,总份数是1+2+12=15,每份的量是2700÷15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。
例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。
完成任务时,师傅比徒弟多加工多少个零件?分析与解:解法很多,这里只用按比例分配做。
师傅与徒弟的工作效率有多少学生?按比例分配得到例6 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5∶6,小客车与小轿车之比是4∶11,收取小轿车的通行费比大客车多210元。
求这天这三种车辆通过的数量。
最新人教版小学数学六年级下册《比和比例(二)》精品教案设计

最新人教版小学数学六年级下册《比和比例(二)》精品教案设计课前准备教师准备PPT课件教学过程⊙谈话揭题上节课我们复习了比的知识,这节课我们来复习比例的知识以及用正、反比例的知识解决问题。
[板书课题:比和比例(二)]⊙回顾与整理1.构建比例知识网。
通过课前的复习,你了解了比例的哪些知识?(结合学生回答板书知识网络)预设生1:我了解了比例的意义和基本性质。
生2:我知道了解比例的方法。
生3:我掌握了判断两个比是否能组成比例的方法。
生4:我理解了正、反比例的意义,并且能判断两个量成正比例还是反比例。
生5:我了解了比与比例的区别以及正、反比例的区别。
……2.复习比例的意义和基本性质。
(1)比例的意义是什么?比例的各部分名称是什么?明确:①比例的意义:表示两个比相等的式子叫做比例。
②比例的各部分名称:组成比例的四个数叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
(2)比例的基本性质。
明确:在比例里,两个外项的积等于两个内向的积。
这叫做比例的基本性质。
(3)解比例。
根据比例的基本性质,已知比例中的任意三项,都可以求出这个比例中的未知项。
求比例中的未知项,叫做解比例。
(4)判断两个比能否组成比例的方法。
①根据比例的意义判断,看两个比的比值是否相等。
②根据比例的基本性质判断,看内项之积是否等于外项之积。
3.复习正比例和反比例。
(1)正比例的意义和关系式是什么?意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
关系式:=k(一定)(2)反比例的意义和关系式是什么?意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
关系式:x×y=k(一定)。
冀教版六年级数学上册第二单元比和比例第2课时比的基本性质教案

第2课时比的基本(jīběn)性质教学目标:1、了解比的基本性质与分数的基本性质的关系,能运用比的基本性质化简。
2、结合具体事例,经历求比值、认识比的基本性质、化简比的过程。
3、体会数学知识间的内在联系,了解“黄金比”在生活中的广泛应用。
教学重点:理解比的基本性质,掌握化简比的方法。
教学难点:摹握化简比的方法。
课前准备:多媒体课件等。
教学过程一、导入新课提问:1.商不变的性质。
2.分数的基本性质是什么?二、新课学习1.出示例题3,让学生解答。
两袋词料粗蛋白和总质量的比值一样吗?写出比并求出比值。
教学比的基本性质⑴猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?生:比的前后项同时乘或除以相同的数(0除外),比值不変。
(2〉验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。
不过,猜想毕竟是猜想,它还有待于证明。
你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。
)①根据分数、比、除法的关系验证。
②根据比值验证。
③教师小结:大家的脸证明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。
④总结比的基本性质,为什么强调0除外呢?2.教字比的基本性质的应用请同字们想比的基本性质有什么样的用途?比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。
) 根据你自己的理解,能说一说什么是最简单的整数比吗?(前项和后项是互质数。
)请同字们解笞的例题3,这两个比是最简比吗?让字生试着化简比。
学生先讨论方法,再试做。
小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值(bǐzhí)的方法化简。
但要注意,这个结果必须是一个比。
学生讨论:化简比与求比值有什么不同?字生质疑。
出示例题4,让字生解答。
三、课堂小结同学们,这节课你学得愉快吗?谁能说说你的收获是什么?(比的前项、后项同时乘或除以相同的数(0除外),比值不変,这叫做比的基本性质)四、巩固练习课本第14页相关习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数教案比和比例 2 小学六年级比和比例姓名:
例1 已知3?(x-1)=7?9,求x。
例2 六年级一班的男、女生比例为3?2,又来了4名女生后,全班共有44
人。
求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3?2知,如果将人数分为5份,那么男生占3份,女生占2份。
由此求出
女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为24?20=6?5。
在例2中,我们用到了按比例分配的方法。
将一个总量按照一定的比分成若干个分量叫做按比例分配。
按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1?2?12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1?2?12,总份数是1+2+12=15,
答:生石灰、硫磺粉、水分别需要180,360和2160千克。
在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。
如例3中,总份数是1+2+12=15,每份的量是2700?15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。
例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。
完成任务时,师傅比徒弟多加工多少个零件,
分析与解:解法很多,这里只用按比例分配做。
师傅与徒弟的工作效率
有多少学生,
按比例分配得到
例6 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5?6,小客车与小轿车之比是4?11,收取小轿车的通行费比大客车多210元。
求这天这三种车辆通过的数量。
分析与解:大客车、小轿车通过的数量都是与小客车相比,如果能将5?6中的6与4?11中的4统一成[4,6]=12,就可以得到大客车?小客车?小轿车的连比。
由5?6=10?12和4?11=12?33,得到大客车?小客车?小轿车=10?12?33。
以10辆大客车、12辆小客车、33辆小轿车为一组。
因为每组中收取小轿车的通行费比大客车多10×33-30×10=30(元),所以这天通过的车辆共有210?30=7(组)。
这天通过大客车=10×7=70(辆),小客车=12×7=84(辆),小轿车=33×7=231(辆)。
练习:
1.一块长方形的地,长和宽的比是5?3,周长是96米,求这块地的面积。
32.一个长方体,长与宽的比是4?3,宽与高的比是5?4,体积是450分米。
问:长方体的长、宽、高各多少厘米,
3.一把小刀售价6元。
如果小明买了这把小刀,那么小明与小强的钱数之比是3? 5;如果小强买了这把小刀,那么小明与小强的钱数之比是9?11。
问:两人原来
共有多少
钱,
5.甲、乙、丙三人分138只贝壳,甲每取走5只乙就取走4只,乙每取走5只丙就取走6只。
问:最后三人各分到多少只贝壳,
6.一条路全长60千米,分成上坡、平路、下坡三段,各段路程的长度之比是1?2?3,某人走各段路程所用的时间之比是3?4?5。
已知他走平路的速度是5千米/时,他走完全程用多少时间,
7.某俱乐部男、女会员的人数之比是3?2,分为甲、乙、丙三组,甲、乙、丙
三组的人数之比是10?8?7。
如果甲组中男、女会员的人数之比是3?1,乙组中男、女会员的人数之比是5?3,那么丙组中男、女会员的人数之比是多少,。