壁面网格划分规则
流固耦合 壁面处理

流固耦合壁面处理
流固耦合是指在数值模拟中同时考虑流体动力学和固体力学的相互作用。
在流固耦合问题中,流体和固体之间存在相互作用与影响,如流体对固体的压力、流体对固体的摩擦力、固体对流体的形状变化等。
壁面处理是指对流固耦合问题中的固体表面进行模拟和处理的方法。
在流固耦合问题中,固体表面通常是模拟成网格中的一个边界面,需要考虑流体在固体表面的流动和作用。
壁面处理的方法有多种,常见的包括:
1. 无壁面处理:忽略固体表面的影响,将其看作完全光滑的界面。
这种方法适用于固体表面与流体之间无明显摩擦或相互作用的情况。
2. 壁面法:使用壁面法对固体表面进行细化网格划分,并根据流体在固体表面的作用来计算其影响。
壁面法可以考虑固体表面的摩擦、阻力、振动等效应。
3. 体系法:将固体表面看作整个流体体系的一部分,并采用连续介质方程来描述固体表面的流动和力学行为。
体系法适用于固体表面与流体之间有较强耦合的情况。
4. 涡模拟:通过增加人工涡量来模拟固体表面的流动和动力行为。
这种方法可以有效地模拟流固耦合问题中的涡旋现象和流动分离等特征。
壁面处理方法的选择要根据具体的流固耦合问题和数值模拟需求进行。
不同的方法有不同的适用条件和精度要求,需要综合考虑模拟效果和计算效率。
CFD 计算对计算网格有特殊的要求

CFD 计算对计算网格有特殊的要求,一是考虑到近壁粘性效应采用较密的贴体网格,二是网格的疏密程度与流场参数的变化梯度大体一致。
对于面网格,可以设置平行于给定边的边界层网格,可以指定第二层与第一层的间距比,及总的层数。
对于体网格,也可以设置垂直于壁面方向的边界层,从而可以划分出高质量的贴体网格。
而其它通用的CAE 前处理器主要是根据结构强度分析的需要而设计的,在结构分析中不存在边界层问题,因而采用这种工具生成的网格难以满足CFD 计算要求,而Gambit 软件解决了这个特殊要求。
如果先在一条边上画密网格再在之上画边界层,边界层与网格能很好的对应起来如果直接在一条边上画边界层,则边界层横向之间的距离很宽怎么设置边界层横向之间的距离,即不用先画网格也能画出横向距离很密的边界层来?在划分边界层网格之前,用粘性网格间距计算器,计算出想要的y+值对应的第一层网格高度;第一层高度出来之后,关于网格的纵横向网格间距之比,也就是边界层第一层网格高度与横向间距之比,大概在1/sqrt(Re),最为适宜;先在你要划边界层网格的边上划分线网格,然后再划分边界层。
gambit本人也用了一段时间,六面体网格四面体网格我都画过,但是最头疼的还是三维边界层网格的生成。
用gambit自带的边界层网格生成功能画出来的边界层网格经常达不到好的效果,或者对于复杂的外形根本就无法生成边界层网格。
为此我就采用手动设置边界层,但是比较费时间,效果还一般。
不知道大家是不是也遇到相似的问题,或者有更好的方法,请指点一下,先谢谢了!22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。
用通用变量来写出时,为松驰因子(Relaxati on Factors)。
第二章 Gambit划分网格

1)应用分级设定的边
2)分级方案
3)网格节点步长(间隔数目) 4)边网格划分选项
线网格划分
2)分级方案 Gambit 提供了以下类型的边网格划分分级方案:
• • • • • •
•
Successive Ratio First Length Last Length First Last Ratio Last First Ratio Exponent Bi-exponent Bell Shaped
非对称格式,产生的分级 形式不需要关于边的中心对称
对称格式,限制关于边 中心对称的分级类型
•
线网格划分
• 狭长型网格长宽比不要超过5; • 燃烧反应的区域网格尽量细化。
3、面网格划分
进行一个面网格划分,用户必须 设定以下参数:
1)要网格划分的面
2)网格划分的形式 3)网格节点的间距 4)面网格划分选项
体网格光顺化
• Smooth Volume Meshes 在一个或多个体积上光顺化网格节点。 1、选择要光顺化的体积; 2、光顺化方案 L-W Lapiacian:使每个节点 周围单元平均边长; Equipotential:使节点周围单元体积相等。
体网格划分技巧
• 首先画线网格和部分面网格; • 尽量采用五面体和六面体网格,以控制网 格数量; • 复杂结构考虑分块画网格,避免把所有几 何组合成一个整体;
平整面网格
Smooth Faces Meshes命令 将调整一个或者多个面网格节点的位置 用户需设定以下参数: 1)要平整的网格面 2)平整方式 L-W Laplalian :在每个节点周围使用单元的平均变长(趋向平 均单元 边长)
Centroid Area :平衡相邻单元的面积
Ansys Icepak网格划分原则

Ansys Icepak网格划分原则(-)网格类型网格划分是仿真的第二步,是所有仿真求解的基础,网格质量的好坏直接决定了求解计算的精度和收敛性。
优质的网格可以保证CFD计算的精度,其主要表现在以下几个方面:(1)网格必须贴体,即划分的网格必须将模型本身的几何形状描述出来,以保证模型的几何形状不失真;(2)可以对固体壁面附近的网格进行局部加密,这是因为任何物理变量在固体壁面附近的梯度都比较大,壁面附近网格由密到疏,才能够将不同物理量的梯度进行合理的捕捉;(3)网格的各种质量指标需满足Icepak的要求。
为了得到更优质的网格,Icepak提供了包括Mesher-HD(六面体占优)、Hexa Unstructured(非结构化网格)、Hexa Cartesian(结构化网格)在内的多种网格划分形式。
Mesher-HD即六面体占优网格,包含六面体、四面体及多面体网格类型,可以对Icepak的原始几何体及导入的异形CAD体进行网格划分;如果选择Mesher-HD方法,在网格控制面板下会出现Multi-Level多级网格的选项;如果模型中包含了异形CAD几何体,则必须使用Mesher-HD方法进行网格划分。
图1异形CAD体的贴体网格——六面体占优Hexa Unstructured即非结构化网格,全部为六面体网格,且网格不垂直相交,适用于所有的Icepak原始几何体(立方体、圆柱、多边形等)进行网格划分;非结构化网格可以对规则的几何体进行贴体划分;非结构化网格可以使用O-grid网格对具有圆弧特征的几何体进行贴体的网格划分,因此非结构化网格在Icepak电子热模拟中应用的非常广泛。
Hexa Cartesian即结构化网格,所有的网格均为垂直正交,三维的实体网格可以在坐标系方向进行编号标注。
由于这种网格在模型的弧线边界会出现stair-stepped阶梯状网格,因此只适用于对类似于方体的几何模型记性贴体网格划分,而对具有弧线和斜面等特征的几何体则无法得到贴体网格。
网格划分原则

有限元分析中的网格划分好坏直接关系到模型计算的准确性。
本文简述了网格划分应用的基本理论,并以ANSYS限元分析中的网格划分为实例对象,详细讲述了网格划分基本理论及其在工程中的实际应用,具有一定的指导意义。
1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。
在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。
为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。
利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。
有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。
在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。
关于网格的知识整理(上)

关于⽹格的知识整理(上)
1.⽹格的形状
四⾯体:最简单的单元,任意形状的3D图形都可以⽤四⾯体⽹格来划分,唯⼀可以⽤⾃适应⽹格的单元。
四⾯体
⾦字塔形:从六⾯体到四⾯体过渡的单元。
⾦字塔形
三棱柱和六⾯体
三棱柱和六⾯体:纵横⽐较⼤,可以减少单元数
2.什么时候该⽤什么⽹格?
1.如果不知道怎么划分⽹格或者⼏何形状不规则的时候就⽤四⾯体。
2.如果已经某个⽅向的解变化缓慢,就在该⽅向⽤三棱柱或者六⾯体的长边。
3.如果⼏何体包含薄层,就⽤三棱柱或者六⾯体的短边或者⽤边界条件来代替。
3.⽹格尺⼨(size)⾥⾯参数的含义
Mesh⽹格下⾯有关于size(⽹格尺⼨的设置)。
可以选择Predefined(预先定义好的⼏个尺⼨),也可以根据⾃⼰需要进⾏修改,选择Custom,如下图所⽰。
下⾯解释⼀下各个参数的含义。
1.Maximum element size(最⼤单元尺⼨):通过控制最⼤单元尺⼨,可以控制剖分的⽹格⾄于太⼤。
2.Minimum element size(最⼩单元尺⼨):在⼀些狭窄区域,如果最⼩单元尺⼨太⼤,就会导致在狭窄区域⽆法剖分,出现错误,可以减⼩最⼩单元尺⼨,避免错误的发⽣。
另外也要避免⼀些太过狭窄的区域出现,例如太细的尖⾓。
3.Maximum element growth rate(最⼤的单元增长率):它指得是从⼩单元到较⼤单元的最⼤增长率,通过指定这个参数,可以在需要精细⽹格剖分的区域保持精细的⽹格剖分,在不需要精细⽹格的区域⽤较粗的⽹格剖分。
减少⽹格的数量。
4.Curvature factor(曲率因⼦):。
【流体】ANSYSmeshing网格划分之-上手1-3Dtube网格划分

【流体】ANSYSmeshing网格划分之-上手1-3Dtube网格划分在之前的入门文章《ANSYS meshing 网格划分之 - 入门1 - 3D 几何边界命名》中,我们用中间放置有阻流器的tube作为例子学会边界命名操作。
本章在此基础上,依然采用此tube几何文件为例,正式上手学习ANSYS meshing三维网格划分。
1. 几何命名好之后,在workbench工作界面,左键按住Geometry模块的第二栏,不要放松鼠标,拉到Mesh模块的第二栏中,然后鼠标放开。
两个模块之间出现一条蓝色的连接线,表示已经成功将几何导入到Mesh模块中。
2. 鼠标左键双击Mesh模块第三栏的Mesh,打开mesh软件界面。
工作界面和其他软件基本一样,在划分网格时,主要注意的窗口有如下:3. 调整透明度。
当几何导入到Mesh模块中时,有时是半透明显示,但是有时候是不透明显示,如上图所示。
这样就看不到tube里面的结构,因此,需要将几何调整到透明状态,方便后面操作。
4. 网格划分。
Mesh模块是ANSYS的网格划分工具之一,能够划分CFD网格,CAE分析网格和电磁分析网格。
所以需要指定划分类型,软件会帮您将一些默认参数进行调整,更好划分网格。
本章是划分CFD网格,导入到Fluent软件中使用。
ANSYS Meshing模块划分网格的设置,基本都是通过鼠标右键设计树中的Mesh选择,即上面图片中的1所指,包括体网格、面网格、线网格等划分选择。
然后在底部的Details窗口中设置相关参数。
由于管子的直径只有14mm,所以需要将网格划分总参数进行修改,如下图。
网格划分总参数有许多,将会在后续文章中一一讲解,现在是先按照本文走一遍网格划分,熟悉操作。
选择四面体网格划分方法。
鼠标右键设计树中的Mesh,选择Method。
在Details中选中几何,Method选Tetrahedrons四面体网格。
因为这是流体流动,所以需要对壁面划分边界层网格。
连铸——网格划分

连铸——网格划分
工况描述:具有一定过热度的金属沿X正方向进入结晶器(wall),与结晶器产生换热,在离开出口前形成一定厚度的凝固壳体。
网格部分:ANSYSMeshing也可以画出漂亮的网格
1 Geometry面板
1.1 使用workbench 里的DM(为了方便截图模型尺寸随意给定)
1.2 模型切割:Creat —Boolean,注意切割时,preserve Tool Bodies 在下拉菜单选择Yes
1.3 选择from new part,让两个块在生成网格时共节点,即在分割处数据共享,若不做此操作,可能此处就识别为Wall, 流场无法通过。
2 mesh面板
网格划分:使用workbench 自带的fluent集成模块里的Mesh。
两处网格需要细化处理
(1) 壁面:与金属间存在强换热,需划分边界层,以捕捉场变量的变化。
(2) 入口:流速较大,影响各物理场的转变。
根据几何最小特征尺寸给定初步的网格划分尺寸。
(3) 右击左侧mesh,选择Automatic Method并选择四边形;同样右击mesh选择Size(重复操作,左侧出现3个Edge Size)。
对于边界层划分,这里在Size模式下采用Bias Type,其他几个不需要使用Bias Type。
(4) Behavior 必须选择为Hard,这样使用Face meshing才有作用。
(5) 添加一个Face Meshing
好啦,网格效果如下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The goal is to determine the required near wall mesh spacing,
, in terms of Reynolds number, running length, and a target value. A < 200 is acceptable if you are using the automatic wall treatment, if not, continue to read
the advice below. After running a solution, the value of
(in particular, the value given by the solver variable , representing the value for the first node from the wall) should agree with:
model means using a fine mesh and one of the
models (which include the SST model). The
models do accept coarser meshes, due to the automatic near-wall treatment for
these models. with characteristic velocity and length of the plate .
The correlation for the wall shear stress coefficient, , is given by: where is the distance along the plate from the leading edge.
The definition of for this estimate is:
目的是由雷诺数、行程长度及”
with being the mesh spacing between the wall and the first node away from the wall. Using the definition
can be eliminated in
can be eliminated using
Further simplification can be made by assuming that:
where is some fraction.
Assuming that , then, except for very small
This equation allows us to set the target value at a given location and obtain the mesh spacing, for nodes in the boundary layer.
湍流模型计算准确。
最低层数如下
where N is the number of nodes in the boundary layer in the direction normal to the wall.
下面为计算边界层厚度公式推导:
The boundary layer thickness can then be computed from the correlation:
to be:
The boundary layer for a blunt body does not start with zero thickness at the stagnation point for . It is, therefore, safe to assume that is some fraction of , say 25%. With this assumption, you get:
位置开始,因此,安全起见设Red
You would, therefore, select a point, say the fifteenth off the surface (for a low-Re model, or。