【全国百强校】河北省-2018-2019学年高一下学期期末考试数学试题+答案
2018-2019学年高一数学下学期期末考试试题(含解析)_33

2018-2019学年高一数学下学期期末考试试题(含解析)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中正确的是( )A. 棱柱的侧面可以是三角形B. 正方体和长方体都是特殊的四棱柱C. 所有的几何体的表面都能展成平面图形D. 棱柱的各条棱都相等【答案】B【解析】试题分析:棱柱的侧面是平行四边形,不可能是三角形,所以A不正确;球的表面就不能展成平面图形,所以C不正确;棱柱的侧棱与底面边长不一定相等,所以D不正确.考点:本小题主要考查空间几何体的性质.点评:解决此类问题的主要依据是空间几何体的性质,需要学生有较强的空间想象能力.2.在空间直角坐标系中,点P(3,4,5)关于平面的对称点的坐标为( )A. (−3,4,5)B. (−3,−4,5)C. (3,−4,−5)D. (−3,4,−5)【答案】A【解析】【分析】由关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,即可得解.【详解】关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,所以点P(3,4,5)关于平面的对称点的坐标为(−3,4,5).故选A.【点睛】本题主要考查了空间点的对称点的坐标求法,属于基础题.3.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,二面角的大小为()A. 30° B. 45° C. 60° D. 90°【答案】D【解析】【分析】当平面ACD垂直于平面BCD时体积最大,得到答案.【详解】取中点,连接当平面ACD垂直于平面BCD时等号成立.此时二面角为90°故答案选D【点睛】本题考查了三棱锥体积的最大值,确定高的值是解题的关键.4.方程表示的曲线是()A. 一个圆B. 两个圆C. 半个圆D. 两个半圆【答案】D【解析】原方程即即或故原方程表示两个半圆.5.已知不同的两条直线m,n与不重合的两平面,,下列说法正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】C【解析】【分析】依次判断每个选项的正误得到答案.【详解】若,,则或 A错误.若,,则或,B错误若,,则,正确若,,则或,D错误故答案选C【点睛】本题考查了线面关系,找出反例是解题的关键.6.已知数列2008,2009,1,-2008,-2009…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和等于()A. 1B. 2010C. 4018D. 4017【答案】C【解析】【分析】计算数列的前几项,观察数列是一个周期为6的数列,计算得到答案.【详解】从第二项起,每一项都等于它的前后两项之和计算数列前几项得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…观察知:数列是一个周期为6的数列每个周期和为0故答案为C【点睛】本题考查了数列的前N项和,观察数列的周期是解题的关键.7.已知函数的零点是和(均为锐角),则()A. B. C. D.【答案】B【解析】【分析】将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.8.设集合,,若存在实数t,使得,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】得到圆心距与半径和差关系得到答案.详解】圆心距存在实数t,使得故答案选C【点睛】本题考查了两圆的位置关系,意在考查学生的计算能力.9.如图所示,在正方体中,侧面对角线,上分别有一点E,F,且,则直线EF与平面ABCD所成的角的大小为()A. 0°B. 60°C. 45°D. 30°【答案】A【解析】【分析】证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.【详解】解:过E作EG∥AB交BB1于点G,连接GF,则,∵B1E=C1F,B1A=C1B,∴.∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.而EF在平面EFG中,∴EF∥平面ABCD.故答案为:A【点睛】本题主要考查空间直线和平面平行的判定,根据面面平行的性质是解决本题的关键.10.平面直角坐标系xOy中,角的顶点在原点,始边在x轴非负半轴,终边与单位圆交于点,将其终边绕O点逆时针旋转后与单位园交于点B,则B的横坐标为()A. B. C. D.【答案】B【解析】【分析】,B的横坐标为,计算得到答案.【详解】有题意知:B横坐标为:故答案选B【点睛】本题考查了三角函数的计算,意在考查学生的计算能力.11.如图所示,在四边形ABCD中,,,.将四边形ABCD沿对角线BD折成四面体,使平面平面BCD,则下列结论中正确的结论个数是()①;②;③与平面A'BD所成的角为30°;④四面体的体积为A. 0个B. 1个C. 2个D. 3个【答案】B【解析】【分析】根据题意,依次判断每个选项的正误得到答案.【详解】,平面平面且平面取的中点∵∴.又平面平面BCD,平面平面,平面.∴不垂直于.假设,∵为在平面内的射影,∴,矛盾,故A错误;,平面平面,平面,在平面内的射影为.,,故B正确,为直线与平面所成的角,,故C错误;,故D错误.故答案选B【点睛】本题考查了线线垂直,线面夹角,体积的计算,意在考查学生的计算能力和空间想象能力.12.已知,两条不同直线与的交点在直线上,则的值为()A. 2B. 1C. 0D. -1【答案】C【解析】【分析】联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【详解】交点在直线上观察分母和不是恒相等故故答案选C【点睛】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.圆和圆交于A,B两点,则弦AB 的垂直平分线的方程是________.【答案】【解析】【分析】弦AB的垂直平分线即两圆心连线.【详解】弦AB的垂直平分线即两圆心连线方程为故答案为:【点睛】本题考查了弦的垂直平分线,转化为过圆心的直线可以简化运算.14.数列满足,(且),则数列的通项公式为________.【答案】【解析】【分析】利用累加法和裂项求和得到答案.【详解】当时满足故答案为:【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.15.直线和将单位圆分成长度相等的四段弧,则________.【答案】0【解析】【分析】将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【点睛】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.16.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.【答案】5π/6【解析】试题分析:外接球半径.考点:外接球.三、解答题:本大题共6小题,满分70分。
2018学年河北省,高一下学期期末考试,数学试题 ,解析版10

第二学期期末考试高一年级数学试卷一、选择题1. 两直线与平行,则它们之间的距离为()A. B. C. D.2. 将边长为的正方形沿对角线折成一个直二面角.则四面体的内切球的半径为()A. 1B.C.D.3. 下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线4. 在空间中,给出下面四个命题,则其中正确命题的个数为( )①过平面外的两点,有且只有一个平面与平面垂直;②若平面内有不共线三点到平面的距离都相等,则∥;③若直线与平面内的无数条直线垂直,则;④两条异面直线在同一平面内的射影一定是两平行线;A. 3B. 2C. 1D. 05. 已知直线与平行,则的值是()A. 0或1B. 1或C. 0或D.6. (文科)如果圆上总存在到原点的距离为的点,则实数的取值范围是()A. B. C. D.7. 若圆上有且只有一点到直线的距离为,则实数的值为()A. B. C. 或 D. 或8. 已知二面角为为垂足,,则异面直线与所成角的余弦值为()A. B. C. D.9. 如图所示,在圆的内接四边形中,平分,切于点,那么图中与相等的角的个数是()A. 4B. 5C. 6D. 710. 点是双曲线右支上一点,是圆上一点,点的坐标为,则的最大值为()A. 5B. 6C. 7D. 811. 为不重合的直线,为不重合的平面,则下列说法正确的是()A. ,则B. ,则C. ,则D. ,则12. 曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是()A. B. C. D.二、填空题13. 如图,网格纸上每个小正方形的边长为,若粗线画出的是某几何体的三视图,则此几何体的体积为__________.14. 若过定点且斜率为的直线与圆在第一象限内的部分有交点,则的取值范围是____________.15. 若点在圆上,点在圆上,则的最小值是__________.16. 直线截圆所得的两段弧长之差的绝对值是__________.三、解答题17. 已知三边所在直线方程:,,().(1)判断的形状;(2)当边上的高为1时,求的值.18. 如图,在三棱柱中,底面,且为等边三角形,,为的中点.求证:直线平面;求证:平面平面;(3)求三棱锥的体积.第二学期期末考试高一年级数学试卷一、选择题1. 两直线与平行,则它们之间的距离为()A. B. C. D.【答案】D【解析】试题分析:由两直线平行可知,所以距离为考点:直线方程及平行线间的距离2. 将边长为的正方形沿对角线折成一个直二面角.则四面体的内切球的半径为()A. 1B.C.D.【答案】D【解析】试题分析:设球心为,球的半径为,由,知,故选D.考点:1.球的切接问题;2.等体积转换.3. 下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线【答案】C【解析】试题分析:A.三线交于一点时不一定在一个平面,故A不正确;B.正四棱锥中,侧面和底面所成角相等但不平行,故B不正确;C.直线和平面的位置关系只能是在面内或面外,因为直线经过平面外一点,故不在面内,必在面外,在面外包括平行和相交,故C正确;D.可以交于一点,则共面,故D不正确.考点:直线和平面的位置关系;平面和平面的位置关系.4. 在空间中,给出下面四个命题,则其中正确命题的个数为( )①过平面外的两点,有且只有一个平面与平面垂直;②若平面内有不共线三点到平面的距离都相等,则∥;③若直线与平面内的无数条直线垂直,则;④两条异面直线在同一平面内的射影一定是两平行线;A. 3B. 2C. 1D. 0【答案】D【解析】当过平面外的两点在垂直于平面的直线上时,命题①不成立;不共线三点在平面的两侧时,②不成立;无数条直线平行时,③不成立;在正方体中中,与是异面直线,在面中的射影是点,故④错。
2018-2019学年第二学期高一下学期期末考试数学试卷及答案解析

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………2018-2019学年第二学期高一下学期期末考试数学试卷评卷人 得分一、选择题1、已知为角的终边上的一点,且,则的值为( )A .B .C .D .2、在等差数列中,,则( )A .B .C .D .3、若,则一定有( )A .B .C .D .4、已知等差数列的前项和为,若且,则当最大时的值是( )A .B .C .D .5、若,则的值为( )A .B .C .D .6、在中,已知,则的面积等于( )A .B .C .D .7、各项均为正数的等比数列的前项和为,若,则( ) A .B .C .D .……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………8、若变量满足约束条件,且的最大值为,最小值为,则的值是( ) A . B .C .D .9、在中,角所对的边分别为,且,若,则的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 10、当甲船位于处时获悉,在其正东方向相距海里的处,有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西相距海里处的乙船,乙船立即朝北偏东角的方向沿直线前往处营救,则的值为( )A .B .C .D .11、已知是内的一点,且,若和的面积分别为,则的最小值是( )A .B .C .D . 12、已知数列满足,则( ) A .B .C .D .评卷人 得分二、填空题13、已知,且,则__________。
2018-2019学年高一数学下学期期末考试试题(含解析)_5

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知点,向量=( )A. B. C. D.【答案】A【解析】【分析】直接运用向量的坐标表示,求出.【详解】,故本题选A.【点睛】本题考查了向量的坐标表示,准确记忆向量的坐标公式是解题的关键.2.若a<b<c,则下列结论中正确的是()A. a|c|<b|c|B. ab<bcC. a﹣c<b﹣cD.【答案】C【解析】∵a<b<c,当c=0时,a|c|<b|c|不成立,故A错误;当b=0时,ab<bc不成立,故B错误;a−c<b−c一定成立,故C正确;当a,b,c异号时,>>不成立,故D错误;故选:C3.在等差数列{an}中,a5=33,公差d=3,则201是该数列的第()项.A. 60B. 61C. 62D. 63【答案】B【解析】试题分析:,选B.考点:等差数列通项公式4.已知中,,,则角等于()A. B. 或 C. D.【答案】D【解析】【分析】直接运用正弦定理,可以求出角的大小.【详解】由正弦定理可知:,因为角是的内角,所以,因此角等于,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.5.等比数列中,那么为 ( )A. B. C. D.【答案】A【解析】试题分析:由等比数列的性质得:,所以=4.考点:本题考查等比数列的性质。
点评:直接考查等比数列的性质,属于基础题型。
6.已知变量x,y满足约束条件则的最大值为()A. 1B. 2C. 3D. 4【答案】B【解析】画出二元一次不等式所示的可行域,目标函数为截距型,,可知截距越大值越大,根据图象得出最优解为,则的最大值为2,选B.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式转化为(或),“”取下方,“”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.已知一个圆锥底面半径为1,母线长为3,则该圆锥内切球的表面积为( )A. πB.C. 2πD. 3π【答案】C【解析】【分析】设内切球的半径为,利用轴截面,根据三角形等面积公式,可以求出,进而可以求出该圆锥内切球的表面积.【详解】设内切球的半径为,利用轴截面,根据三角形等面积公式,可得,解得,圆锥内切球的表面积为,故本题选C.【点睛】本题考查了圆锥内切球的表面积,考查了数学运算能力.8.已知,为单位向量,设与的夹角为,则与的夹角为( )A. B. C. D.【答案】B【解析】由题意,,,∴,故选B.9.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( )A. 8B.C.D. 4【答案】B【解析】试题分析:该几何体是一正三棱柱,底面边长为2,高为4,所以,底面三角形的高为,其侧视图面积为4×=,故选B。
河北省2019学年高一下学期期末考试数学试卷【含答案及解析】(1)

河北省2019学年高一下学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列数列中不是等差数列的为( )A. 6,6,6,6,6;________B. -2,-1,0,1,2;________C. 5,8,11,14;________D. 0,1,3,6,10.2. 已知直线 l 的倾斜角为60°,则直线 l 的斜率为()A. B. C. D.3. 过点(1,0)且与直线 y = x -1平行的直线方程是( )A. x -2 y -1=0B. x -2 y +1=0C. 2 x + y -2=0D. x +2 y -1=04. 在等差数列 { a n } 中, a 2 =5, a 6 =17 ,则 a 14 =()A. 45B. 41C. 39D. 37X k5. 数列是等比数列,,,则公比等于()A. 2B. -2C.D.6. 圆的圆心坐标与半径是()A. B. C. D.7. 已知点 P (3,2)和圆的方程( x -2) 2 +( y -3) 2 =4,则它们的位置关系为( )A. 在圆心________B. 在圆上________C. 在圆内________D. 在圆外8. 已知 m 和 2 n 的等差中项是 4, 2 m 和 n 的等差中项是 5,则 m 和 n 的等差中项是()A. 2B. 3C. 6D. 99. 设等比数列的首项为1,公比为,则数列的前项和()A. B. C. D.10. 已知直线的方程是,则()A. 直线经过点,斜率为-1B. 直线经过点(2,-1),斜率为-1C. 直线经过点(-1,-2),斜率为-1D. 直线经过点(-2,-1),斜率为111. 数列{ a n }是首项为2,公差为3的等差数列,数列{ b n }是首项为-2,公差为4的等差数列.若 a n = b n ,则 n 的值为()A. 4B. 5C. 6D. 712. 过原点且倾斜角为60°的直线被圆 x 2 + y 2 -4 y =0所截得的弦长为( )A. B. 2 C. D.二、填空题13. 的一个通项公式为 _____________14. 若直线 l 1 : ax + (1 - a)y = 3 与 l 2 : (a - 1)x + (2a + 3)y =2 互相垂直,则实数 a = ________.15. 将直线y=x+ -1绕它上面一点( 1,)沿逆时针方向旋转15°,则所得直线方程为16. 在 x 轴上,半径为的圆 C 位于 y 轴左侧,且与直线 x +2 y =0相切,则圆 C 的方程是 ________________ .三、解答题17. 已知A(1,-1),B(2,2),C(3,0)三点,求点D,使直线CD⊥AB,且CB∥AD。
2018-2019学年高一数学下学期期末考试试题(含解析)_6

2018-2019学年高一数学下学期期末考试试题(含解析)本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上。
2.选择题每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其它答案:不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案:不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卷收问。
第一部分选择题(60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.关于的不等式的解集为()A. B. C. D.【答案】B【解析】【分析】将不等式化为,等价于,解出即可。
【详解】由原式得且,解集为,故选:B。
【点睛】本题考查分式不等式的解法,解分式不等式时,要求右边化为零,等价转化如下:;;;.2.三边,满足,则三角形是()A. 锐角三角形B. 钝角三角形C. 等边三角形D. 直角三角形【答案】C【解析】【分析】由基本不等式得出,将三个不等式相加得出,由等号成立的条件可判断出的形状。
【详解】为三边,,由基本不等式可得,将上述三个不等式相加得,当且仅当时取等号,所以,是等边三角形,故选:C。
【点睛】本题考查三角形形状的判断,考查基本不等式的应用,利用基本不等式要注意“一正、二定、三相等”条件的应用,考查推理能力,属于中等题。
3.设是等差数列的前项和,若,则()A. B. C. D.【答案】D【解析】【分析】根据等差数列片断和的性质得出、、、成等差数列,并将和都用表示,可得出的值。
【详解】根据等差数列的性质,若数列为等差数列,则也成等差数列;又,则数列是以为首项,以为公差的等差数列,则,故选:D。
2018~2019学年河北省唐山市普通高中高一下学期期末考试数学试题(解析版)

绝密★启用前河北省唐山市普通高中2018~2019学年高一下学期期末教学质量监测数学试题(解析版)2019年7月本试卷分第Ⅰ卷(1~2页,选择题)和第Ⅱ卷(3~8页,非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、试卷科目用2B 铅笔涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净,再选涂其它答案,不能答在试卷上.3.考试结束后,监考人员将本试卷和答题卡一并收回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}250A x x x =-<,{}240B x x =+>,则A B =I ( )A. ()0,5B. ()2,5-C. ()2,5D. ()(),25,-∞-+∞U 【答案】A【解析】【分析】解出集合A 、B ,可得出集合A B I . 【详解】{}()2500,5A x x x =-<=Q ,{}240B x x R =+>=,因此,()0,5A B =I ,故选:A.【点睛】本题考查集合的交集运算,解题的关键在于解出两个集合,考查计算能力,属于中等题.2.下列说法正确的是( )A. 若a b >,则ac bc >B. 若a b >,c d >,则ac bd >C. 若a b >,则22a b >D. 若a b >,c d >,则a c b d +>+【答案】D【解析】【分析】利用不等式的性质或举反例的方法来判断各选项中不等式的正误.【详解】对于A 选项,若0c <且a b >,则ac bc <,该选项错误;对于B 选项,取2a =,1b =-,1c =-,2d =-,则a b >,c d >均满足,但ac bd <,B 选项错误; 对于C 选项,取1a =,2b =-,则a b >满足,但22a b <,C 选项错误;对于D 选项,由不等式的性质可知该选项正确,故选:D.【点睛】本题考查不等式正误的判断,常用不等式的性质以及举反例的方法来进行验证,考查推理能力,属于基础题.3.在等比数列{}n a 中,212a =,68a =,则4a =( ) A. 4B. 2C. 4±D. 2±【答案】B【解析】【分析】 设等比数列{}n a 的公比为q ,由等比数列的定义知4a 与2a 同号,再利用等比中项的性质可求出4a 的值. 【详解】设等比数列{}n a 的公比为q ,则2420a q a =>,2102a =>Q ,40a ∴>.。
2018~2019学年度高一下学期数学期末试卷(含答案)

2018~2019学年度高一下学期数学期末试卷(含答案)一、选择题(本大题共12小题,共60分)1.若角α的终边经过点(1,−√3),则sinα=()A. −12B. −√32C. 12D. √322.已知a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,则|a⃗+b⃗ |=()A. 10B. 8C. √10D. 643.已知sin(α+π6)=2√55,则cos(π3−α)=()A. √55B. −√55C. 2√55D. −2√554.函数f(x)=sin(2x+φ)的图象向右平移π6个单位后所得的图象关于原点对称,则φ可以是()A. π6B. π3C. π4D. 2π35.已知直线3x−y+1=0的倾斜角为α,则12sin2α+cos2α=()A. 25B. −15C. 14D. −1206.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为x−、s2,新平均分和新方差分别为x1−、s12,若此同学的得分恰好为x−,则()A. x−=x1−,s2=s12B. x−=x1−,s2<s12C. x−=x1−,s2>s12D. ,s2=s127.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成,现从这些运动员中抽取1个容量为n的样本,若分别采用系统抽样和分层抽样,则都不用剔除个体;当样本容量为n+1个时,若采用系统抽样,则需要剔除1个个体,那么样本容量n为()A. 5B. 6C. 12D. 188.执行如图的程序框图.若输入A=3,则输出i的值为()A. 3B. 4C. 5D. 69. 已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形10. “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为4的大正方形,若直角三角形中较小的锐角α=15°,现在向该大正方形区域内随机地投掷一枚飞镖,飞镖落在图中区域1或区域2内的概率是( )A. 12B. 58C. 34D. 7811. 函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<ϕ<π2)的部分图象如图所示,则f(0)的值是( )A. √32B. √34C. √62D. √6412. 已知a ⃗ =(sin ω2x,sinωx),b ⃗ =(sin ω2x,12),其中ω>0,若函数f(x)=a ⃗ ⋅b ⃗ −12在区间(π,2π)内没有零点,则ω的取值范围是( ) A. (0,18]B. (0,58]C. (0,18]∪[58,1]D. (0,18]∪[14,58]二、填空题(本大题共4小题,共20分)13. 甲、乙两人在相同的条件下各射击10次,它们的环数方差分别为s 甲2=2.1,s 乙2=2.6,则射击稳定程度较高的是______(填甲或乙).14. 执行如图的程序框图,若输入的x =2,则输出的y =______.15. 《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.16. 已知点P(4m,−3m)(m <0)在角α的终边上,则2sinα+cosα=______.三、解答题(本大题共6小题,共70分)17.2018年3月19日,世界上最后一头雄性北方白犀牛“苏丹”在肯尼亚去世,从此北方白犀牛种群仅剩2头雌性,北方白犀牛种群正式进入灭绝倒计时.某校一动物保护协会的成员在这一事件后,在全校学生中组织了一次关于濒危物种犀牛保护知识的问卷调查活动.已知该校有高一学生1200人,高二1300人,高三学生1000人.采用分层抽样从学生中抽70人进行问卷调查,结果如下:完全不知道知道但未采取措施知道且采取措施高一8x y高二z133高三712m在进行问卷调查的70名学生中随机抽取一名“知道但未采取措施”的高一学生的概率是0.2.(Ⅰ)求x,y,z,m;(Ⅱ)从“知道且采取措施”的学生中随机选2名学生进行座谈,求恰好有1名高一学生,1名高二学生的概率.18.为增强学生体质,提升学生锻炼意识,我市某学校高一年级外出“研学”期间举行跳绳比赛,共有160名同学报名参赛.参赛同学一分钟内跳绳次数都在区间[90,150]内,其频率直方图如右下图所示,已知区间[130,140),[140,150]上的频率分别为0.15和0.05,区间[90,100),[100,110),[110,120),[120,130)上的频率依次成等差数列.(Ⅰ)分别求出区间[90,100),[100,110),[110,120)上的频率;(Ⅱ)将所有人的数据按从小到大排列,并依次编号1,2,3,4…160,现采用等距抽样的方法抽取32人样本,若抽取的第四个的编号为18.(ⅰ)求第一个编号大小;(ⅰ)从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)上的概率是多少?19.已知a⃗=(1,2),b⃗ =(−3,4).(1)若|k a⃗+b⃗ |=5,求k的值;(2)求a⃗+b⃗ 与a⃗−b⃗ 的夹角.,且α为第二象限角.20.已知sinα=35(1)求sin2α的值;)的值.(2)求tan(α+π4)(x∈R).21.设函数f(x)=4cosx⋅sin(x+π6(1)求函数y=f(x)的最小正周期和单调递增区间;]时,求函数f(x)的最大值.(2)当x∈[0,π2),f(0)=0,且函数f(x) 22.已知f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<|φ|<π2.图象上的任意两条对称轴之间距离的最小值是π2)的值;(1)求f(π8(2)将函数y=f(x)的图象向右平移π个单位后,得到函数y=g(x)的图象,求函数6g(x)的解析式,并求g(x)在x∈[π6,π2]上的最值.答案和解析1.【答案】B【解析】解:角α的终边经过点(1,−√3),则sinα=yr =−√32.故选:B.直接利用任意角的三角函数的定义,求解即可.本题考查任意角的三角函数的定义,考查计算能力.2.【答案】A【解析】解:a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,可得:2x+3−3x=0,解得x=3,所以a⃗+b⃗ =(10,0),所以|a⃗+b⃗ |=10.故选:A.利用向量的垂直,求出x,然后求解向量的模.本题考查向量的数量积以及向量的模的求法,向量的垂直条件的应用,是基本知识的考查.3.【答案】C【解析】解:∵已知sin(α+π6)=2√55,∴cos(π3−α)=cos[π2−(α+π6)]=sin(α+π6)=2√55,故选:C.由条件利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简三角函数式,属于基础题.4.【答案】B【解析】解:函数f(x)=sin(2x+φ)的图象向右平移π6个单位后,可得y=sin(2x−π3+φ),∵图象关于原点对称,∴φ−π3=kπ,k∈Z,可得:φ=kπ+π3.当k=0时,可得φ=π3.故选:B.根据图象变换规律,可得解析式,图象关于原点对称,建立关系,即可求解φ值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律和对称问题,属于基础题.5.【答案】A【解析】解:∵直线3x −y +1=0的倾斜角为α,∴tanα=3, ∴12sin2α+cos 2α=12⋅2sinαcosα+cos 2α=sinαcosα+cos 2αsin 2α+cos 2α=tanα+1tan 2α+1=3+19+1=25,故选:A .由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题. 6.【答案】C【解析】解:设这个班有n 个同学,数据分别是a 1,a 2,…,a i,…,a n , 第i 个同学没登分,第一次计算时总分是(n −1)x −,方差是s 2=1n−1[(a 1−x −)2+⋯+(a i−1−x −)2+(a i+1−x −)2+⋯+(a n −x −)2]第二次计算时,x 1−=(n−1)x −+x−n=x −,方差s 12=1n [(a 1−x −)2+⋯(a i−1−x −)2+(x −x)2+(a i+1−x −)2+⋯+(a n −x −)2]=n−1ns 2, 故s 2>s 12, 故选:C .根据平均数和方差的公式计算比较即可.本题考查了求平均数和方差的公式,是一道基础题. 7.【答案】B【解析】解:由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加一个,则在采用系统抽样时, 需要在总体中先剔除1个个体, ∵总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n , 分层抽样的比例是n36,抽取的乒乓球运动员人数为n36⋅6=n6, 篮球运动员人数为n36⋅12=n3,足球运动员人数为n36⋅18=n2, ∵n 应是6的倍数,36的约数, 即n =6,12,18.当样本容量为(n +1)时,总体容量是35人, 系统抽样的间隔为35n+1, ∵35n+1必须是整数,∴n 只能取6.即样本容量n =6. 故选:B .由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,算出总体个数,根据分层抽样的比例和抽取的乒乓球运动员人数得到n 应是6的倍数,36的约数,由系统抽样得到35n+1必须是整数,验证出n 的值.本题考查分层抽样和系统抽样,是一个用来认识这两种抽样的一个题目,把两种抽样放在一个题目中考查,加以区分,是一个好题. 8.【答案】C【解析】解:运行步骤为:i =1,A =7 i =2,A =15; i =3,A =31; i =4,A =63; i =5,A =127; 故输出i 值为5, 故选:C .根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 9.【答案】C【解析】【分析】本题考查了向量的加减法则,数量积的运算性质,三角形形状的判断,属于中档题.根据向量的加减运算法则,将已知化简得AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.结合向量数量积的运算性质,可得CA ⊥CB ,得△ABC 是直角三角形.【解答】解:∵△ABC 中,AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ , 即AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0, ∴CA ⃗⃗⃗⃗⃗ ⊥CB⃗⃗⃗⃗⃗ ,即CA ⊥CB , ∴△ABC 是直角三角形, 故选C . 10.【答案】B【解析】解:小正方形的边长为4sin750−4cos750=(√6+√2)−(√6−√2)=2√2, 故小正方形与大正方形的面积之比为(2√24)2=12,因此剩下的每个直角三角形的面积与大正方形的面积之比为12÷4=18, ∴飞镖落在区域1或区域2的概率为12+18=58. 故选:B .由已知求出小正方形的边长,得到小正方形及直角三角形与大正方形的面积比,则答案可求.本题考查几何概型概率的求法,求出小正方形及直角三角形与大正方形的面积比是关键,是中档题.11.【答案】C【解析】解:由图知,A=√2,又ω>0,T 4=7π12−π3=π4,∴T=2πω=π,∴ω=2,∴π3×2+φ=2kπ+π(k∈Z),∴φ=2kπ+π3(k∈Z),∵0<ϕ<π2,∴φ=π3,∴f(x)=√2sin(2x+π3),∴f(0)=√2sinπ3=√62.故选:C.由图知,A=√2,由T4=π4,可求得ω,π3ω+φ=2kπ+π(k∈Z),0<ϕ<π2可求得φ,从而可得f(x)的解析式,于是可求f(0)的值.本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得φ是难点,考查识图能力,属于中档题.12.【答案】D【解析】解:a⃗=(sinω2x,sinωx),b⃗ =(sinω2x,12),其中ω>0,则函数f(x)=a⃗⋅b⃗ −12=sin2(ω2x)+12sinωx−12=12−12cosωx+12sinωx−12=√2sin(ωx−π4),可得T=2πω≥π,0<ω≤2,f(x)在区间(π,2π)内没有零点,结合三角函数可得,{πω−π4≥02πω−π4≤π或{πω−π4≥−π2πω−π4≤0,解得14≤ω≤58或0<ω≤18,故选:D.利用两角和与差的三角函数化简函数的解析式,利用函数的零点以及函数的周期,列出不等式求解即可.本题考查函数的零点个数的判断,三角函数的化简求值,考查计算能力.13.【答案】甲【解析】解:方差越小越稳定,s 甲2=2.1<s 乙2=2.6,故答案为:甲.根据方差的大小判断即可.本题考查了方差的意义,掌握方差越小越稳定是解决本题的关键,是一道基础题. 14.【答案】7【解析】解:由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,∵输入结果为2,∴y =3×2+1=7. 故答案为:7.由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,由已知代入计算即可得解.本题主要考查选择结构的程序框图的应用,关键是判断出输入的值是否满足判断框中的条件,属于基础题. 15.【答案】120【解析】解:由题意可得:弧长l =20,半径r =12, 扇形面积S =12lr =12×20×12=120(平方米),故答案为:120.利用扇形面积计算公式即可得出.本题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.16.【答案】25【解析】解:点P(4m,−3m)(m <0)在角α的终边上,∴x =4m ,y =−3m ,r =|OP|=√16m 2+9m 2=−5m , ∴sinα=y r=35,cosα=x r =−45,∴2sinα+cosα=65−45=25,故答案为:25.由题意利用任意角的三角函数的定义,求得sinα和cosα的值,可得2sinα+cosα的值. 本题主要考查任意角的三角函数的定义,属于基础题.17.【答案】解:(Ⅰ)采用分层抽样从3500名学生中抽70人,则高一学生抽24人,高二学生抽26人, 高三学生抽20人.“知道但未采取措施”的高一学生的概率=x70=0.2, ∴x =14,∴y =24−14−8=2,z=26−13−3=10,m=20−12−7=1,∴x=14,y=2,z=10,m=1;(Ⅱ)“知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E表示,高三学生1名用F表示.则从这6名学生中随机抽取2名的情况有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,其中恰好1名高一学生1名高二学生的有6种.∴P=615=25,即恰好有1名高一学生,1名高二学生的概率为25.【解析】(Ⅰ)根据分层抽样先求出x,即可求出y,z,m.(Ⅱ)知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E 表示,高三学生1名用F表示.根据古典概率公式计算即可.本题考查等可能事件的概率,古典概型概率计算公式等知识,属于中档题.18.【答案】解:(Ⅰ)[90,100),[100,110),[110,120)上的频率之和为:1−10×0.035−0.15−0.05=0.45,且前三个频率成等差数列(设公差为d),故[100,110)上的频率为:0.453=0.15,从而2d=0.35−0.15=0.2,解得d=0.1,∴[90,100),[100,110),[110,120)上的频率分别为0.05,0.15,0.25.……(5分) (Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,故第一个编号为18−3×5=3.……(7分) (ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,……(9分)由(1)可知区间[90,100),[100,110)上的总人数为160×(0.05+0.15)=32人,[110,120),[120,130)上的总人数为160×(0.25+0.35)=96人,[90,130)共有128人,令33≤a n≤128,解得7≤n≤26,∴在[110,120),[120,130)上抽取的样本有20人,……(11分)故从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率是p=2032=58.……(12分)【解析】(Ⅰ)先求出[90,100),[100,110),[110,120)上的频率之和,再由前三个频率成等差数列,得[100,110)上的频率为0.15,由此能求出[90,100),[100,110),[110,120)上的频率.(Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,由此能求出第一个编号.(ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,由此能求出从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率.本题考查频率的求法,考查第一个编号、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.19.【答案】解:(1)根据题意,k a⃗+b⃗ =k(1,2)+(−3,4)=(k−3,2k+4),由|k a ⃗ +b ⃗ |=5,得√(k −3)2+(2k +4)2=5,解得:k =0或k =−2;(2)根据题意,设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,a ⃗ =(1,2),b ⃗ =(−3,4),则a ⃗ +b ⃗ =(−2,6),a ⃗ −b ⃗ =(4,−2);∴cosθ=40×20=−√22, ∵θ∈[0,π];∴a ⃗ +b ⃗ 与a ⃗ −b ⃗ 夹角为3π4.【解析】(1)根据题意,求出k a ⃗ +b⃗ 的坐标,进而由向量模的计算公式可得√(k −3)2+(2k +4)2=5,解可得k 的值,即可得答案;(2)设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,求出a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的坐标,由向量数量积的计算公式可得cosθ的值,结合θ的范围计算可得答案.本题考查向量数量积的坐标计算,关键是掌握向量数量积、模的计算公式. 20.【答案】解:(1)∵sinα=35,且α为第二象限角,∴cosα=−√1−sin 2α=−45, ∴sin2α=2sinαcosα=2×35×(−45)=−2425;(2)由(1)知tanα=sinαcosα=−34, ∴tan(α+π4)=tanα+tan π41−tanαtan π4=−34+11−(−34)=17.【解析】(1)由已知利用平方关系求得cosα,再由二倍角公式求得sin2α的值;(2)由(1)求出tanα,展开两角和的正切求得tan(α+π4)的值.本题考查同角三角函数基本关系式的应用,考查两角和的正切,是基础的计算题. 21.【答案】解:(1)f(x)=4cosx ⋅sin(x +π6)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1,∴函数f(x)的周期T =π,∴当2kπ−π2≤2x +π6≤2kπ+π2时,即kπ−π3≤x ≤kπ+π6,k ∈Z ,函数单调增, ∴函数的单调递增区间为[kπ−π3,kπ+π6](k ∈Z); (2)当x ∈[0,π2]时,2x +π6∈[π6,7π6], ∴sin(2x +π6)∈[−12,1],∴当sin(2x +π6)=1,f(x)max =3.【解析】(1)对f(x)化简,然后利用周期公式求出周期,再利用整体法求出单调增区间; (2)当x ∈[0,π2]时,sin(2x +π6)∈[−12,1],然后可得f(x)的最大值.本题考查了三角函数的化简求值和三角函数的图象与性质,考查了整体思想和数形结合思想,属基础题.22.【答案】解:(1)f(x)=sin(ωx+φ)+cos(ωx+φ)=√2sin(ωx+φ+π4),故2πω=2×π2,求得ω=2.再根据f(0)=sin(φ+π4)=0,0<|φ|<π2,可得φ=−π4,故f(x)=√2sin2x,f(π8)=√2sinπ4=1.(2)将函数y=f(x)的图象向右平移π6个单位后,得到函数y=g(x)=√2sin2(x−π6)=√2sin(2x−π3)的图象.∵x∈[π6,π2],∴2x−π3∈[0,2π3],当2x−π3=π2时,g(x)=√2sin(2x−π3)取得最大值为√2;当2x−π3=0时,g(x)=√2sin(2x−π3)取得最小值为0.【解析】(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(0)= 0求出φ的值,可得f(x)的解析式,从而求得f(π8)的值.(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[π6,π2]上的最值.本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f(0)=0求出φ的值,可得f(x)的解析式;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年度第二学期期末考试高一数学 卷Ⅰ一、选择题(每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把符合要求的选项选出来。
)1. 二进制数化为十进制数为( )A.B.C.D.2. 现从编号为的台机器中,用系统抽样法抽取台,测试其性能,则抽出的编号可能为( )A. ,,B. ,,C. ,,D. ,,3. 不等式的解集是( ) A. B.C. D.4. 在中,,那么等于( )A.B.C.D.5. 执行如图1所示的程序框图,若输入的值为3,则输出的值是( )A. 1B. 2C. 4D. 7 6. 在区间上随机地取一个数,则事件“”发生的概率为( )A. B. C. D.7. 下列说法正确的是 ( )A. 已知购买一张彩票中奖的概率为,则购买张这种彩票一定能中奖;B. 互斥事件一定是对立事件;C. 如图,直线是变量和的线性回归方程,则变量和相关系数在到之间;D. 若样本的方差是,则的方差是。
8. 某超市连锁店统计了城市甲、乙的各台自动售货机在中午至间的销售金额,并用茎叶图表示如图.则有( )A. 甲城销售额多,乙城不够稳定B. 甲城销售额多,乙城稳定C. 乙城销售额多,甲城稳定D. 乙城销售额多,甲城不够稳定9. 等差数列{a n}的前n项和为S n,若,,则()A. 12B. 18C. 24D. 4210. 设变量满足则目标函数的最小值为()A. B. 2 C. 4 D.11. 若函数在处取最小值,则 ( ).A. B. C. D.12. 在数列中,,,则=( )A. B. C. D.卷Ⅱ(解答题,共70分)二、填空题(本大题共4小题,每小题5分,共20分。
)13. 已知数列中,,(),则数列的前9项和等于____________.14. 若函数的定义域为R,则实数的取值范围是________.15. 读右侧程序,此程序表示的函数为_______________16. 若对任意,恒成立,则的取值范围是_______________.三、解答题(本题有6个小题,共70分,解答应写出文字说明,证明过程或演算步骤。
)17. (本题满分10分)如图,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高是多少米?18. (本题满分12分)为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:(1)试由上图估计该单位员工月平均工资;(2)现用分层抽样的方法从月工资在和的两组所调查的男员工中随机选取5人,问各应抽取多少人?(3)若从月工资在和两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.19. (本题满分12分)等比数列的各项均为正数,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.20. (本题满分12分)“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:价格销售量通过分析,发现销售量对奶茶的价格具有线性相关关系.(Ⅰ)求销售量对奶茶的价格的回归直线方程;(Ⅱ)欲使销售量为杯,则价格应定为多少?附:线性回归方程为,其中,21. (本题满分12分)的三个角的对边分别为满足.(1)求的值;(2)若,求面积的最大值.22. (本题满分12分)在数列中,(I)求证数列是等比数列;(II)设,求数列的前项和.一、选择题(每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把符合要求的选项选出来。
)1. 二进制数化为十进制数为()A. B. C. D.【答案】A【解析】,故选A.2. 现从编号为的台机器中,用系统抽样法抽取台,测试其性能,则抽出的编号可能为()A.,, B. ,,C.,, D. ,,【答案】D【解析】根据系统抽样的原理,先编号为,剔除个编号,重新编号为,再分成三组,第一组采用随机抽样抽取一个编号,其它各组抽取相应位次的编号,故抽取得可能编号为,故选D.3. 不等式的解集是()A. B.C. D.【答案】B【解析】原不等式化为,故选B.4. 在中,,那么等于()A. B. C. D.【答案】C【解析】考点:余弦定理.专题:计算题.分析:直接利用余弦定理以及特殊角的三角函数值就可得出答案.解答:解:根据余弦定理得cosB===B∈(0,180°)∴∠B=60°故选C.点评:本题考查了余弦定理以及特殊角的三角函数值,解题过程中要注意角的范围,属于基础题.5. 执行如图1所示的程序框图,若输入的值为3,则输出的值是( )A. 1B. 2C. 4D. 7【答案】C【解析】试题分析:第一次执行完循环体,;第二次执行完循环体,;第三次执行完循环体,;结束循环,输出;考点:程序框图;6. 在区间上随机地取一个数,则事件“”发生的概率为( )A. B. C. D.【答案】A【解析】由得,,所以,由几何概型概率的计算公式得,,故选.考点:1.几何概型;2.对数函数的性质.7. 下列说法正确的是 ( )A. 已知购买一张彩票中奖的概率为,则购买张这种彩票一定能中奖;B. 互斥事件一定是对立事件;C. 如图,直线是变量和的线性回归方程,则变量和相关系数在到之间;D. 若样本的方差是,则的方差是。
【答案】C8. 某超市连锁店统计了城市甲、乙的各台自动售货机在中午至间的销售金额,并用茎叶图表示如图.则有( )A. 甲城销售额多,乙城不够稳定B. 甲城销售额多,乙城稳定C. 乙城销售额多,甲城稳定D. 乙城销售额多,甲城不够稳定【答案】D【解析】十位数是乙比较多,且乙数据比较集中,故估计乙销售额较多,且较稳定,故选D.9. 等差数列{a n}的前n项和为S n,若,,则()A. 12B. 18C. 24D. 42【答案】C【解析】由等差数列的性质可得成等差,故选C.10. 设变量满足则目标函数的最小值为()A. B.2 C. 4 D.【答案】B【解析】由上图可得在处取得最小值,故选B.11. 若函数在处取最小值,则 ( ).A. B. C.D.【答案】C【解析】,当且仅当x−2=1时,即x=3时等号成立。
∵x=a处取最小值,∴a=3.本题选择C选项.12. 在数列中,,,则=( )A. B. C. D.【答案】A【解析】;所以故选A卷Ⅱ(解答题,共70分)二、填空题(本大题共4小题,每小题5分,共20分。
)13. 已知数列中,,(),则数列的前9项和等于____________.【答案】27【解析】由是等差数列 . 14. 若函数的定义域为R,则实数的取值范围是________.【答案】考点:不等式恒成立问题.15. 读右侧程序,此程序表示的函数为_______________【答案】【解析】由条件语句原理可得 .16. 若对任意,恒成立,则的取值范围是_______________.【答案】【解析】解:三、解答题(本题有6个小题,共70分,解答应写出文字说明,证明过程或演算步骤。
)17. (本题满分10分)如图,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高是多少米?【答案】150(m)【解析】试题分析:先利用三角函数的定义求得,再由正弦定理求得,再利用三角函数的定义求得 .试题解析:根据题图,AC=100m.在△MAC中,∠CMA=180°-75°-60°=45°.由正弦定理得⇒AM=100m.在△AMN中,=sin 60°,∴MN=100×=150(m).18. (本题满分12分)为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:(1)试由上图估计该单位员工月平均工资;(2)现用分层抽样的方法从月工资在和的两组所调查的男员工中随机选取5人,问各应抽取多少人?(3)若从月工资在和两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.【答案】(1) 估计为4300元;(2) 分别抽取3人,2人;(3) .【解析】试题分析:(1)平均值等于各个小矩形的面积乘以组中值之和;(2)易得两层的人数比为,故分别为人,人;(3) 由已知可得从人选人有种,古河条件的有种,故所求概率为 .试题解析:(1)即该单位员工月平均工资估计为4300元.(2)分别抽取3人,2人(3)由上表可知:月工资在组的有两名女工,分别记作甲和乙;月工资在组的有四名女工,分别记作A,B,C,D.现在从这6人中随机选取2人的基本事件有如下15组:(甲,乙),(甲,A),(甲,B),(甲,C),(甲,D),(乙,A),(乙,B),(乙,C),(乙,D),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)其中月工资差不超过1000元,即为同一组的有(甲,乙),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共7组,∴所求概率为19. (本题满分12分)等比数列的各项均为正数,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.【答案】(1) a n=;(2).【解析】试题分析:(1)已知数列是等比数列,因此把已知条件用首项和公比表示并解出,然后可写出通项公式;(2)计算出是等差数列的前项和,,因此变成两项的和,即数列可用裂项相消法求和得出结论.试题解析:(1)设数列{a n}的公比为,由得所以有条件可知,故.由得,所以故数列{a n}的通项式为(2)==.故所以数列的前n项和为考点:等比数列的通项公式,等差数列的前项和,裂项相消法求和.20. (本题满分12分)“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:价格销售量通过分析,发现销售量对奶茶的价格具有线性相关关系.(Ⅰ)求销售量对奶茶的价格的回归直线方程;(Ⅱ)欲使销售量为杯,则价格应定为多少?附:线性回归方程为,其中,【答案】(1)=﹣4x+32;(2)4.75元.【解析】试题分析:(1)先求,代入公式求得,再求,从而求得回归方程;(2)令,解得.试题解析:(1)(Ⅰ).=5×12+5.5×10+6.5×6+7×4=182.=52+5.52+6.52+72=146.5,.∴销售量y对奶茶的价格x的回归直线方程为=﹣4x+32.(Ⅱ)令﹣4x+32=13,解得x=4.75.答:商品的价格定为4.75元.21. (本题满分12分)的三个角的对边分别为满足.(1)求的值;(2)若,求面积的最大值.【答案】(1)A=;(2).【解析】试题分析:(1)利用正弦定理求得;(2)由余弦定理及重要不等式求得,从而求得面积最大值.试题解析:(1)由余弦定理得:2b cos A=c·+a·=b,∴cos A=,由0<A<π,得A=.(2)∵a=2,由余弦定理得:4=b2+c2-2bc cos=b2+c2-bc≥2bc-bc=bc.∴bc≤4,当且仅当b=c时取等号,∴S△ABC=bc sin A=bc·≤·4=.即当b=c=a=2时,△ABC面积的最大值为.22. (本题满分12分)在数列中,(I)求证数列是等比数列;(II)设,求数列的前项和.【答案】(1)详见解析;(2) .【解析】试题分析:(1)将递推公式转化为是等比数列;(2)由(1)得,再利用错位相减法求解.试题解析:(I)由得,所以是公比为2的等比数列。