2018年初中模拟考试数学试题(二)

合集下载

2018年初中毕业升学数学考试模拟试题(二)(附答案)

2018年初中毕业升学数学考试模拟试题(二)(附答案)

2018年中考密押卷(二)数学满分:120分 考试时间:120分钟第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.的倒数是( )A .﹣2B .2C .D .2.如图所示的几何体的主视图为( )A .B .C .D .3.下列各式计算正确的是( )A .a 2+2a 3=3a 5B .(2b 2)3=6b 5C .(3xy )2÷(xy )=3xy D .2x•3x 5=6x 64.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( )A .85°B .60°C .50°D .35° 5.函数y=kx 的图象经过点P (﹣1,3),则k 的值为( ) A .3B .﹣3C .D .﹣6.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°7.直线l 1和l 2在同一直角坐标系中的位置如图所示,点P 1(x 1,y 1)在直线l 1上,点P 2(x 2,y 2)在直线l 2上,点P 3(x 3,y 3)为直线l 1、l 2的交点,其中x3<x 1,x 3<x 2,则( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 3<y 1<y 28.如图,在正方形ABCD 中,△ABE 和△CDF 为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF 的长是( )A .7B .8C .7D .79.如图,⊙O 是正三角形ABC 的外接圆,点P 在劣弧AB 上,∠ABP=22°,则∠BCP 的度数为( )A .22°B .38°C .48°D .60°10.已知点A (x 1,y 1),B (x 2,y 2)均在抛物线y=ax 2+2ax +4(0<a <3)上,若x 1<x 2,x 1+x 2=1﹣a ,则( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1与y 2大小不能确定第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题3分,计12分)第3页 共26页第4页 共26页11.当x 时,代数式﹣2x 的值是非负数.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A .如图,△AOB 中,∠AOB=90°,AO=3,BO=6,△AOB 绕顶点O 逆时针旋转到△A′OB′处,此时线段A′B′与BO 的交点E 为BO 的中点,则线段B′E 的长度为; B .用科学计算器计算:.(精确到0.1)13.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x +6于A ,B 两点,若反比例函数y=的图象与△ABC 有公共点,则k 的取值范围是 .14.在四边形ABCD 中,∠B +∠D=180°,AB=AD ,AC=1,∠ACD=60°,则四边形ABCD 的面积为 .三、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:.16.(本题满分5分) 解方程:.17.(本题满分5分)如图,利用尺规,在△ABC 的边AC 上方作∠CAE=∠ACB ,在射线AE 上截取AD=BC ,连接CD 并证明:CD ∥AB (尺规作图要求保留作图痕迹,不写作法).18.(本题满分5分)某市为提倡节约用水,准备实行自来水“阶梯计费”的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?19.(本题满分7分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.20.(本题满分7分)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.21.(本题满分7分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.(本题满分7分)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.第7页 共26页第8页 共26页23.(本题满分8分)如图,AB 是⊙O 的弦,点C 为半径OA 的中点,过点C 作CD ⊥OA 交弦AB 于点E ,连接BD ,且DE=DB .(1)判断BD 与⊙O 的位置关系,并说明理由; (2)若CD=15,BE=10,tanA=,求⊙O 的直径.24.(本题满分10分)如图,已知抛物线y=ax 2﹣5ax +2(a ≠0)与y 轴交于点C ,与x 轴交于点A (1,0)和点B . (1)求抛物线的解析式; (2)求直线BC 的解析式;(3)若点N 是抛物线上的动点,过点N 作NH ⊥x 轴,垂足为H ,以B ,N ,H 为顶点的三角形是否能够与△OBC 相似(排除全等的情况)?若能,请求出所有符合条件的点N 的坐标;若不能,请说明理由.25.(本题满分12分)如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP )是等边三角形; (2)如图2,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为 , ; (4)图n 中,“叠弦三角形” 等边三角形(填“是”或“不是”) (5)图n 中,“叠弦角”的度数为 (用含n 的式子表示)2018年初中毕业升学数学考试模拟试题(二)参考答案与试题解析1.A 【分析】根据倒数的定义求解. 【解答】﹣的倒数是﹣2. 故选:A .【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.B 【分析】利用主视图的定义,即从几何体的正面观察得出视图即可. 【解答】如图所示:几何体的主视图为:.故选:B .【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.D 【分析】根据积的乘方的性质、单项式除法和单项式乘法运算法则利用排除法求解. 【解答】A 、a 2与2a 3不是同类项的不能合并,故本选项错误; B 、应为(2b 2)3=8b 6,故本选项错误; C 、应为(3xy )2÷(xy )=9xy ,故本选项错误; D 、2x•3x 5=6x 6,正确; 故选D .【点评】本题考查积的乘方,单项式的除法法则,单项式的乘法法则,熟练掌握运算法则是解题的关键.4.C 【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°. 【解答】在△ABC 中, ∵∠1=85°,∠2=35°, ∴∠4=85°﹣35°=50°, ∵a ∥b , ∴∠3=∠4=50°, 故选C .【点评】本题考查了平行线的性质和三角形的外角定理,比较简单;运用了三角形的一个外角等于与它不相邻的两个内角的和,及两直线平行,内错角相等;本题的解法有多种,也可以利用直线b 下方的三角形和对顶角相等来求解.5.B 【分析】根据一次函数解析式的特点,可得出方程,从而求出k 的值. 【解答】由题意得:3=﹣k , 解得:k=﹣3. 故选B .【点评】本题主要考查了函数解析式与图象的关系.函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.6.C【分析】由在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,易证得∠AEB=∠ABE ,又由∠BED=150°,即可求得∠A 的大小. 【解答】∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠AEB=∠CBE , ∵BE 平分∠ABC , ∴∠ABE=∠CBE , ∴∠AEB=∠ABE , ∵∠BED=150°, ∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE ﹣∠AEB=120°. 故选C .【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.7.A 【分析】根据题意把三个点都表示到图象上,可以直观的得到y 1、y 2、y 3的大小. 【解答】根据题意把P 1(x 1,y 1)、点P 2(x 2,y 2)、点P 3(x 3,y 3)表示到图象上,如图所示: 故y 1<y 3<y 2, 故选:A .【点评】此题主要考查了一次函数图象上点的坐标特征,凡是图象经过的点必能满足解析式. 8.C 【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD ,由SSS 证明△ABE ≌△CDF ,得出∠ABE=∠CDF ,证出∠ABE=∠DAG=∠CDF=∠BCH ,由AAS 证明△第11页 共26页第12页 共26页ABE ≌△ADG ,得出AE=DG ,BE=AG ,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH 是正方形,即可得出结果. 【解答】如图所示: ∵四边形ABCD 是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD , ∴∠BAE+∠DAG=90°, 在△ABE 和△CDF 中,,∴△ABE ≌△CDF(SSS ), ∴∠ABE=∠CDF ,∵∠AEB=∠CFD=90°, ∴∠ABE+∠BAE=90°, ∴∠ABE=∠DAG=∠CDF ,同理:∠ABE=∠DAG=∠CDF=∠BCH , ∴∠DAG+∠ADG=∠CDF+∠ADG=90°, 即∠DGA=90°, 同理:∠CHB=90°, 在△ABE 和△ADG 中,,∴△ABE ≌△ADG (AAS ), ∴AE=DG ,BE=AG ,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12, ∴EG=GF=FH=EF=12﹣5=7, ∵∠GEH=180°﹣90°=90°, ∴四边形EGFH 是正方形, ∴EF=EG=7;故选:C .质,证明三角形全等是解决问题的关键.9.B 【分析】根据圆周角定理求出∠ACP=∠ABP ,再根据等边三角形的性质得∠ACB=60°得∠BCP 的度数.【解答】∵△ABC 为正三角形,∴∠ACB=60°,∵∠ACP=∠ABP ,∠ABP=22°, ∴∠ACP=22°,∴∠BCP=60°﹣22°=38°, 故选B .【点评】本题考查了圆周角定理,以及等边三角形的性质,是基础知识比较简单.10. B 【分析】将点A (x 1,y 1),B (x 2,y 2)分别代入y=ax 2+2ax+4(0<a <3)中得y 1=ax 12+2ax 1﹣﹣﹣﹣①;y 2=ax 22+2ax 2+4﹣﹣﹣﹣②;利用作差法求出y 2﹣y 1>0,即可得到y 1>y 2. 【解答】将点A (x 1,y 1),B (x 2,y 2)分别代入y=ax 2+2ax+4(0<a <3)中,得: y 1=ax 12+2ax 1+4﹣﹣﹣﹣①, y 2=ax 22+2ax 2+4﹣﹣﹣﹣②, ②﹣①得:y 2﹣y 1=(x 2﹣x 1)[a (3﹣a )],因为x 1<x 2,3﹣a >0, 则y 2﹣y 1>0, 即y 1<y 2. 故选B .【点评】本题难度较大,要充分利用数据特点,进行计算.11.≤﹣1 【分析】根据题意列出不等式,然后根据一元一次不等式的解法求解即可. 【解答】∵﹣2x 的值是非负数,∴﹣2x≥0, 3x ﹣1﹣4x≥0, 3x ﹣4x≥1, ﹣x≥1, x≤﹣1.故答案为:≤﹣1.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变; (3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 12.A 、;B 、301145.6.【分析】A 、作辅助线.构建直角△EMO ,设EM=a ,利用三角函数表示OM 的长,再利用勾股定理列方程,求出a 的值,则B′E=3﹣2a 代入计算;B 、利用计算器计算.【解答】A .过O 作OM ⊥A′B′,垂足为M , ∵A′O=OE=3, ∴A′M=EM ,由勾股定理得:A′B′=AB==3,设EM=a ,则B′M=3﹣a ,在Rt △B′MO 中,tan ∠MB′O===,∴OM=,由勾股定理得:a 2+=32,5a 2﹣6a+9=0, a 1=a 2=, ∴B′E=3﹣2a=3﹣=; B.135×sin13°≈301145.6;故答案为:A 、;B 、301145.6.【点评】本题考查了旋转的性质和使用计算器计算,明确旋转前后的边和角相等,利用等腰三角形三线合一的性质及三角函数表示各边的长,在不同的直角三角形中,同角的三角函数值相等这一结论要熟练掌握.13.2≤k≤9 【分析】把C 的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】当反比例函数的图象过C 点时,把C 的坐标代入得:k=2, 把y=﹣x+6代入y=得:﹣x+6=, x 2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k , ∵反比例函数y=的图象与△ABC 有公共点,∴36﹣4k≥0, k≤9,即k 的范围是2≤k≤9, 故答案为:2≤k≤9.【点评】本题考查了反比例函数图象上点的坐标特征,根的判别式等知识点的应用,题目比较典型,有一定的难度.14.【分析】首先过A 点分别作AE ⊥BC 于E ,AF ⊥CD 于F 构造△AEB ,通过角边角定理证得△AEB ≌△AFD .再根据若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆判定ABCD 四点共圆.从而证得△ABD 是等边三角形.最后根据正弦定理求得S △AEC 、S △AEC 进而求得四边形ABCD 的面积.【解答】过A 点分别作AE ⊥BC 于E ,AF ⊥CD 于F ,连接BD ,第15页 共26页第16页 共26页∵∠ADF+∠ABC=180°,且∠ABE+∠ABC=180°, ∴∠ADF=∠ABE ,且A ,B ,C ,D 四点共圆, 又∠ACD=60°,∴∠ABD=∠ACD=60°,又AB=AD , ∴△ABD 是等边三角形, ∴∠BAD=60°,∴∠EAF=∠EAB+∠BAF ,∠BAD=∠FAD+∠BAF , ∴∠EAF=∠BAD=60°, ∴∠EAC=180°﹣60°=120°, ∴∠AEC=60°,∴S △AEC =EC•AE=AB•sin60°•AB•cos60°=,同理S △AFC =,在△ABE 与△ADF 中,∵∠ADF=∠ABE ,AB=AD ,∠AEB=∠AFD , ∴△AEB ≌△AFD ,∴S 四边形ABCD =S 四边形AECF =S △AEC +S △AFC =+=.故答案为:.【点评】本题考查圆的性质与判定、三角形的面积计算,是一道典型的几何综合题目.解决本题的关键是构造△AEB ≌△AFD ,根据四点共圆的性质与判定,求得∠AEC=60°.15.【分析】先分别根据0指数幂、负整数指数幂的运算法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可. 【解答】原式=1﹣2+3﹣5﹣2=﹣6+.【点评】本题考查的是实数的运算,熟知0答此题的关键.16.【分析】找出分式方程的最简公分母为(x+2)(x ﹣2)解得到x 的值,代入最简公分母中检验即可得到原分式方程的解.【解答】最简公分母为(x+2)(x ﹣2), 去分母得:(x ﹣2)2﹣(x+2)(x ﹣2)=16, 整理得:﹣4x+8=16, 解得:x=﹣2, 经检验x=﹣2是增根, 故原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”程求解.解分式方程一定注意要验根.17.【分析】利用尺规作∠EAC=∠ACB 即可,先证明四边形ABCD 是平行四边形,再证明CD ∥即可.【解答】图象如图所示,∵∠EAC=∠ACB , ∴AD ∥CB ,∵AD=BC ,∴四边形ABCD 是平行四边形, ∴AB ∥CD .角等于已知角,属于基础题,中考常考题型.18. 【分析】(1)根据10~15吨部分的用户数和百分比进行计算;(2)先根据频数分布直方图中的数据,求得“15吨~20吨”部分的用户数,再画图,最后根据该部分的用户数计算圆心角的度数;(3)根据用水25吨以内的用户数的占比,求得该地区6万用户中用水全部享受基本价格的户数. 【解答】(1)∵10÷10%=100(户) ∴样本容量是100;(2)用水15~20吨的户数:100﹣10﹣36﹣24﹣8=22(户) ∴补充图如下:“15吨~20吨”部分的圆心角的度数=360°×=79.2°答:扇形图中“15吨~20吨”部分的圆心角的度数为79.2°. (3)6×=4.08(万户)答:该地区6万用户中约有4.08万户的用水全部享受基本价格.【点评】本题主要考查了频数分布直方图和扇形统计图,解决问题的关键是在图中获取相关的数据进行计算求解.注意:扇形圆心角的度数=360°×该部分在总数中的百分比,扇形统计图可以更清楚的了解各部分数量同总数之间的关系.此外,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19.【分析】求出AD=BC ,根据ASA 推出△AED ≌△BFC ,根据全等三角形的性质得出即可. 【证明】∵AC=BD , ∴AC+CD=BD+CD ,∴AD=BC ,在△AED 和△BFC 中,,∴△AED ≌△BFC (ASA ),∴DE=CF .【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED ≌△BFC 是解此题的关键,注意:全等三角形的对应边相等.20.【分析】设巡逻船从出发到成功拦截所用时间为x 小时,由题意得出∠ABC=120°,AB=12,BC=10x ,AC=14x ,过点A 作AD ⊥CB 的延长线于点D ,在Rt △ABD 中,由三角函数得出BD 、AD 的长度,得出CD=10x+6.在Rt △ACD 中,由勾股定理得出方程,解方程即可. 【解答】设巡逻船从出发到成功拦截所用时间为x 小时;如图所示, 由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x ,AC=14x , 过点A 作AD ⊥CB 的延长线于点D , 在Rt △ABD 中,AB=12,∠ABD=60°, ∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt △ACD 中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由三角函数和勾股定理得出方程是解决问题的关键.21.【分析】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论. 【解答】(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.第19页 共26页第20页 共26页y 乙=16x+3.(2)①当0<x≤1时, 令y 甲<y 乙,即22x <16x+3, 解得:0<x <;令y 甲=y 乙,即22x=16x+3, 解得:x=;令y 甲>y 乙,即22x >16x+3, 解得:<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3, 解得:x >4;令y 甲=y 乙,即15x+7=16x+3, 解得:x=4;令y 甲>y 乙,即15x+7>16x+3, 解得:1<x <4.综上可知:当<x <4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x <或x >4时,选甲快递公司省钱.【点评】本题考查了一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)根据数量关系得出函数关系式;(2)根据费用的关系找出一元一次不等式或者一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键. 22. 【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果; (2)由(1)可求得出现平局的情况,再利用概率公式求解即可求得答案. 【解答】(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况, ∴出现平局的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=23.【分析】(1)连接OB ,由圆的半径相等和已知条件证明∠OBD=90°,即可证明BD 是⊙O 线;(2)过点D 作DG ⊥BE 于G ,根据等腰三角形的性质得到EG=BE=5,△ACE ∽△DGE ,利用相似三角形对应角相等得到sin ∠EDG=sinA=,在Rt △EDG 定理求出DG 的长,根据三角形相似得到比例式,代入数据即可得到结果. 【证明】(1)连接OB , ∵OB=OA ,DE=DB ,∴∠A=∠OBA ,∠DEB=∠ABD , 又∵CD ⊥OA ,∴∠A+∠AEC=∠A+∠DEB=90°, ∴∠OBA+∠ABD=90°, ∴OB ⊥BD , ∴BD 是⊙O 的切线;(2)如图,过点D 作DG ⊥BE 于G , ∵DE=DB , ∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED , ∴∠GDE=∠A , ∴△ACE ∽△DGE , ∴sin ∠EDG=sinA==,即DE=13,在Rt △ECG 中, ∵DG==12, ∵CD=15,DE=13, ∴CE=2,第21页 共26页第22页 共26页∵△ACE ∽△DGE , ∴=, ∴AC=•DG=,∴⊙O 的直径2OA=4AC=.【点评】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.【分析】(1)把点A 坐标代入抛物线y=ax 2﹣5ax+2(a≠0)求得抛物线的解析式即可; (2)求出抛物线的对称轴,再求得点B 、C 坐标,设直线BC 的解析式为y=kx+b ,再把B 、C 两点坐标代入线BC 的解析式为y=kx+b ,求得k 和b 即可;(3)设N (x ,ax 2﹣5ax+2),分两种情况讨论:①△OBC ∽△HNB,②△OBC ∽△HBN ,根据相似,得出比例式,再分别求得点N 坐标即可.【解答】(1)∵点A (1,0)在抛物线y=ax 2﹣5ax+2(a≠0)上, ∴a ﹣5a+2=0, ∴a=,∴抛物线的解析式为y=x 2﹣x+2; (2)抛物线的对称轴为直线x=, ∴点B (4,0),C (0,2), 设直线BC 的解析式为y=kx+b ,∴把B 、C 两点坐标代入线BC 的解析式为y=kx+b ,得,解得k=﹣,b=2,∴直线BC 的解析式y=﹣x+2;(3) 方法一:设N (x ,x 2﹣x+2),分三种情况讨论: ①当△OBC ∽△HNB 时,如图1,=,即=,解得x 1=5,x 2=4(不合题意,舍去), ∴点N 坐标(5,2);②当△OBC ∽△HBN 时,如图2,=, 即=﹣,解得x 1=2,x 2=4(不合题意舍去), ∴点N 坐标(2,﹣1);③当N (x ,x 2﹣x+2)在第二象限时, H (x ,0)在x 轴的负半轴上, ∴BH=4﹣x , ∵△OBC ∽△HNB , ∴,即=,得到x 2﹣x ﹣12=0解得x 1=4(舍去); x 2=﹣3, ∴N 点的坐标为(﹣3,14)综上所述,N 点的坐标为(5,2)、(2,﹣1)或(﹣3,14). 方法二:第23页 共26页第24页 共26页以B ,N ,H 为顶点的三角形与△OBC 相似, ∴,,设N (2n ,2n 2﹣5n+2),H (2n ,0), ①||=,∴||=2,∴2n 1=5,2n 2=﹣3, ②||=,∴||=,∴2n 1=2,2n 2=0(舍)综上所述:存在N 1(5,2),N 2(2,﹣1),N 3(﹣3,14), 使得以点B 、N 、H 为顶点的三角形与△OBC 相似.形的相似,解答本题需要较强的综合作答能力,特别是作答(3易忽略的地方,此题难度较大.25.【考点】几何变换综合题.菁优网版权所有【分析】(1)先由旋转的性质,再判断出△APD ≌△AOD',最后用旋转角计算即可; (2)先判断出Rt △AEM ≌Rt △ABN ,在判断出Rt △APM ≌Rt △AON 即可;(3)先判断出△AD′O ≌△ABO ,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出△APF ≌△AE′F′,再用旋转角为60°,从而得出△PAO 是等边三角形; (5)用(3)的方法求出正n 边形的,“叠弦角”的度数. 【解答】(1)如图1,∵四ABCD 是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°, ∴∠DAP=∠D'AO ,∴△APD ≌△AOD'(ASA ) ∴AP=AO , ∵∠OAP=60°,∴△AOP 是等边三角形,(2)如图2,作AM ⊥DE 于M ,作AN ⊥CB 于N .第25页 共26页第26页 共26页∵五ABCDE 是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60° ∴∠EAP=∠E'AO∴△APE ≌△AOE'(ASA ) ∴∠OAE'=∠PAE .在Rt △AEM 和Rt △ABN 中,∠AEM=∠ABN=72°,AE AE=AB ∴Rt △AEM ≌Rt △ABN (AAS ), ∴∠EAM=∠BAN ,AM=AN .在Rt △APM 和Rt △AON 中,AP=AO,AM=AN ∴Rt △APM ≌Rt △AON (HL ). ∴∠PAM=∠OAN , ∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换). (3)由(1)有,△APD ≌△AOD', ∴∠DAP=∠D′AO , 在△AD′O 和△ABO 中,,∴△AD′O ≌△ABO , ∴∠D′AO=∠BAO , 由旋转得,∠DAD ′=60°, ∵∠DAB=90°,∴∠D′AB=∠DAB ﹣∠DAD′=30°, ∴∠D′AO=∠D′AB=15°, ∵图2的多边形是正五边形, ∴∠EAB==108°,∴∠E′AB=∠EAB ﹣∠EAE′=108°﹣60°=48° ∴同理可得∠E′AO=∠E′AB=24°, 故答案为:15°,24°.(4)如图3,∵六边形ABCDEF 和六边形A′B′C′E′F′是正六边形, ∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′, ∴△APF ≌△AE′F′, ∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO ∴∠PAO=∠FAO=60°, ∴△PAO 是等边三角形. 故答案为:是(5)图n 中的多边形是正n 边形,同(3)的方法得,∠OAB=[(n ﹣2)×180°÷n ﹣60°]÷2=60°﹣.故答案:60°﹣.【点评】此题是几何变形综合题,主要考查了正多边形的性质旋转的性质,全等三角形的判定,等边三角形的判定,解本题的关键是判定三角形全等.。

福建省2018年最新中考数学模拟试卷(二)及答案解析

福建省2018年最新中考数学模拟试卷(二)及答案解析
2018 年福建省中考数学模拟试卷(二)
一、选择题(共 40 分)
1.( 4 分)﹣ 2 的绝对值是(

A.2 B.﹣ 2 C.
D.Βιβλιοθήκη 来源学科网 ZXXK]2.( 4 分)PM2.5 是指大气中直径不大于 0.0000025 米的颗粒物,将 0.0000025 用科学记数法表
示为( )
A.2.5×105B.2.5×106C. 2.5× 10﹣5 D.2.5×10﹣6
3.( 4 分)计算:(﹣ a)6÷(﹣ a3)等于(

A.a2 B.﹣ a2 C.a3 D.﹣ a3
4.( 4 分)如图,所示的几何体的主视图是(

A.
B.
C.
D.
5.(4 分)把命题 “如果 x=y,那么 = ”作为原命题, 对原命题和它的逆命题的真假性的判断,
下列说法正确的是(

A.原命题和逆命题都是真命题
B.原命题和逆命题都是假命题
C.原命题是真命题,逆命题是假命题
D.原命题是假命题,逆命题是真命题
6.( 4 分)如图, Rt△ ABC中,∠ C=90°, AD 是∠ BAC的平分线, CD=3,AB=10,则△ ABD的面
积等于( )
A.30 B. 24 C.15 D.10

2018年江苏省无锡市初中毕业升学考试数学考试试题(副卷)(解析版)

2018年江苏省无锡市初中毕业升学考试数学考试试题(副卷)(解析版)

2018年江苏省无锡市中考数学试卷(副卷)一、选择题(每小题3分,共30分)1.﹣3的绝对值是()A.﹣B.﹣3C.D.32.9的算术平方根是()A.3B.﹣3C.±3D.93.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形4.下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a35.有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.6.如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°7.若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A.﹣1B.﹣3C.3D.58.蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A .10厘米/小时B .105厘米/小时C .10.5厘米/小时D .不能确定 9.若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9 B .6<m <9 C .6<m ≤9 D .6≤m <9 10.如图,矩形ABCD 中,AB =4,AD =2,E 为边AD 上一个动点,连结BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连结CF ,则△CEF 面积的最小值是( )A .4B .C .3D .二、填空题(每小题2分,本大题共16分)11.在函数y =中,自变量x 的取值范围是 .12.因式分解:x 3﹣4x = .13.我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为 . 14.数据﹣3,﹣1,0,2,4的极差是 .15.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是 .16.某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x ,由题意可列得方程: .17.已知点A 、B 都在反比例函数y =(x >0)的图象上,其横坐标分别是m 、n (m <n ).过点A 分别向x 轴、y 轴作垂线,垂足分别是C 、D ;过点B 分别向x 轴、y 轴作垂线,垂足分别是E 、F ,AC 与BF 交于点P .当点P 在线段DE 上、且m (n ﹣2)=3时,m 的值等于 .18.如图,点A 的坐标是(a ,0)(a <0),点C 是以OA 为直径的⊙B 上一动点,点A 关于点C 的对称点为P .当点C 在⊙B 上运动时,所有这样的点P 组成的图形与直线y =﹣x ﹣1有且只有一个公共点,则a 的值等于 .三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)tan60°+(3﹣)﹣;(2)(2x﹣1)2﹣(x+1)(x﹣1).20.(8分)解方程(组):(1)=﹣3;(2)21.(6分)如图,已知五边形ABCDE是正五边形,连结AC、AD.证明:∠ACD=∠ADC.22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有人.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.24.(10分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB 上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=,求AD的长.25.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件,厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场,商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?26.(10分)如图,∠AOB=60°,点P为射线OA上的一动点.过点P作PC⊥OB于点C.点D在∠AOB内,且满足∠APD=∠OPC,DP+PC=10.(1)当PC=6时,求点D到OB的距离;(2)在射线OA上是否存在一定点M,使得MD=MC?若存在,请用直尺(不带刻度)和圆规作出点M(不必写作法,但要保留作图痕迹),并求OM的长;若不存在,说明理由.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.28.(10分)已知:如图,在平面直角坐标系中,点P(m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.参考答案一、选择题1.﹣3的绝对值是()A.﹣B.﹣3C.D.3【分析】利用绝对值的定义求解即可.解:﹣3的绝对值是3.故选:D.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.9的算术平方根是()A.3B.﹣3C.±3D.9【分析】根据算术平方根的定义即可求出答案.解:9的算术平方根是3,故选:A.【点评】本题考查算术平方根的定义,解题的关键是正确理解算术平方根的定义,本题属于基础题型.3.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:360÷40=9,即这个多边形的边数是9,故选:C.【点评】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4.下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.解:A、3a2﹣a2=2a2,故此选项错误;B、(a2)3=a6,正确;C、a2•a3=a5,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,2,1.解:该几何体的俯视图为故选:A.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.6.如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°【分析】利用正方形的性质得出∠BAC=45°,再利用等腰三角形的性质得出答案.解:∵四边形ABCD是正方形,∴∠BAC=45°,∵AE=AB,∴∠BEA=∠ABE==67.5°.故选:C.【点评】本题考查的是正方形的性质、等腰三角形的性质、三角形内角和定理,正确得出∠BAE度数是解题关键.7.若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A.﹣1B.﹣3C.3D.5【分析】直接利用已知将原式变形,整体代入求出答案.解:当3a﹣2b=2时,原式=﹣(3a﹣2b)+1=﹣2+1=﹣1,故选:A.【点评】此题主要考查了代数式求值,正确应用已知求出是解题关键.8.蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定【分析】函数中表达式由自变量和因变量两个因素组成,这个是一次函数,图象为一条直线,可以任选符合条件的两点求出蚊香燃烧的速度.解:设时间t1时蚊香长度为y1,时间t2时蚊香长度为y2∴y1=105﹣10t1,y2=105﹣10t2则:速度=(y1﹣y2)÷(t1﹣t2)=[(105﹣10t1)﹣(105﹣10t2)]÷(t1﹣t2)=﹣10∴蚊香燃烧的速度是10厘米/小时故选:A.【点评】本题考查了函数的解析式和图象的结合,另外图象是由点来组成.9.若关于x的不等式3x+m≥0有且仅有两个负整数解,则m的取值范围是()A.6≤m≤9B.6<m<9C.6<m≤9D.6≤m<9【分析】首先解不等式,然后根据条件即可确定m的值.解:∵3x+m≥0,∴x≥﹣,∵不等式3x+m≥0有且仅有两个负整数解,∴﹣3<﹣≤﹣2.∴6≤m<9,故选:D.【点评】此题主要考查了一元一次不等式的整数解,根据不等式的基本性质求出x的取值范围,再由x的负整数解列出关于m的不等式组,求出m的取值范围即可.10.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连结BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连结CF,则△CEF面积的最小值是()A.4B.C.3D.【分析】过点F作AD的垂线交AD的延长线于点H,则△FEH∽△EBA,设AE=x,可得出△CEF面积与x的函数关系式,再根据二次函数图象的性质求得最小值.解:过点F作AD的垂线交AD的延长线于点H,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°﹣∠BEA=∠EBA,∴△FEH∽△EBA,∴,设AE=x,∵AB=4,AD=2,∴HF=x,EH=2,DH=x,∴△CEF面积==,∴当x=1时,△CEF面积的最小值是.故选:B.【点评】本题通过构造K形图,建立△CEF面积与AE长度的函数关系式是解题的关键.二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.在函数y=中,自变量x的取值范围是x≥1.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.12.因式分解:x3﹣4x=x(x+2)(x﹣2).【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.13.我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为 1.1×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:11 000 000吨,这个数据用科学记数法可记为1.1×107.故答案为:1.1×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.数据﹣3,﹣1,0,2,4的极差是7.【分析】根据极差的定义即可求得.解:由题意可知,极差为4﹣(﹣3)=7.故答案为:7.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.15.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是12π.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解:圆锥的侧面积=2π×3×4÷2=12π.故答案为:12π.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.16.某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:50(1﹣x)(1﹣2x)=36.【分析】设第一次降价的百分率为x,则第二次降价的百分率为2x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.解:设第一次降价的百分率为x,则第二次降价的百分率为2x,依题意,得:50(1﹣x)(1﹣2x)=36.故答案为:50(1﹣x)(1﹣2x)=36.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.17.已知点A、B都在反比例函数y=(x>0)的图象上,其横坐标分别是m、n(m<n).过点A分别向x轴、y轴作垂线,垂足分别是C、D;过点B分别向x轴、y轴作垂线,垂足分别是E、F,AC与BF交于点P.当点P在线段DE上、且m(n﹣2)=3时,m的值等于.【分析】如图,A(m,),B(n,),则P(m,),通过证明△ADP∽△CEP得到=,即=,从而得到n=2m,所以m(2m﹣2)=3,然后解关于m的方程即可.解:如图,A(m,),B(n,),则P(m,),∵点P在线段DE上,AD∥CE,∴△ADP∽△CEP,∴=,即=,∴m2=(n﹣m)2,而n>m>0,∴m=n﹣m,即n=2m,把n=2m代入m(n﹣2)=2得m(2m﹣2)=3,整理得2m2﹣2m﹣3=0,解得m1=,m2=(舍去),即m的值为.故答案为.【点评】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.18.如图,点A的坐标是(a,0)(a<0),点C是以OA为直径的⊙B上一动点,点A关于点C的对称点为P.当点C在⊙B上运动时,所有这样的点P组成的图形与直线y=﹣x﹣1有且只有一个公共点,则a的值等于﹣.【分析】如图,连接BC,OD,设直线y=﹣x﹣1交x轴于点E(﹣3,0),交y轴于点F(0,﹣1),首先证明OD=2BC=﹣a,推出点D的运动轨迹是以O为圆心﹣a为半径的圆,当⊙O与直线y=﹣x﹣1相切时,点P组成的图形与直线y=﹣x﹣1有且只有一个公共点,设切点为G,连接OG.想办法求出OG即可.解:如图,连接BC,OD,设直线y=﹣x﹣1交x轴于点E(﹣3,0),交y轴于点F (0,﹣1),∵AC=CD,AB=OB,∴OD=2BC=﹣a,∴点D的运动轨迹是以O为圆心﹣a为半径的圆,当⊙O与直线y=﹣x﹣1相切时,点P组成的图形与直线y=﹣x﹣1有且只有一个公共点,设切点为G,连接OG.在Rt△EOF中,∵OG⊥EF,EF==,•OE•OF=•EF•OG,∴OG=,∴a=﹣,故答案为:﹣.【点评】本题考查直线与圆的位置关系,三角形中位线定理,轨迹等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)tan60°+(3﹣)﹣;(2)(2x﹣1)2﹣(x+1)(x﹣1).【分析】(1)先算特殊角的三角函数值、去括号,再合并同类项即可求解;(2)先算完全平方公式,平方差公式,再合并同类项即可求解.解:(1)tan60°+(3﹣)﹣=+3﹣﹣=2;(2)(2x﹣1)2﹣(x+1)(x﹣1)=4x2﹣4x+1﹣x2+1=3x2﹣4x+2.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(8分)解方程(组):(1)=﹣3;(2)【分析】(1)两边都乘以x﹣2,化分式方程为整式方程,解之求得x的值,再检验即可得;(2)利用加减消元法求解可得.解:(1)两边都乘以x﹣2,得:1=x﹣1﹣3(x﹣2),解得:x=2,检验:x=2时,x﹣2=0,∴x=2是分式方程的增根,则原分式方程无解.(2),②×2﹣①,得:5y=40,解得y=8,将y=8代入②,得:x+32=42,解得:x=10,则方程组的解为.【点评】本题主要考查解分式方程和二元一次方程组,解题的关键是掌握解分式方程的步骤和解二元一次方程组的两种消元方法.21.(6分)如图,已知五边形ABCDE是正五边形,连结AC、AD.证明:∠ACD=∠ADC.【分析】直接利用正五边形的性质得出AB=AE=BC=ED,∠B=∠E,进而得出△ABC ≌△AED(SAS),即可得出答案.证明:∵正五边形ABCDE中,∴AB=AE=BC=ED,∠B=∠E,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∴∠ACD=∠ADC.【点评】此题主要考查了正多边形和圆以及等腰三角形的性质,正确把握正多边形的性质是解题关键.22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访 3.24次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有9120人.【分析】(1)由3次的人数及其所占百分比可得总人数,再用总人数减去其它次数的人数求得4次的人数即可得;(2)根据加权平均数的公式计算可得;(3)用总人数乘以样本中3次、4次及5次人数和占被调查人数的比例即可得.解:(1)∵被调查的总人数为54÷36%=150(人),则家访4次的人数为150×28%=42(人),补全图形如下:(2)在采集到的数据中,近两周平均每位教师家访=3.24(次),故答案为:3.24;(3)近两周家访不少于3次的教师约有12000×=9120(人),故答案为:9120.【点评】本题主要考查了条形统计图和扇形统计图,解题时注意:条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验A的情况数,即可求出所求概率.解:(1)小丽参加实验A考查的概率是,故答案为:;(2)列表如下:所有等可能的情况有16种,其中小明、小丽都参加实验A考查的只有1种情况,所以小明、小丽都参加实验A考查的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB 上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=,求AD的长.【分析】(1)由题意可得∠CAD=∠DAO=∠ODA,可得DO∥AC,即可证OD⊥BC,则BC与圆O相切;(2)利用三角函数可求AB=10,BC=8,由sin B===,可求AO=DO=,即可求BD,CD的长,由勾股定理可求AD的长.解:(1)BC与圆O相切,理由如下:如图,连接OD∵OA=OD∴∠ODA=∠OAD,∵AD平分∠CAB∴∠CAD=∠DAO∴∠CAD=∠ODA∴DO∥AC∵AC⊥CD∴OD⊥BC,且D在圆O上,∴BC与圆O相切(2)在Rt△ABC中,∵AC=6,sin B=,∴AB=10,BC=8在Rt△BDO中,sin B===,∴30=8DO∴DO==AO∴BO=AB﹣AO=∴BD==5∴CD=BC﹣BD=3在Rt△ACD中,AD===3【点评】本题是圆的综合题,考查了圆的有关知识,切线的判定,勾股定理,锐角三角函数,熟练运用这些性质进行推理是本题的关键.25.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件,厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场,商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?【分析】设A商场售出该商品x件,分采购量小于400件、等于400件以及大于400件三种情况考虑:①当A商城的采购量小于400件时,利用总利润=单件利润×销售数量结合总利润达到9600元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;②当A商城的采购量等于400件时,由利润=销售收入﹣进货成本+返利+退货钱数结合总利润达到9600元,即可得出关于x的一元一次不等式,解之取其中的最小整数即可得出结论;③当A商城的采购量大于400件时,结合②可得出销售量必须大于332件,才能保证获利达到9600元.综上,此题得解.解:设A商场售出该商品x件.①当A商城的采购量小于400件时,有(100﹣75)x≥9600,解得:x≥384,∴商城对这种商品的销量至少要384件;②当A商城的采购量等于400件时,有100x﹣400×75+65(400﹣x)+400×5≥9600,解得:x≥331,∵x为正整数,∴x≥332,∴商城对这种商品的销量至少要332件;③当A商城的采购量大于400件时,销售量必须大于332件,才能保证获利达到9600元.答:当A商场对这种商品的销量至少要332件时,他们的获利能达到9600元.【点评】本题考查了一元一次不等式的应用,分采购量小于400件、等于400件以及大于400件三种情况列出一元一次不等式是解题的关键.26.(10分)如图,∠AOB=60°,点P为射线OA上的一动点.过点P作PC⊥OB于点C.点D在∠AOB内,且满足∠APD=∠OPC,DP+PC=10.(1)当PC=6时,求点D到OB的距离;(2)在射线OA上是否存在一定点M,使得MD=MC?若存在,请用直尺(不带刻度)和圆规作出点M(不必写作法,但要保留作图痕迹),并求OM的长;若不存在,说明理由.【分析】(1)作DH⊥OB于H,PE⊥DH于E,如图1,先计算出PD=4,利用含30度的直角三角形三边的关系得到DE=PD=2,易得四边形PCHE为矩形,然后计算DH 即可;(2)如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,利用∠D′P A=∠DP A=30°可判断点D、D′关于OA对称,所以MD′=MD,而MD′=MC,所以点M满足MD=MC,作MN⊥OB于N,如图2,易得MN=5,根据含30度的直角三角形三边的关系求出ON、OM即可.解:(1)作DH⊥OB于H,PE⊥DH于E,如图1,∵DP+PC=10,PC=6,∴PD=4,∵∠AOB=60°,∴∠OPC=∠APD=30°,∴∠DPE=30°,∴DE=PD=2,易得四边形PCHE为矩形,∴EH=PC=6,∴DH=DE+EH=2+6=8,即点D到OB的距离为8;(2)存在.如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,则点M为所作;作MN⊥OB于N,如图2,则MN=×10=5,在Rt△OMN中,ON=MN=,∴OM=2ON=.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了点到直线的距离和含30度的直角三角形三边的关系.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.【分析】(1)如图,作CH⊥AB于H.证明△PCH是等腰直角三角形即可解决问题.(2)证明AB=2n,利用勾股定理即可解决问题.解:(1)如图,作CH⊥AB于H.由翻折的性质可知:∠APC=∠QPC,∵PQ⊥P A,∴∠APQ=90°,∴∠APC=∠QPC=135°,∴∠BPC+∠QPB=135°,∵∠QPB=90°,∴∠BPC=45°,∵CH⊥AB,∴CH=PH,在Rt△ABC中,AB===5,∵•AB•CH=•AC•BC,∴CH=,BH==,∴PB=PH+BH=+=.(2)如图2中,连接BQ.由翻折不变性可知:P A=PQ,∠QPC=∠APC,∵四边形BCPQ是平行四边形,∴PQ=BC=P A=n,PQ∥BC,∴∠QPC+∠PCB=180°,∵∠BPC+∠APC=180°,∴∠PCB=∠BPC,∴PB=BC=n,∴AP=PB=n,AB=2n,在Rt△ABC中,则有(2n)2=m2+n2,∴m2=3n2,∵m>0.n>0,∴m=n.【点评】本题考查解直角三角形,翻折变换,勾股定理,平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考常考题型.28.(10分)已知:如图,在平面直角坐标系中,点P(m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.【分析】(1)由题意得:OA=m=3,将x=3代入y=x,可得:y=9,即可求解;(2)由CD:DA=BP:P A=1:2,PD:BC=P A:PB=2:3,求出:OC=m,CD=m,AD=m,利用OA=m+m+m=6,即可求解.解:(1)由题意得:OA=m=3,将x=3代入y=x,可得:y=9,故:点B的坐标(3,9),∴BP=6;(2)过点B作BC⊥OA于点C,过点P作PD⊥OA,由题意得:∠BOC=60°,∵PD∥BC,∴CD:DA=BP:P A=1:2,PD:BC=P A:PB=2:3,∵PD=m,OD=m,∴BC=m,在Rt△OBC中,OC=m,∴CD=m,AD=m,∴OA=m+m+m=6,解得:m=,∴点B(,),P(3,),故抛物线表达式为:y=a(x﹣)2+,将点P坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣)2+.【点评】本题主要考查的是一次函数图象与系数的关系、抛物线的基本性质,涉及到解直角三角形、平行线分线段成比例等知识点,综合性强,由一定的难度.。

2018年贵阳中考数学适应性考试后模拟(二)

2018年贵阳中考数学适应性考试后模拟(二)

2018年贵阳中考数学模拟(二)一.选择题(共10小题)1.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数 B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数2.如图所示图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(﹣2,﹣3),Q(3,﹣2)B.P(2,﹣3)Q(3,2)C.P(2,3),Q(﹣4,)D.P(﹣2,3),Q(﹣3,﹣2)4.下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况()A.B.C.D.5.如图所示的几何体的主视图是()A. B. C. D.6.如图,三个方格代表三位数的数字,且甲、乙两人分别将3、6的号码排列如下,然后等机会在两组1﹣﹣9的9个号码中各选出一个数,将它们分别在两个空格中填上,则排出的数甲大于乙的概率是()A.B.C.D.7.一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或148.一次数学检测中,有5名学生的成绩分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是()A.87.2,89 B.89,89 C.87.2,78 D.90,939.如图,四边形ABCD中,∠A=∠C=90°,∠B=60°,AD=1,BC=2,则四边形ABCD的面积是()A.B.3 C.D.410.如图,四边形ABCD中,AB=4,BC=6,AB⊥BC,BC⊥CD,E为AD的中点,F为线段BE上的点,且FE=BE,则点F到边CD的距离是()A.3 B.C.4 D.二.填空题(共5小题)11.⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.12.分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为.13.已知一个多边形的内角和是外角和的2倍,此多边形是边形.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=.15.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的.三.解答题(共10小题)16.解不等式组,并求出它的所有整数解.17.某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.次数01234人数361312(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.18.某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,其余资金用于在毕业晚会上给43位同学每人购买一件纪念品,纪念品为文化衫或相册.已知每件文化衫比每本相册贵6元,用202元恰好可以买到3件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有几种购买文化衫和相册的方案?哪种方案用于布置毕业晚会会场的资金更充足?19.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.20.如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为130m的正方形,且每一个侧面与底面成65°角(即∠ABC=65°),这座金字塔原来有多高(结果取整数)?(参考数据:sin65°=0.9,cos65°=0.4,tan65°=2.1)21.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.23.如图,直线y=x+b与双曲线y=(k是常数,k≠0)在第一象限内交于点A(1,2),且与x 轴、y轴分别交于B,C两点.点P在x轴.(1)求直线和双曲线的解析式;(2)若△BCP的面积等于2,求P点的坐标;(3)求PA+PC的最短距离.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P 点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.25.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.2017年贵阳中考数学模拟(二)参考答案与试题解析一.选择题(共10小题)3.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(﹣2,﹣3),Q(3,﹣2)B.P(2,﹣3)Q(3,2) C.P(2,3),Q(﹣4,)D.P(﹣2,3),Q(﹣3,﹣2)【解答】解:A、∵(﹣2)×(﹣3)≠3×(﹣2),故点P,Q不在同一反比例函数图象上;B、∵2×(﹣3)≠3×2,故点P,Q不在同一反比例函数图象上;C、∵2×3=(﹣4)×(),故点P,Q在同一反比例函数图象上;D、∵(﹣2)×3≠(﹣3)×(﹣2),故点P,Q不在同一反比例函数图象上;故选:C.4.下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况()A.B.C.D.【解答】解:根据常识判断,苹果下落过程中的速度是随时间的增大逐渐增大的,A、速度随时间的增大变小,故本选项错误;B、速度随时间的增大而增大,故本选项正确;C、速度随时间的增大变小,故本选项错误;D、速度随时间的增大不变,故本选项错误.故选:B.5.如图所示的几何体的主视图是()A. B. C. D.【解答】解:从几何体的正面看可得图形.故选:B.6.如图,三个方格代表三位数的数字,且甲、乙两人分别将3、6的号码排列如下,然后等机会在两组1﹣﹣9的9个号码中各选出一个数,将它们分别在两个空格中填上,则排出的数甲大于乙的概率是()A.B.C.D.【解答】解:因为每个格中可填入1到9共9个数,所以共有9×9=81种情况,当乙中填入1到5时,甲始终大于乙,共有5×9=45种情况,当乙中填入6时,甲中填入4、5、6、7、8、9、时甲大于1,共有6种情况,故甲大于乙的情况共有45+6=51种情况,故排出的数甲大于乙的概率是=.故选:B.7.一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是()A.12 B.13 C.14 D.12或14【解答】解:由一元二次方程x2﹣7x+12=0,得(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,解得x=3,或x=4;∴等腰三角形的两腰长是3或4;①当等腰三角形的腰长是3时,3+3=6,构不成三角形,所以不合题意,舍去;②当等腰三角形的腰长是4时,0<6<8,所以能构成三角形,所以该等腰三角形的周长=6+4+4=14;故选:C.8.一次数学检测中,有5名学生的成绩分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是()A.87.2,89 B.89,89 C.87.2,78 D.90,93【解答】解:这5名学生的成绩重新排列为:78、86、89、90、93,则平均数为:=87.2,中位数为89,故选:A.9.如图,四边形ABCD中,∠A=∠C=90°,∠B=60°,AD=1,BC=2,则四边形ABCD的面积是()A.B.3 C.D.4【解答】解:如图所示,延长BA,CD交于点E,∵∠A=∠C=90°,∠B=60°,∴∠E=30°,∴Rt△ADE中,AE===,Rt△BCE中,CE=tan60°×BC=×2=2,∴四边形ABCD的面积=S△BCE﹣S△ADE=×2×2﹣×1×=2﹣=,故选:A.10.如图,四边形ABCD中,AB=4,BC=6,AB⊥BC,BC⊥CD,E为AD的中点,F为线段BE上的点,且FE=BE,则点F到边CD的距离是()A.3 B.C.4 D.【解答】解:如图所示,过E作EG⊥CD于G,过F作FH⊥CD于H,过E作EQ⊥BC于Q,则EG∥FH∥BC,AB∥EQ∥CD,四边形CHPQ是矩形,∵AB∥EQ∥CD,∴,∵E是AD的中点,∴BQ=CQ=3,∴HP=CQ=3,∵FP∥BQ,∴,∵FE=BE,∴FP=BQ=1,∴FH=1+3=4.故选:C.二.填空题(共5小题)11.⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是4≤OP≤5.【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.故答案为:4≤OP≤5.12.分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为.【解答】解:如图所示:由树状图可知,共有12中可能的情况,两个数的和为正数的共有4种情况,所以所取两个数的和为正数的概率为=.故答案为:.13.已知一个多边形的内角和是外角和的2倍,此多边形是六边形.【解答】解:设这个多边形的边数为n,∴(n﹣2)•180°=2×360°,解得:n=6,故答案为:六.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.【解答】解:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1则(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1.(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.故答案是:x8﹣1;x n+1﹣1.15.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的.【解答】解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,,∴S△AFG:S△ABC=4:9,S△AEH:S△ABC=1:9,=S△ABC﹣S△ABC=S△ABC.∴S阴影部分的面积故答案为.三.解答题(共10小题)16.解不等式组,并求出它的所有整数解.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,所以不等式组的整数解为﹣1、0、1、2.17.某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.次数01234人数361312(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.【解答】解:(1)6÷12%=50(人),50﹣(3+6+13+12)=16(人).答:一周“主动做家务事”3次的人数是16人;(2)(3+6+13)÷50=22÷50=0.44.答:抽到的学生一周“主动做家务事”不多于2次的概率是0.44;(3)500×=160(人).答:估计全校学生一周“主动做家务事”3次的人数是160人.18.某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,其余资金用于在毕业晚会上给43位同学每人购买一件纪念品,纪念品为文化衫或相册.已知每件文化衫比每本相册贵6元,用202元恰好可以买到3件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有几种购买文化衫和相册的方案?哪种方案用于布置毕业晚会会场的资金更充足?【解答】解:(1)设每件文化衫和每本相册的价格分别为x元和y元,则,解得:.答:每件文化衫和每本相册的价格分别为29元和23元.(2)设购买文化衫a件,购买相册(43﹣a)本,且某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,则:1050≤29a+23(43﹣a)≤1065,解得≤a≤,因为a为正整数,所以a=11,12,即有2种方案:第一种方案:购买文化衫11件,相册32本;第二种方案:购买文化衫12件,相册31本;因为文化衫比相册贵,所以第一种方案布置毕业晚会会场的资金更充足.19.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:=.20.如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为130m的正方形,且每一个侧面与底面成65°角(即∠ABC=65°),这座金字塔原来有多高(结果取整数)?(参考数据:sin65°=0.9,cos65°=0.4,tan65°=2.1)【解答】解:∵底部是边长为130m的正方形,∴BC=×130=65m,∵AC⊥BC,∠ABC=65°,∴AC=BC•tan65°≈65×2.1445≈139m.答:这个金字塔原来有139米高.21.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若BF=2,EF=,求⊙O的半径长.【解答】(1)证明:连接OE,则∠BOE=2∠BDE,又∠A=2∠BDE,∴∠BOE=∠A,∵∠C=∠ABD,∠A=∠BOE,∴△ABD∽△OCE∴∠ADB=∠OEC,又∵AB是直径,∴∠OEC=∠ADB=90°∴CE与⊙O相切;(2)解:连接EB,则∠A=∠BED,∵∠A=∠BOE,∴∠BED=∠BOE,在△BOE和△BEF中,∠BEF=∠BOE,∠EBF=∠OBE,∴△OBE∽△EBF,∴=,则=,∵OB=OE,∴EB=EF,∴=,∵BF=2,EF=,∴=,∴OB=.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.23.如图,直线y=x+b与双曲线y=(k是常数,k≠0)在第一象限内交于点A(1,2),且与x 轴、y轴分别交于B,C两点.点P在x轴.(1)求直线和双曲线的解析式;(2)若△BCP的面积等于2,求P点的坐标;(3)求PA+PC的最短距离.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).(3)如图,作C关于x轴的对称点C′,则C(0,﹣1).此时PA+PC最短,最短距离是.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=2.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P 点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【解答】(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴=,∴PB2=PA•PC=12,∴PB=2;故答案为:2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.25.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD的解析式为y=mx+n,∴,∴直线BD的解析式为y=﹣2x﹣6,设点P(a,﹣2a﹣6),∵C(0,﹣3),E(﹣1,0),根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,PC2=a2+(﹣2a﹣6+3)2,∵PC=PE,∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,∴P(﹣2,﹣2),(3)如图,作PF⊥x轴于F,∴F(﹣2,0),设M(d,0),∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),∵以点F,N,G,M四点为顶点的四边形为正方形,必有FM=MG,∴|d+2|=|d2+2d﹣3|,∴d=或d=,∴点M的坐标为(,0),(,0),(,0),(,0).。

山西省2018-2019学年第二学期七年级阶段二质量评估试题·数学(华师版)·试题+答案

山西省2018-2019学年第二学期七年级阶段二质量评估试题·数学(华师版)·试题+答案

七年级数学答案(华师版) 第 2 页 (共 4 页)
20. 解:(1)分类讨论 !!!!!!!!!!!!!!!!!!!!!!!!! 2 分
(2)①当 2x-1≥0 时,2x-1=5,!!!!!!!!!!!!!!!!!!!! 3 分
解得 x=3,!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 4 分
的解互为相反数,则 k 的值是 ________.
x+2y=-1
15. 对于 x,y 定义一种新运算“☆”,x☆y=ax+by,其中 a,b 是常数,等式右边是通常的加法
和乘法运算.已知 3☆5=15,4☆7=28,则 1☆1 的值为 ________.
七年级数学(华师版) 第 2 页 (共 4 页)
A. 0 个
B. 1 个
C. 2 个
D. 3 个
第Ⅱ卷 非选择题 (共 90 分)
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
11.“m 的 2 倍与 8 的和不大于 2 与 m 的和”用不等式表示为 ________.
12. 若 x+y=7,3x-5y=-3,则 3(x+y)-(3x-5y)的值是 ________.
项符合题目要求)
沿 1. 下列选项中,是一元一次方程的是
此 A. 3x+y=1
B. a2+2ab+b2
线
C. 3x-3=2(x-2)
D. 2x-3<0

2. 若 x>y,则下列式子中错误的是
叠 A. x-3>y-3
B.
x 3

y 3
C. x+3>y+3
D. -3x>-3y
3. 若 x=2 是ቤተ መጻሕፍቲ ባይዱ于 x 的方程 2x+3m-1=0 的解,则 m 的值为

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式一.选择题(共22小题) 1.(2020•津南区一模)计算2a (a+1)2+2(a+1)2的结果为( ) A .1B .2C .1a+1D .2a+12.(2020•和平区三模)计算a (a+b)2+b (a+b)2的结果为( ) A .1B .1a+1bC .a +bD .1a+b3.(2020•红桥区三模)计算2−x x−1+2x−3x−1的结果为( )A .2x−1x−1B .1C .1x−1D .24.(2020•河北区二模)化简x 2x−2+42−x的结果是( )A .x +2B .x +4C .x ﹣2D .2﹣x5.(2020•滨海新区二模)计算3x−1x−1+2−3x x−1的结果为( ) A .3x−1B .x ﹣1C .1x−1D .−1x−16.(2020•西青区二模)化简a 2a−1+1−2a a−1结果为( )A .a+1a−1B .a ﹣1C .aD .17.(2020•天津二模)计算x−2x−1+1x−1的结果为( )A .1B .1x−1C .12D .xx−18.(2020•滨海新区一模)计算3x(x−1)2−3(x−1)2的结果是( )A .3B .3x ﹣3C .xx−1D .3x−19.(2020•红桥区一模)计算2a−1a−1−1a−1的结果是( )A .2B .2a ﹣2C .1D .2aa−110.(2020•南开区二模)化简x 2+2xy+y 2x 2−y 2−y x−y的结果是( )A .xx−yB .y x+yC .xx+yD .yx−y11.(2020•和平区一模)计算22a+b+b 2a+b的结果为( )A .1B .2+bC .2−b2a+bD .2+b2a+b12.(2020•红桥区模拟)计算x+2x+1−x x+1的结果为( )A .1B .2C .2x+1D .2xx+113.(2020•西青区一模)化简x 2x−1+x 1−x的结果是( )A .xB .x ﹣1C .﹣xD .x +114.(2019•津南区二模)计算a a 2−b 2−1a−b的结果为( )A .bB .﹣bC .ba−bD .−b a 2−b215.(2019•西青区二模)计算m 2m−n+n 2n−m的结果为( )A .m 2+n 2B .m +nC .m ﹣nD .n ﹣m16.(2019•天津二模)化简m 2m−4+164−m的结果是( )A .m ﹣4B .m +4C .m+4m−4D .m−4m+417.(2019•河北区二模)计算x 2−2x−1+1x−1的结果为( )A .x +1B .x ﹣1C .1x+1D .1x−118.(2019•和平区一模)计算xx−2+2x−2的结果为( )A .0B .1C .2−xx−2D .x+2x−219.(2019•红桥区一模)计算2x+13x−1−2−x3x−1的结果为( )A .1B .﹣1C .33x−1D .x+33x−120.(2019•天津模拟)计算2a a 2−1−1a+1的结果为( )A .1a+1B .1a−1C .aa+1D .aa−121.(2019•河西区模拟)计算2x5x−3÷325x 2−9⋅x5x+3的结果为( )A .2x 23B .(5x+3)23 C .2x5x−3D .2x15x−922.(2019•东丽区二模)计算a(a+1)2+1(a+1)2的结果为( ) A .1B .1aC .a +1D .1a+1二.填空题(共28小题)23.(2020•津南区一模)计算(√3+√5)2的结果等于 . 24.(2020•西青区二模)计算(√5−2)(√5+2)的结果等于 . 25.(2020•滨海新区二模)计算(√3−1)2的结果等于 . 26.(2020•河北区二模)化简(√5−1)2= .27.(2020•红桥区二模)计算(√11+2)(√11−2)的结果等于 . 28.(2020•南开区二模)计算(3+√6)2的结果等于 . 29.(2020•河东区一模)计算(√5+6)•(√5−6)= . 30.(2020•和平区二模)计算(2√2−3)(3+2√2)的结果等于 . 31.(2020•和平区一模)计算(√6+2)(√6−2)的结果等于 . 32.(2020•南开区一模)计算(√5+√2)2的结果是 . 33.(2020•天津二模)计算(√3+2)(√3−2)的结果是 . 34.(2020•河西区模拟)使式子√a −1有意义的a 的取值范围是 . 35.(2020•西青区一模)计算(2√5−√2)2的结果等于 .36.(2020•滨海新区一模)已知x =√3+1,y =√3−1,则x 2+2xy +y 2的值为 . 37.(2019•宝坻区模拟)将√423化为最简二次根式的结果为 .38.(2019•北辰区二模)当x =√10−1时,多项式x 2+2x +6的值等于 . 39.(2019•津南区二模)计算(√5−√2)2的结果等 . 40.(2019•天津二模)计算(√3−√2)2的结果等于 .41.(2019•红桥区二模)计算:(√5+√2)(√5−√2)的结果等于 . 42.(2019•红桥区一模)计算(√7+2)(√7−2)的结果等于 . 43.(2019•和平区二模)计算(2√2−3)2的结果等于 . 44.(2019•滨海新区模拟)计算(√5−√3)2的结果等于 . 45.(2019•东丽区一模)计算:(√3−√2)2= . 46.(2019•大港区模拟)计算√24−√18×√13−√19= .47.(2018•和平区二模)计算(2+√3)(√3−2)的结果等于.48.(2018•北辰区二模)计算(√10+√2)(√10−√2)的结果等于.49.(2018•天津二模)计算(√7+√5)(√7−√5)的结果等于.50.(2018•南开区二模)计算√2×(√6−2√12)的结果等于.2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式参考答案与试题解析一.选择题(共22小题) 1.【解答】解:2a (a+1)2+2(a+1)2=2(a +1)(a +1)2=2a+1. 故选:D . 2.【解答】解:原式=a+b (a+b)2=1a+b . 故选:D . 3.【解答】解:2−x x−1+2x−3x−1=2−x+2x−3x−1=x−1x−1=1.故选:B . 4.【解答】解:x 2x−2+42−x=x 2x −2−4x −2 =x 2−4x −2 =(x −2)(x +2)x −2=x +2. 故选:A . 5.【解答】解:3x−1x−1+2−3x x−1=3x −1+2−3xx −1=1x−1. 故选:C .6.【解答】解:原式=a 2+1−2aa−1=(a −1)2a −1=a ﹣1. 故选:B . 7.【解答】解:x−2x−1+1x−1=x −2+1x −1=1. 故选:A . 8.【解答】解:3x (x−1)2−3(x−1)2=3x−3(x−1)2=3(x−1)(x−1)2=3x−1;故选:D . 9.【解答】解:2a−1a−1−1a−1=2a −1−1a −1=2a −2a −1 =2(a −1)a −1=2, 故选:A .10.【解答】解:原式=(x+y)2(x+y)(x−y)−yx−y=x +y x −y −yx −y=xx−y , 故选:A .11.【解答】解:原式=2+b2a+b , 故选:D . 12.【解答】解:x+2x+1−x x+1=x+2−x x+1=2x+1,故选:C .13.【解答】解:原式=x 2x−1−x x−1=x(x−1)x−1=x ,故选:A.14.【解答】解:aa2−b2−1a−b=a(a+b)(a−b)−a+b(a+b)(a−b)=−ba2−b2,故选:D.15.【解答】解:原式=m2−n2 m−n=m+n,故选:B.16.【解答】解:原式=m2m−4−16m−4=m2−16m−4=(m+4)(m−4)m−4=m+4,故选:B.17.【解答】解:原式=x2−1 x−1=x+1,故选:A.18.【解答】解:xx−2+2 x−2=x+2x−2,故选:D.19.【解答】解:原式=2x+1−2+x3x−1=3x−13x−1=1,故选:A.20.【解答】解:2aa2−1−1a+1=2a(a+1)(a−1)−a−1(a+1)(a−1)=2a−(a−1)(a+1)(a−1)=a+1(a+1)(a−1)=1a−1, 故选:B .21.【解答】解:原式=2x 5x−3•(5x+3)(5x−3)3•x5x+3=2x 23, 故选:A . 22.【解答】解:a (a+1)2+1(a+1)2=1a+1,故选:D .二.填空题(共28小题) 23.【解答】解:原式=3+2√15+5 =8+2√15. 故答案为8+2√15.24.【解答】解:原式=(√5)2﹣22 =5﹣4 =1. 故答案为1.25.【解答】解:原式=3﹣2√3+1 =4﹣2√3. 故答案为4﹣2√3.26.【解答】解:原式=5﹣2√5+1 =6﹣2√5. 故答案为6﹣2√5.27.【解答】解:原式=(√11)2﹣22 =11﹣4 =7. 故答案为728.【解答】解:原式=9+6√6+6 =15+6√6. 故答案为15+6√6.29.【解答】解:原式=(√5)2﹣62=5﹣36=﹣31.故答案为:﹣31.30.【解答】解:(2√2−3)(3+2√2)=(2√2)2﹣32=8﹣9=﹣1,故答案为:﹣1.31.【解答】解:原式=(√6)2﹣22=6﹣4=2.故答案为2.32.【解答】解:原式=(√5)2+2√10+(√2)2=5+2√10+2=7+2√10.故答案为7+2√10.33.【解答】解:原式=(√3)2﹣22=3﹣4=﹣1,故答案为:﹣1.34.【解答】解:使式子√a−1有意义,则a﹣1≥0,解得:a≥1.故答案为:a≥1.35.【解答】解:原式=20﹣4√10+2=22﹣4√10.故答案为22﹣4√10.36.【解答】解:∵x=√3+1,y=√3−1,∴x2+2xy+y2=(x+y)2=(√3+1+√3−1)2=(2√3)2=12;故答案为:12.37.【解答】解:原式=√143=√423, 故答案为:√423; 38.【解答】解:解法一:当x =√10−1时, x 2+2x +6=(√10−1)2+2(√10−1)+6 =10﹣2√10+1+2√10−2+6 =15, 故答案为15;解法二:x 2+2x +6=(x +1)2+5 =(√10−1+1)2+5 =10+5 =15, 故答案为15.39.【解答】解:原式=5﹣2√10+2 =7﹣2√10. 故答案为7﹣2√10.40.【解答】解:原式=3﹣2√6+2 =5﹣2√6. 故答案为5﹣2√6. 41.【解答】解:原式=5﹣2 =3. 故答案为3.42.【解答】解:原式=7﹣4=3. 故答案为3.43.【解答】解:原式=(2√2)2﹣2×2√2×3+32 =8﹣12√2+9 =17﹣12√2, 故答案为:17﹣12√2.44.【解答】解:原式=5﹣2√15+3=8﹣2√15.故答案为8﹣2√15.45.【解答】解:原式=(√3)2+(√2)2−2√3×√2=3+2﹣2√3×2=5﹣2√6.故答案为:5﹣2√6.46.【解答】解:原式=2√6−√18×13−13=2√6−√6−1 3=√6−13.故答案为√6−1 3.47.【解答】解:(2+√3)(√3−2)=(√3)2﹣22=3﹣4=﹣1.故答案为:﹣1.48.【解答】解:原式=10﹣2=8.故答案为8.49.【解答】解:原式=7﹣5=2.故答案为2.50.【解答】解:原式=√2×6−2√2×1 2=2√3−2.故答案为2√3−2.。

广东省中山市卓雅外国语学校-2018年中考考前信息卷数学中考模拟试题(二)

广东省中山市卓雅外国语学校-2018年中考考前信息卷数学中考模拟试题(二)
广东省 2018 年初中毕业生学业考试信息卷(二) 数 学
一、选择题(共 10 小题,每小题 3 分,共 30 分) 1.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据 统计, 中国每年浪费的食物总量折合粮食约 500 亿千克, 这个数据用科学记数法表示为 ( A.5×109 千克 B.50×109 千克 C.5×1010 千克 D.0.5×1011 千克 )个. )
第 1 页
A.5
B.10
C.12
D.13
7.在 2016 年的体育中考中,某校 6 名学生的体育成绩统计如图,则这组数据的众数、中位 数分别是( )
A.3,2.5
B.47,46
C.47,47 )
D.50,47
8.如图,∠1=∠B,∠2=25°,则∠D=(
A.25°
B.45°
C.50°
D.65°
9.如图,已知四边形 ABCD,对角线 AC 和 BD 相交于 O,下面选项不能得出四边形 ABCD 是平行四边形的是( )
第 2 页
A.
B.
C.
D.
二、填空题(共 6 小题,每小题 4 分,共 24 分) 11.分解因式:3x3﹣27x= 12.不等式
1 2x >x﹣1 的解集是 3
. .
13.如图,四边形 ABCD 是圆内接四边形,E 是 BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是 .
14.一批零件 300 个,一个工人每小时做 15 个,用关系式表示人数 x 与完成任务所需的时间 y 之间的函数关系式为 .
A.7000(1+2x)=8500 C.8500(1+x)2=7000
5.如图,在△ABC 中,∠ACB=90°,CD 是 AB 边上的高,如果∠A=50°,则∠DCB=(

2018届中考数学二模试卷(带答案) (2)

2018届中考数学二模试卷(带答案)  (2)

2018年中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)2.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣33.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A.B.C.D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2=.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A 1B1C1D1E1,则OD:OD1=.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是册,a=册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是,极差是;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2=(1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2.【考点】位似变换.【分析】根据五边形ABCDE的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是m.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC的面积为a,根据△AFD∽△CFE和AD=2EC,求出△AFD的面积,根据DF=2FE,求出△DFC的面积,计算得到a=m,得到答案.【解答】解:设△EFC的面积为a,∵E是BC的中点,∴BC=2EC,则AD=2EC,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线OM的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A1B1C1如图;(2)△A2B2C2如图;(3)是轴对称,如图直线l为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E 就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100册,a=14册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是14,极差是10;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二○一八年初中学生学业水平模拟考试
数学试题(二)
亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站。

请你在答题之前,一定要仔细阅读以下说明:
1.试题由选择题与非选择题两部分组成,共3页。

选择题36分,非选择题84分,共 120分。

考试时间120分钟。

2.将姓名、考场号、座号、考号填写在试题和答题卡指定的位置。

3.试题答案全部写在答题卡上,完全按照答题卡中的“注意事项”答题。

4.考试结束,答题卡和试题一并交回。

5.不允许使用计算器。

愿你放松心情,认真审题,缜密思考,细心演算,争取交一份满意的答卷。

选择题(共36分)
一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)
1. 如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有( )
A.2个B.3个 C.4个 D.5个
2.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()
A. 617 ×105
B. 6.17 ×106
C. 6.17 ×107
D. 0.617 ×108
3.为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是()
A.极差是7
B.众数是8
C.中位数是8.5
D.平均数是9
4.下图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体是()
A. B.
C. D.
5. 正方形ABCD在坐标系中的位置如图所示,将
正方形ABCD绕D点顺时针旋转90°后,B点的对应点
的坐标为( )
A. (−2,2)
B. (4,1)
C. (3,1)
D. (4,0)
6. 如果抛物线y=ax2+bx+c经过点(−1,0)和(3,0),那么对称轴是直线()
A. x=0
B. x=1
C. x=2
D. x=3
7. 如图,现分别旋转两个标准的转盘,则转盘
所转到的两个数字之积为奇数的概率是()
A. 1
3
B. 3
5
C. 1
2
D. 1
6
8. 如图,▱ABCD中,AB=3,BC=5,BE平分
∠ABC交AD于点E、交AC于点F,则AF
FC
的值为()
A. 5
3
B. 3
5
C. 3
2
D. 2
3
9. 同圆的外切正四边形与内接正四边形的边长之比
是( )
A. √2:1
B. √3:1
C. 2:1
D. 3:1
10. 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若CD=
2√2,CA=√6,则直径AB的长为( )
A. 2
B. 3
C. 4
D. 5
第1页(共3页)
第2页 (共3页)
11. 在边长为2的正方形ABCD 中,对角线AC 与BD 相交于点O ,P 是BD 上一动点,过P 作EF//AC ,分别交正方形的两条边于点E ,F.设BP =x ,△BEF 的面积为y ,
则能反映y 与x 之间关系的图象为( ) A. B.
C. D.
12. 在平面直角坐标系中,第一个正方形ABCD 的位置如图所示,点A 的坐标为(2,0),点D 的坐标为(0,4).延长CB 交x 轴于点A 1,作第二个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第三个正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2018个正方形的面积为( )
A. 20×(3
2)2017
B. 20×(3
2)2018
C. 20×(3
2)4036
D.20×(3
2)4034
二、填空题(本题共5个小题,每小题3分,共15分。

只要求填写最后结果)
13. 的算数平方根是_ _____.
14.如图,小正方形构成的网格中,半径为 1 的⊙O 在格点上,则图中阴影部分两个小扇形的面积之和为 (结果保留 π).
15. 某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x >0),十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是___ ___.
16. 木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O 于点A ,并使较长边与⊙O 相切于点C.记角尺的直角顶点为B ,量得AB =8cm ,BC =16cm ,则⊙O 的半径等于__ ____cm .
17. 如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边 上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处. 当△CEB ′为直角三角形时,BE 的长为 .
三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤) 18.(本题满分8分.第⑴小题3分,第⑵小题5分)
(1)计算: ;
(2)先化简,再求值: ,其中 。

19.(本题满分6分)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.
(1)以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A ′B ′C ′; (2)△A ′B ′C ′绕点B ′顺时针旋转90∘,
画出旋转后得到的△A ″B ′C ″,并求边A ′B ′在旋转过程中扫过的图形面积.
20. (本题满分7分)如图,在

ABCD 中,E 是BC 边上一点,且AB =AE.求证:DE =AC.
6482145201831
0+⎪⎭⎫
⎝⎛-︒-+--tan )(1
4
41312+++÷
+--x x x )x x (31=x
21.(本题满分8分)如图,大楼底右侧有一障碍物,在障碍
物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点
C的俯角为30∘,测得大楼顶端A的仰角为45∘(点B,C,E在同
一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两
点间的距离.(结果保留根号)
22.(本题满分8分)随着手机普及率的提高,有些人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.某校学生会为了解学校初三年级学生使用手机情况,随机调查了部分学生的使用手机时间,将调查结果分成五类:A.基本不用;B.平均每天使用手机1~2小时;C.平均每天使用手机2~4小时;D.平均每天使用手机4~6小时;E.平均每天使用手机超过6小时.并根据统计结果绘制成了如下两幅不完整的统计图.
(1)学生会一共调查了多少名学生.
(2)此次调查的学生中属于E类的学生有______ 名,并补全条形统计图.
(3)若一天中使用手机的时间超过6小时,则患有严重的“手机瘾”.该校初三年级共有900人,估计该校初三年级中约有多少人患有严重的“手机瘾”.
23. (本题满分10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如
果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种
..果树x(棵),它们之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
24.(本题满分10分)在Rt△ABC中,∠ACB=90°,BE平分
∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交
BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
25.(本题满分12分)如图,已知抛物线 :y= -
1
m
(x+2)(x
-m) (m>0)与x轴交于点B,C,与y轴交于点E,且点B在
点C的左侧.
(1)若抛物线 过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(4)在第四象限内,抛物线 上是否存在点F,使得以点B,C,F为顶点的三角形与△BCE相
似?若存在,求m的值;若不存在,请说明理由.
第3页(共3页)。

相关文档
最新文档