自主招生数学习题选编不等关系
数学人教B必修5自主训练:31不等关系与不等式 含解析

自主广场我夯基 我达标1.已知a <0,-1<b <0,下列不等式成立的是( )A.a >ab >ab 2B.ab 2>ab >aC.ab >a >ab 2D.ab >ab 2>a思路解析:由于-1<b <0,所以0<b 2<1⇒a <ab 2<0,且ab >0,易得ab >ab 2>a.本题也可以根据a,b 的范围取特殊值来比较,比如令a=-1,b=21-. 答案:D2.“a >0,b >0”是“ab >0”的…( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件思路解析:由“a >0,b >0”可推出“ab >0”,反之,不一定成立,选A.答案:A3.如果log a 3>log b 3,且a+b=1,那么( )A.0<a <b <1B.0<b <a <1C.1<a <bD.1<b <a思路解析:∵a+b=1,a 、b ∈R ,∴0<a <1,0<b <1.∵log a 3>log b 3,∴ba lg 3lg lg 3lg >. ∴lga <lgb.∴0<a <b <1.答案:A4.若a=22ln ,b=33ln ,c=55ln ,则( ) A.a <b <c B.c <b <aC.c <a <bD.b <a <c思路解析:易知a,b,c 都是正值,a b =2ln 33ln 2=log 89>1,所以b >a;5ln 22ln 5=c a =log 2532>1,所以a >c.所以b >a >c.答案:C5.若f(x)=3x 2-x+1,g(x)=2x 2+x-1,则f(x)与g(x)的大小关系为_____________.思路解析:f(x)-g(x)=3x 2-x+1-(2x 2+x-1)=x 2-2x+2=(x-1)2+1,显然大于0,所以f(x)>g(x).答案:f(x)>g(x)6.日常生活中,在一杯糖水中,再加入糖,则这杯糖水变甜了,请根据这一事实提炼出一个不等式.解:设有糖水b 克,其中含糖a 克,再加入m 克糖,则 原来的糖水的浓度为ba ×100%,加入m 克糖后, 糖水的浓度变为mb m a ++×100%. 由事实可知糖水变甜,浓度增大,故b a ×100%<mb m a ++×100%, 答:当0<a <b,m >0时,有b a <mb m a ++. 7.若a >b >0,c <d <0,e <0,求证:d b e c a e ->-. 思路分析:本题可以直接使用不等式的性质进行证明,首先根据c <d <0,得-c >-d >0,所以a-c >b-d >0,再由倒数的性质和e <0即可得到结论,也可以直接作差进行比较.证明:⎭⎬⎫>>>->-⇒<<000d a d c d c d b e c a e c a e d b e e c a d b d b c a ->-⇒-<-⇒⎪⎭⎪⎬⎫<>->-⇒>->-⇒00110. 8.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,且a 1≠a 3,试比较a 2与b 2的大小. 思路分析:根据等比与等差的性质,求出a 2、b 2,再利用作差法比较.解:设{a n }的公比为q,{b n }的公差为d,则a 3=a 1q 2,b 3=b 1+2d=a 1+2d.∵a 3=b 3,∴a 1q 2=a 1+2d,即2d=a 1(q 2-1).∵a 1≠a 3=a 1q 2,∴q 2≠1.∴q≠±1.∵a 2-b 2=a 1q-(a 1+d)=a 1q-a 121-a 1(q 2-1)=21-a 1(q-1)2<0, ∴a 2<b 2.我综合 我发展9.如果a <0,b >0,那么,下列不等式中正确的是( ) A.ba 11< B.b a <- C.a 2<b 2 D.|a|>|b| 思路解析:如果a <0,b >0,那么a 1<0,b 1>0,∴b a 11<,选A.其余三个选项可以举反例排除. 答案:A10.若a 、b 、c ∈R ,a >b,则下列不等式成立的是( ) A.ba 11< B.a 2>b 2 C.1122+>+c b c a D.a|c|>b|c| 思路解析:应用间接排除法.取a=1,b=-1,排除A.取a=0,b=-1,排除B;取c=0,排除D.故应该选C.显然112+c >0,对不等式a >b 的两边同时乘以112+c ,得1122+>+c b c a 成立. 答案:C11.已知a >b >0,试比较2222b a b a +-与ba b a +-的大小.思路分析:本题用作差法及作商法都可比较大小.解法一:作差法:,0))(()(2))(()]())[((22222222222>++-=+++-+-=+--+-b a b a b a ab b a b a b a b a b a b a b a b a b a ∴b a b a ba b a +->+-2222. 解法二:作商法:,121)(222222222>++=++=+-+-ba ab b a b a ba b a b a b a ∴b a b a ba b a +->+-2222. 12.如果用记号min{p,q}表示p,q 中的较小者,max{p,q}表示p,q 中的较大者.设f(x)=min{x 2-2x+6,x 2+6x+5},g(x)=max{x 2-x+2,x},试比较f(x)和g(x)的大小.思路分析:首先根据两个定义写出f(x)和g(x)的函数表达式,由于其中含有未知量x,可能要对x 的范围进行讨论,然后再作差比较大小.解:由于x 2-2x+6-(x 2+6x+5)=-8x+1,由此可知,当x <81时,x 2-2x+6>x 2+6x+5. 当x≥81时,x 2-2x+6≤x 2+6x+5. 所以⎪⎪⎩⎪⎪⎨⎧≥+-<++=.81,62,81,56)(22x x x x x x x f 而x 2-x+2-x=x 2-2x+2=(x-1)2+1>0,所以x 2-x+2>x.所以g(x)=x 2-x+2.(1)当x <81时,f(x)-g(x)=x 2+6x+5-(x 2-x+2)=7x+3, 所以当x=73-时,f(x)=g(x). 当x <73-时,f(x)-g(x)<0,f(x)<g(x). 当73-<x <81时,f(x)-g(x)>0,f(x)>g(x). (2)当x≥81时,f(x)-g(x)=x 2-2x+6-(x 2-x+2)=-x+4, 所以当x=4时,f(x)=g(x).当x >4时,f(x)-g(x)<0,f(x)<g(x). 当81≤x <4时,f(x)-g(x)>0,f(x)>g(x). 13.已知a >0,b >0,且m,n ∈N +,求证:a m+n +b m+n ≥a m b n +a n b m .思路分析:根据所求证的式子的特点,适合比差,也有利于分解因式,最后讨论因式的符号. 证明:(a m+n +b m+n )-(a m b n +a n b m )=a m (a n -b n )+b m (b n -a n )=(a n -b n )(a m -b m ).(1)当a >b >0时,a n >b n ,a m >b m .所以(a n -b n )(a m -b m )>0.所以a m+n +b m+n ≥a m b n +a n b m .(2)同理可证,当b >a >0时,a m+n +b m+n ≥a m b n +a n b m .(3)当a=b 时,a m+n +b m+n =a m b n +a n b m .综上所述,可知原式得证.。
必修5不等关系(含答案)

不等式考纲链接1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:ab≤a+b2(a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题不等关系与不等式[考点梳理]1.两个实数大小的比较(1)a>b⇔a-b________;(2)a=b⇔a-b________;(3)a<b⇔a-b________.2.不等式的性质(1)对称性:a>b⇔__________;(2)传递性:a>b,b>c⇒__________;(3)不等式加等量:a>b⇔a+c______b+c;(4)不等式乘正量:a>b,c>0⇒__________,不等式乘负量:a>b,c<0⇒__________;(5)同向不等式相加:a>b,c>d⇒__________;※(6)异向不等式相减:a>b,c<d⇒a-c>b-d;(7)同向不等式相乘:a>b>0,c>d>0⇒__________;※(8)异向不等式相除:a>b>0,0<c<d⇒ac>bd;※(9)不等式取倒数:a>b,ab>0⇒1a<1b;(10)不等式的乘方:a>b>0⇒______________;(11)不等式的开方:a>b>0⇒______________.※注:1.(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;2.(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除.自查自纠:1.>0=0<02.(1)b<a(2)a>c(3)>(4)ac>bc ac<bc(5)a+c>b+d(7)ac>bd(10)a n>b n(n∈N且n≥2)(11)n a >n b (n ∈N 且n ≥2) [基础自测])已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3 解:根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A ,B 中的不等式不恒成立;根据三角函数的性质,选项C 中的不等式也不恒成立;根据不等式的性质知,选项D 中的不等式恒成立.故选D.已知a >0,b >0,则a a b b 与a b b a 的大小关系为( )A .a a b b ≥a b b aB .a a b b <a b b aC .a a b b ≤a b b aD .与a ,b 的大小有关解:不妨设a ≥b >0,则a b ≥1,a -b ≥0.a a b b a b b a =⎝ ⎛⎭⎪⎫a b a -b ≥1,即a a b b ≥a b b a .同理当b >a >0时,亦有a a b b ≥a b b a .故选A.已知a =27,b =6+22,则a ,b 的大小关系是a b.解:由于a =27,b =6+22,平方作差得a 2-b 2=28-14-83=14-83=8⎝ ⎛⎭⎪⎫74-3>0,从而a >b.故填>.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c <0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的是________(填序号).解:∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bd cd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确.故填②③④.[典例解析]类型一 建立不等关系设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立....,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6解:因为[x ]表示不超过x 的最大整数.由[t ]=1得1≤t <2,由[t 2]=2得2≤t 2<3,由[t 4]=4得4≤t 4<5,所以2≤t 2<5,由[t 3]=3得3≤t 3<4,所以6≤t 5<45,由[t 5]=5得5≤t 5<6,与6≤t 5<45矛盾,故正整数n 的最大值是4.故选B.小结:解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.本例[x ]表示不超过x 的最大整数,故由[x ]=k ,可得k ≤x <k +1,再由多个不等式结合不等式的性质找到正整数n 的最大值.用锤子以均匀的力敲击铁钉进入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度为前一次的1k (k ∈N *),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,试从中提炼出一个不等式组.(钉帽厚度不计) 解:假设钉长为1,第一次受击后,进入木板部分的铁钉长度是47;第二次受击后,该次铁钉进入木板部分的长度为47k ,此时进入木板部分的铁钉的总长度为47+47k ,有47+47k<1;第三次受击后,该次钉入木板部分的长度为47k 2,此时应有47+47k +47k 2,有47+47k +47k2≥1. 所以可从中提炼出一个不等式组:⎩⎪⎨⎪⎧47+47k <1,47+47k +47k 2≥1.类型二 不等式的性质已知下列三个不等式①ab >0;②c a >d b ;③bc >ad.以其中两个作为条件,余下一个作结论,则可组成几个正确命题?解:(1)对②变形c a >d b ⇔bc -ad ab >0,由ab >0,bc >ad 得②成立,∴①③⇒②.(2)若ab >0,bc -ad ab >0,则bc >ad ,∴①②⇒③.(3)若bc >ad ,bc -ad ab >0,则ab >0,∴②③⇒①.综上所述可组成3个正确命题.小结:运用比较法及不等式性质进行比较时要注意不等式需满足的条件,如比较ac 与bc 的大小关系应注意从c >0,c =0,c <0三个方面讨论.若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c解:由c <d <0⇒-1d >-1c >0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <b c .故选D.类型三 不等式性质的应用(1)若1<α<3,-4<β<2,则α2-β的取值范围是________. 解:由1<α<3得12<α2<32,由-4<β<2得-2<-β<4,所以α2-β的取值范围是⎝ ⎛⎭⎪⎫-32,112.故填⎝ ⎛⎭⎪⎫-32,112. 小结:①需要注意的是,两同向不等式可以相加但不可以相减,所以不能直接由12<α2<32和-4<β<2两式相减来得到α2-β的范围.②此类题目用线性规划也可解. (2)已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是________.解:设2a +3b =x (a +b )+y (a -b ),∴⎩⎪⎨⎪⎧x +y =2,x -y =3.解得⎩⎪⎨⎪⎧x =52,y =-12.∴-52<52(a +b )<152,-2<-12(a -b )<-1. ∴-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.故填⎝ ⎛⎭⎪⎫-92,132. 小结:由于a +b ,a -b 的范围已知,所以要求2a +3b 的取值范围,只需将2a +3b 用已知量a +b ,a -b 表示出来,可设2a +3b =x (a +b )+y (a -b ),用待定系数法求出x ,y ,再利用同向不等式的可加性求解. (1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 解:∵-π2<α<β<π2,∴-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β,∴-π<α-β<0,∴2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.故填⎝ ⎛⎭⎪⎫-3π2,π2.(2)设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围为________.解法一:由已知⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4.①②,f (-2)=4a -2b. 设4a -2b =m (a -b )+n (a +b )(m ,n 为待定系数),即4a -2b =(m +n )a -(m -n )b ,于是得⎩⎪⎨⎪⎧m +n =4,m -n =2.解得⎩⎪⎨⎪⎧m =3,n =1.由①×3+②×1得5≤4a -2b ≤10,即5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧a -b =f (-1),a +b =f (1)得⎩⎪⎨⎪⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1),后面同解法一.故填[5,10].类型四 比较大小实数b >a >0,实数m >0,比较a +mb +m 与a b 的大小,则a +m b +m________a b . 解法一:(作差比较):a +mb +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ), ∵b >a >0,m >0,∴m (b -a )b (b +m )>0,∴a +m b +m >a b. 解法二(作商比较):∵b >a >0,m >0,∴bm >am ⇒ab +bm >ab +am >0,∴ab +bm ab +am >1,即a +m b +m ·b a >1⇒a +m b +m>a b .故填>.小结:本题思路是作差整理,定符号,所得结论也称作真分数性质.作差(商)比较法的步骤是:①作差(商);②变形:配方、因式分解、通分、分母(分子)有理化等;③判断符号(判断商和“1”的大小关系);④作出结论.已知a ,b ,c ∈R +,且a 2+b 2=c 2,当n ∈N ,n >2时,比较c n 与a n +b n 的大小,则a n+b n ________c n .解:∵a ,b ,c ∈R +,∴a n ,b n ,c n >0,而a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c <1.当n ∈N ,n >2时,⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c 2,∴a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <a 2+b 2c2=1,∴a n +b n <c n .故填<.[归纳小结]1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础.2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.利用几个不等式来确定某个代数式的范围时要注意:“同向(异向)不等式的两边可相加(相减)”这种变形不是等价变形,若多次使用,则有可能使取值范围扩大,解决这一问题的方法是:先建立待求范围的整体与已知范围的整体的等量关系,再一次性的运用这种变形,即可求得正确的待求整体的范围.5.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.6.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.[课后作业]1..已知a ,b 为正数,a ≠b ,n 为正整数,则a n b +ab n -a n +1-b n +1的正负情况为 ( )A .恒为正B .恒为负C .与n 的奇偶性有关D .与a ,b 的大小有关解:a n b +ab n -a n +1-b n +1=a n (b -a )+b n (a -b )=-(a -b )(a n -b n ),因为(a -b )与(a n -b n )同号,所以a n b +ab n -a n +1-b n +1<0恒成立.故选B.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( )A .a +c ≥b -cB .(a -b )c 2≥0C .ac >bc D.c 2a -b>0 解:A 项:当c <0时,不等式a +c <b -c 可能成立;B 项:a >b ⇒a -b >0,c 2≥0,故(a -b )c 2≥0;C 项:当c =0时,ac =bc ;D 项:当c =0时,c 2a -b=0.故选B. 3.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9解:由f (-1)=f (-2)=f (-3)得,-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ,消去c 得⎩⎪⎨⎪⎧3a -b =7,5a -b =19, 解得⎩⎪⎨⎪⎧a =6,b =11,于是0<c -6≤3,即6<c ≤9.故选C.4.如果0<m <b <a ,则( )A .cos b +m a +m <cos b a <cos b -m a -mB .cos b a <cos b -m a -m <cos b +m a +mC .cos b -m a -m <cos b a <cos b +m a +mD .cos b +m a +m <cos b -m a -m<cos b a 解:作商比较:b +m a +m ÷b a =ab +am ab +bm >1,所以1>b +m a +m >b a >0,同理,0<b -m a -m <b a <1,∴1>b +m a +m>b a >b -m a -m >0.而y =cos x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以cos b +m a +m <cos b a <cos b -m a -m(也可取特殊值判断).故选A.5.设a =lg e ,b =(lg e )2,c =lg e ,则a ,b ,c 的大小关系为________.解:∵e <10,∴lg e <lg 10=12,∴(lg e )2<12·lg e =lg e ,即b <c.又∵e <e ,∴lg e <lg e ,即c <a.故填b <c <a.6.定义a *b =⎩⎨⎧a ,a <b ,b ,a ≥b.已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =________.(结果用a ,b ,c 表示)解:∵log 30.3<0<0.33<1<30.3,∴c <b <a ,∴(a *b )*c =b *c =c.故填c.7.设实数a ,b ,c 满足:①b +c =6-4a +3a 2,②c -b =4-4a +a 2.试确定a ,b ,c 的大小关系.解:∵c -b =(a -2)2≥0,∴c ≥b ,又2b =2+2a 2,∴b =1+a 2,∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,从而c ≥b >a. 8.某企业去年年底给全部的800名员工共发放1 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加30万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过1.5万元?(2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元.则y =1 000+30x 800+ax(a ∈N *,1≤x ≤10). 假设会超过1.5万元,则当a =10时有1 000+30x800+10x >1.5,解得x >403>10. 所以,10年内该企业的人均年终奖不会超过1.5万元.(2)设1≤x 1<x 2≤10,y =f (x )=1 000+30x800+ax ,则f (x 2)-f (x 1)=1 000+30x 2800+ax 2-1 000+30x 1800+ax 1=(30×800-1 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0, 所以30×800-1 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人. 9.已知a +b +c =0,且a >b >c ,求c a 的取值范围.解:∵a +b +c =0,∴b =-(a +c ).又a >b >c ,∴a >-(a +c )>c ,且3a >a +b +c =0>3c ,则a >0,c <0,∴1>-a +c a >c a ,即1>-1-c a >c a ,∴⎩⎪⎨⎪⎧2c a <-1,c a >-2,解得-2<c a <-12. 故c a 的取值范围是⎝ ⎛⎭⎪⎫-2,-12. 设a >b >1,c <0,给出下列三个结论:①c a >c b ;②a c <b c ;③log b ()a -c >log a ()b -c .其中所有正确结论的序号是( )A .①B .①②C .②③D .①②③解:①∵a >b >1,∴0<1a <1b <1,又c <0,∴c a >c b ,①正确;②由于a >b >1,可设f (x )=a x ,g (x )=b x ,当x =c <0时,根据指数函数的性质,得a c <b c ,②正确;③∵a >b >1,c <0,即a -c >b -c >1,∴log a (a -c )>log a (b -c ),又由对数函数的性质知log b (a -c )>log a (a -c ),∴log b (a -c )>log a (b -c ),③正确.故选D.。
2023年温州中学自主招生数学试题含答案

2023年温州中学自主招生数学试题2023.4一试一、选择题:本大题共8题,每题4分,共32分.在每题给出旳旳四个选项中,只有一项是符合题目规定旳.1.已知b a >,则下列结论对旳旳是 ( ) A. 22b a > B. 33a b > C.b a 11< D. 1>ba2.用黑白两种颜色旳正六边形地面砖拼成若干个图案,规律如下图所示,则第2010个图案中,白色地面砖旳块数是A .8042ﻩB .8038ﻩﻩC .4024 ﻩﻩD.60333.有关x 旳整系数一元二次方程20(0)ax bx c a ++=≠中,若a b +是偶数,c 是奇数,则( )A.方程没有整数根 B .方程有两个相等旳整数根 C .方程有两个不相等旳整数根 D .不能鉴定方程整数根旳状况 4.如图所示,一种33⨯旳方格中,每一行,每一列,及每一对角线上旳三个数之和都相等,则x 旳值是( )A.6 B.7 C.8 D.95.若10010321⨯+⨯+=a a a x ,10010654⨯+⨯+=a a a y 且736=+y x ,其中正整数79 x6i a 满足71≤≤i a ,)6,5,4,3,2,1(=i ,则在坐标平面上),(y x 表达不一样旳点旳个数为( )ﻩﻩA.60ﻩ B.90ﻩ C.110ﻩ D.1206.气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报旳精确率仅为80%,则在此经验下,本市明天降水旳概率为( )A.84% B.80% C.68% D.64% 7.设nnM 1723⨯+=,其中n 为正整数,则下列结论对旳旳是( ) A .有且仅有一种n ,使得M 为完全平方数 B.存在多于一种旳有限个n ,使得M 为完全平方数 C.存在无数个n ,使得M 为完全平方数 D.不存在n ,使得M 为完全平方数8.已知点A 、B 分别在x 轴正半轴、y 轴正半轴上移动,4AB =,则认为AB 直径旳圆.周.所扫过旳区域面积为( ) A.π4 B. π8 C. 42+π D . 46+π 二、填空题:本大题共6小题,每题5分,共30分. 9.若有关x 旳方程51122m x x ++=--无解,则______m =10.在Rt △ABC 中,C 为直角顶点,过点C 作AB 旳垂线,垂足为D,若A C、B C为方程0262=+-x x 旳两根,则AD ·BD 旳值等于11.我们规定[]x 表达不超过x 旳最大整数,如:[ 2.1]3-=-,[3]3-=-,[2.2]2=。
数学自主招生试题答案

数学自主招生试题答案一、选择题1. 已知函数f(x) = ax^2 + bx + c在点x=1取得极小值,且该点为函数的唯一极值点。
若a>0,求b与c的关系。
答案:根据题意,函数f(x)在x=1处取得极小值,因此一阶导数f'(x)在x=1处为0。
首先求导数f'(x) = 2ax + b。
将x=1代入得f'(1) =2a + b = 0。
又因为x=1是唯一极值点,根据二次函数的性质,其判别式Δ = b^2 - 4ac必须小于0。
将f'(1) = 0代入得Δ = (2a)^2- 4a*c = 4a^2 - 4ac < 0。
由于a>0,可以化简得ac < 0,即b与c的关系为c < 0。
2. 已知一个等差数列的前三项分别为a-2,a,a+2,求该数列的前n项和公式。
答案:设等差数列的首项为a1,公差为d。
根据题意,有a1 = a - 2,a2 = a,a3 = a + 2。
由于是等差数列,有a2 = a1 + d,a3 = a2 + d。
将已知条件代入得a = a1 + d,a + 2 = a1 + 2d。
解这个方程组得a1 = a - d,d = 2。
所以首项a1 = a - 2,公差d = 2。
根据等差数列前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入a1和d的值,得到Sn = n/2 * (2(a - 2) + (n-1)*2) = n/2 * (2a - 4 + 2n - 2) = n/2 * (2a + 2n - 6)。
二、填空题1. 一个圆的半径为r,求该圆的面积与周长。
答案:圆的面积公式为A = πr^2,周长公式为C = 2πr。
所以该圆的面积为πr^2,周长为2πr。
2. 已知一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,请判断该三角形的形状。
答案:根据勾股定理,如果一个三角形的三边长满足a^2 + b^2 = c^2,那么这个三角形是一个直角三角形。
2022年全国各地自招数学好题汇编之专题04 不等式及不等式组(word版含答案)

专题04 不等式及不等式组一.选择题(共12小题)1.(2021•武进区校级自主招生)已知关于x的不等式组恰有3个整数解,则a 的取值范围是()A.B.C.D.2.(2021•浦东新区校级自主招生)有一个解集为﹣2<x<2,它可能是下面哪个不等式组的解集?(a,b均为实数)()A.B.C.D.3.(2021•江岸区校级自主招生)利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于()A.80cm B.75cm C.70cm D.65cm 4.(2020•和平区校级自主招生)已知关于x的不等式组的负整数解只有一个,则实数a的取值范围为()A.B.C.1D.1 5.(2020•原阳县校级自主招生)不等式≥0的解集是()A.[1,2]B.[1,2]∪[3,+∞)C.[1,2]∪(3,+∞)D.(3,+∞)6.(2020•赫山区校级自主招生)若不等式组有解,则实数a的取值范围是()A.a<5B.a≤5C.a>5D.a≥5 7.(2017•涪城区校级自主招生)普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的()倍.A.2B.2.5C.3D.4 8.(2018•武昌区校级自主招生)关于x的不等式组无解,则实数a的取值范围是()A.a>﹣1B.a=﹣1C.a≥﹣1D.a≤﹣1 9.(2018•即墨区自主招生)[x]表示不大于x的最大整数,例如[2.1]=2,[﹣0.5]=﹣1,则下列说法正确的是()A.[2x]=2[x]B.[﹣x]=﹣[x]C.[x+y]≤[x]+[y]D.设函数y=x﹣[x],则0≤y<1 10.(2018•台儿庄区校级自主招生)若关于x的不等式组的所有整数解的和是10,则m的取值范围是()A.4<m<5B.4<m≤5C.4≤m<5D.4≤m≤5 11.(2017•温江区校级自主招生)对于任意的﹣1≤x≤1,ax+2a﹣3>0恒成立,则a的取值范围为()A.a>1或a=0B.a>3C.a>3或a=0D.1<a<3 12.(2017•市北区校级自主招生)满足不等式组的x的取值范围是()A.﹣3<x<﹣1B.x>3C.﹣1<x<3D.x<﹣3二.填空题(共7小题)13.(2021•渝中区校级自主招生)万盛是重庆茶叶生产基地和名优茶产地之一.以“重庆第一泡•万盛茶飘香”为主题的采茶制茶、品茶赏茶、茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶.清明香、云雾毛尖、滴翠剑茗.第一批采茶的茶叶中清明香的数量(盒)是滴翠剑茗的数量(盒)的2倍,云雾毛尖的数量(盒)是另外两种茶叶的数量之和.由于品质优良宣传力度大,网上的预定量暴增,举办方加紧采制了第二批同种类型的茶叶.其中清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元、380元.清明香的售价为每盒640元,活动中将清明香的供游客免费品尝.活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价不高于另外两种茶叶销售单价之和的,则滴翠剑茗的单价最低为元.14.(2020•谷城县校级自主招生)已知x<0,则2+3x+的最大值等于.15.(2020•九龙坡区自主招生)某商场分别组装了甲、乙两种坚果营养袋,它们都由a、b、c三种坚果组成,甲种坚果营养袋每袋装有100克a坚果,300克b坚果,100克c坚果;乙种坚果营养袋每袋装有200克a坚果,100克b坚果,200克c坚果,甲、乙两种坚果营养袋每袋成本价均为袋中a、b、c三种坚果的成本价之和.已知b种坚果每100克的成本价为1元,乙种坚果营养袋每袋售价为5元,成本利润率为25%,甲种坚果营养袋每袋的成本利润率为,则这两种坚果营养袋的销售利润率为时,该商场销售甲、乙两种坚果营养袋的数量之比是.(已知:成本利润率=利润÷成本;销售利润率=利润÷售价)16.(2021•宝山区校级自主招生)关于x的方程mx﹣1=|2x﹣4|有解,则m的取值范围是.17.(2021•巴南区自主招生)某公司对A村、B村、C村进行了合作办企的投资,其投资总额是对C村投资额的倍.随着国家对乡村振兴的高度重视,该公司调整了投资计划,在原投资总额的基础上再增加一部分投资,并按3:3:8的比例分别对A村、B村、C村增加投资.该公司调整投资计划后,若该公司对A村的投资总额与该公司对三个村的投资总额的和的比为6:13,且该公司对B村增加的投资额是该公司对三个村的投资总额的和的,则该公司对B村的投资总额与该公司对C村的投资总额的比为.18.(2021•江岸区校级自主招生)若不等式组恰有四个整数解,则a的取值范围是.19.(2020•和平区校级自主招生)和都是方程ax﹣y=b的解,则a+b=.三.解答题(共3小题)20.(2020•沙坪坝区自主招生)阅读下列材料:材料一:最大公约数是指两个或多个整数共有的约数中最大的一个.我们将两个整数a、b的最大公约数表示为(a,b),如(12,18)=6;(7,9)=1.材料二:求7x+3y=11的一组整数解,主要分为三个步骤:第一步,用x表示y,得y=;第二步,找一个整数x,使得11﹣7x是3的倍数,为更容易找到这样的x,将11﹣7x变形为12﹣9x+2x﹣1=3(4﹣3x)+2x﹣1,即只需2x﹣1是3的倍数即可,为此可取x=2;第三步,将x=2代入y=,得y=﹣1.∴是原方程的一组整数解.材料三:若关于x,y的二元一次方程ax+by=c(a,b,c均为整数)有整数解,则它的所有整数解为(t为整数).利用以上材料,解决下列问题:(1)求方程(15,20)x+(4,8)y=99的一组整数解;(2)求方程(15,20)x+(4,8)y=99有几组正整数解.21.(2020•浙江自主招生)求使方程|x﹣1|﹣|x﹣2|+2|x﹣3|=c恰好有两个解的所有实数c的范围.22.(2021•黄州区校级自主招生)(1)解方程组:(2)解不等式:专题04 不等式及不等式组参考答案与试题解析一.选择题(共12小题)1.(2021•武进区校级自主招生)已知关于x的不等式组恰有3个整数解,则a 的取值范围是()A.B.C.D.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选:B.2.(2021•浦东新区校级自主招生)有一个解集为﹣2<x<2,它可能是下面哪个不等式组的解集?(a,b均为实数)()A.B.C.D.【解答】解:∵﹣2<x<2,∴x>﹣2且x<2,∴﹣x<1且x<1,即解集为﹣2<x<2的不等式组是,而只有D的形式和的形式相同,∴只有D解集有可能为﹣2<x<2.故选:D.3.(2021•江岸区校级自主招生)利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于()A.80cm B.75cm C.70cm D.65cm【解答】解:设长方体木块长xcm、宽ycm,桌子的高为acm,由题意得:,两式相加得:2a=150,解得:a=75,故选:B.4.(2020•和平区校级自主招生)已知关于x的不等式组的负整数解只有一个,则实数a的取值范围为()A.B.C.1D.1【解答】解:解不等式2x≥3(x﹣2)+5,得:x≤1,∵不等式组的负整数解只有1个,∴﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.5.(2020•原阳县校级自主招生)不等式≥0的解集是()A.[1,2]B.[1,2]∪[3,+∞)C.[1,2]∪(3,+∞)D.(3,+∞)【解答】解:由题意得,≥0,则或,解得x>3或1≤x≤2,所以不等式的解集是x>3或1≤x≤2.故选:C.6.(2020•赫山区校级自主招生)若不等式组有解,则实数a的取值范围是()A.a<5B.a≤5C.a>5D.a≥5【解答】解:,由①得x<a﹣1,由②得x≥4,∵不等式组有解,∴解集应是4≤x<a﹣1,则a﹣1>4,即a>5,实数a的取值范围是a>5.故选:C.7.(2017•涪城区校级自主招生)普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的()倍.A.2B.2.5C.3D.4【解答】解:设普通火车速度为vm/min,城际快车速度为nvm/min,已知普通火车从绵阳至成都历时大约2h=120min,由v=可得两地距离:s=v×120,普通火车与城际快车两列对开,途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,即:s普+s城=s,所以:v×80+nv×20=s,所以:v×80+nv×20=v×120,解得:n=2.故选:A.8.(2018•武昌区校级自主招生)关于x的不等式组无解,则实数a的取值范围是()A.a>﹣1B.a=﹣1C.a≥﹣1D.a≤﹣1【解答】解:,由不等式①,得x<﹣2,由不等式②,得x≥a﹣1,∵关于x的不等式组无解,∴a﹣1≥﹣2,解得a≥﹣1,故选:C.9.(2018•即墨区自主招生)[x]表示不大于x的最大整数,例如[2.1]=2,[﹣0.5]=﹣1,则下列说法正确的是()A.[2x]=2[x]B.[﹣x]=﹣[x]C.[x+y]≤[x]+[y]D.设函数y=x﹣[x],则0≤y<1【解答】解:A、设x=﹣1.4,[2x]=[﹣2.8]=﹣3,2[x]=﹣4,所以A选项错误;B、设x=﹣1.8,则[﹣x]=1,﹣[x]=2,即[﹣x]≠﹣[x],所以B选项错误;C、设x=y=1.8,对A,[x+y]=[3.6]=3,[x]+[y]=1+1=2,所以C选项错误.D、设函数y=x﹣[x],则0≤y<1,故D选项正确.故选:D.10.(2018•台儿庄区校级自主招生)若关于x的不等式组的所有整数解的和是10,则m的取值范围是()A.4<m<5B.4<m≤5C.4≤m<5D.4≤m≤5【解答】解:解不等式3﹣2x≤1,得:x≥1,解不等式x﹣m<0,得:x<m,则不等式组的解集为1≤x<m,∵不等式组的整数解的和为10,∴不等式组的整数解为1、2、3、4,则4<m≤5,故选:B.11.(2017•温江区校级自主招生)对于任意的﹣1≤x≤1,ax+2a﹣3>0恒成立,则a的取值范围为()A.a>1或a=0B.a>3C.a>3或a=0D.1<a<3【解答】解:由ax+2a﹣3>0得,ax>3﹣2a,当a>0时,不等式的解集为x>,对于任意的﹣1≤x≤1,ax+2a﹣3>0恒成立,∴<﹣1,解得,a>3;当a=0时,不等式无解,舍去;当a<0时,不等式的解集为x<,∵对于任意的﹣1≤x≤1,ax+2a﹣3>0恒成立,∴>1,解得,a>1(与a<0矛盾,舍去);综上,a>3.故选:B.12.(2017•市北区校级自主招生)满足不等式组的x的取值范围是()A.﹣3<x<﹣1B.x>3C.﹣1<x<3D.x<﹣3【解答】解:解不等式|x|<3得﹣3<x<3,解不等式x+1>0,得x>﹣1,则不等式组的解集为﹣1<x<3,故选:C.二.填空题(共7小题)13.(2021•渝中区校级自主招生)万盛是重庆茶叶生产基地和名优茶产地之一.以“重庆第一泡•万盛茶飘香”为主题的采茶制茶、品茶赏茶、茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶.清明香、云雾毛尖、滴翠剑茗.第一批采茶的茶叶中清明香的数量(盒)是滴翠剑茗的数量(盒)的2倍,云雾毛尖的数量(盒)是另外两种茶叶的数量之和.由于品质优良宣传力度大,网上的预定量暴增,举办方加紧采制了第二批同种类型的茶叶.其中清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元、380元.清明香的售价为每盒640元,活动中将清明香的供游客免费品尝.活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价不高于另外两种茶叶销售单价之和的,则滴翠剑茗的单价最低为460元.【解答】解:∵第一批采茶的茶叶中清明香的数量(盒)是滴翠剑茗的数量(盒)的2倍,云雾毛尖的数量(盒)是另外两种茶叶的数量之和,∴第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1,∵第二批采制后清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等,即云雾毛尖、滴翠剑茗的数量各占,∴增加后清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为::=8:5:5,设总共有a盒茶叶,∴成本为×500a+×420a+×380a=a(元),销售额应为×(1+16%)a=a(元),清明香的销售额为640××(1﹣)a=a(元),另外两种茶的销售总额为a﹣a=a(元),设滴翠剑茗最低价为x元,则云雾毛尖最高价为(640+x)元,因此可建立方程xa+×(640+x)•a=a,解得x=460,因此滴翠剑茗单价最低为460元,故答案为:460.14.(2020•谷城县校级自主招生)已知x<0,则2+3x+的最大值等于2﹣4.【解答】解:∵x<0,∴3x+≤﹣2=﹣4,∴2+3x+≤2﹣4,当且仅当3x=时等号成立,取得最小值2﹣4.故答案为:2﹣4.15.(2020•九龙坡区自主招生)某商场分别组装了甲、乙两种坚果营养袋,它们都由a、b、c三种坚果组成,甲种坚果营养袋每袋装有100克a坚果,300克b坚果,100克c坚果;乙种坚果营养袋每袋装有200克a坚果,100克b坚果,200克c坚果,甲、乙两种坚果营养袋每袋成本价均为袋中a、b、c三种坚果的成本价之和.已知b种坚果每100克的成本价为1元,乙种坚果营养袋每袋售价为5元,成本利润率为25%,甲种坚果营养袋每袋的成本利润率为,则这两种坚果营养袋的销售利润率为时,该商场销售甲、乙两种坚果营养袋的数量之比是4:9.(已知:成本利润率=利润÷成本;销售利润率=利润÷售价)【解答】解:设a种坚果每100克的成本价为x元,c种坚果每100克的成本价为y元,由于乙种坚果营养袋每袋的成本利润率为25%,则5﹣(2x+1+2y)=25%(2x+1+2y),∴x+y=,则甲种坚果营养袋每袋的成本价为x+3+y=元,乙种坚果营养袋每袋成本价为2x+2y+1=4元,甲种坚果营养袋每袋售价为(1+)×=6元,设商场销售甲种坚果m袋、乙种坚果n袋,由于两种坚果营养袋的销售利润率为,则,∴9m=4n,∴m:n=4:9,即商场销售甲、乙两种坚果营养袋的数量之比是4:9,故答案为:4:9.16.(2021•宝山区校级自主招生)关于x的方程mx﹣1=|2x﹣4|有解,则m的取值范围是m≥或m<﹣2.【解答】解:当x⩾2时,mx﹣1=2x﹣4,∴(m﹣2)x=﹣3,∴,∴2﹣m>0且,∴,当x<2时,mx﹣1=4﹣2x,∴(m+2)x=5,,∴,解得m<﹣2 或,综上所述或m<﹣2,故答案为或m<﹣2.17.(2021•巴南区自主招生)某公司对A村、B村、C村进行了合作办企的投资,其投资总额是对C村投资额的倍.随着国家对乡村振兴的高度重视,该公司调整了投资计划,在原投资总额的基础上再增加一部分投资,并按3:3:8的比例分别对A村、B村、C村增加投资.该公司调整投资计划后,若该公司对A村的投资总额与该公司对三个村的投资总额的和的比为6:13,且该公司对B村增加的投资额是该公司对三个村的投资总额的和的,则该公司对B村的投资总额与该公司对C村的投资总额的比为9:40.【解答】解:设公司对A村、B村、C村进行增加投资的数额分别为3x,3x,8x,则增加投资的的总额为14x,设公司原来向C村投资数额为2c,向A村投资的数额为a,向B村投资的数额为b,∵新投资总额是对C村投资额的倍,∴a+b+2c=×2c,∴a+b=5c.∴该公司对三个村的投资总额为a+b+2c=7c.∵该公司对A村的投资总额与该公司对三个村的投资总额的和的比为6:13,且该公司对B村增加的投资额是该公司对三个村的投资总额的和的,∴.化简,得:.∴该公司对B村的投资总额与该公司对C村的投资总额的比为:==.故答案为:9:40.18.(2021•江岸区校级自主招生)若不等式组恰有四个整数解,则a的取值范围是3≤a<4.【解答】解:解不等式x+a≥0得:x≥﹣a,解不等式1﹣2x>x﹣2得:x<1,∴﹣a≤x<1.∵此不等式组恰有四个整数解,∴这4个整数解为﹣3,﹣2,﹣1,0,∴﹣4<﹣a≤﹣3,∴3≤a<4,故答案为:3≤a<4.19.(2020•和平区校级自主招生)和都是方程ax﹣y=b的解,则a+b=7.【解答】解:将方程的解代入方程得:,解得:,∴a+b=3+4=7,故答案为:7.三.解答题(共3小题)20.(2020•沙坪坝区自主招生)阅读下列材料:材料一:最大公约数是指两个或多个整数共有的约数中最大的一个.我们将两个整数a、b的最大公约数表示为(a,b),如(12,18)=6;(7,9)=1.材料二:求7x+3y=11的一组整数解,主要分为三个步骤:第一步,用x表示y,得y=;第二步,找一个整数x,使得11﹣7x是3的倍数,为更容易找到这样的x,将11﹣7x变形为12﹣9x+2x﹣1=3(4﹣3x)+2x﹣1,即只需2x﹣1是3的倍数即可,为此可取x=2;第三步,将x=2代入y=,得y=﹣1.∴是原方程的一组整数解.材料三:若关于x,y的二元一次方程ax+by=c(a,b,c均为整数)有整数解,则它的所有整数解为(t为整数).利用以上材料,解决下列问题:(1)求方程(15,20)x+(4,8)y=99的一组整数解;(2)求方程(15,20)x+(4,8)y=99有几组正整数解.【解答】解:(1)∵(15,20)=5,(4,8)=4,∴原方程变形为:5x+4y=99,∴x=,∴99﹣4y是5的倍数,∴当y=1时,x=19,∴是原方程的解;(2)∵5x+4y=99有整数解,∴,,,,,∴原方程有5组正整数解.21.(2020•浙江自主招生)求使方程|x﹣1|﹣|x﹣2|+2|x﹣3|=c恰好有两个解的所有实数c的范围.【解答】解:①当x<1时,原方程可化为:﹣x+1+x﹣2﹣2x+6=c,解得:由<1,∴c>3②当1≤x<2时,原方程可化为:x﹣1+x﹣2﹣2x+6=c,解得:c=3,有无数多解;③当2≤x<3时,原方程可化为:x﹣1﹣x+2﹣2x+6=c,解得:,得:1<c⩽3④当x≥3时,原方程可化为:x﹣1﹣x+2+2x﹣6=c,解得:由,得:c⩾1故当c>3时,原方程恰有两解:当1<c<3时,原方程恰有两解:故答案为:c>3或1<c<322.(2021•黄州区校级自主招生)(1)解方程组:(2)解不等式:【解答】解:(1),①×2﹣②得﹣x=﹣2,解得x=2,把x=2代入①得y=﹣1,元方程组的解是;(2)去分母得:2x>12﹣3(x﹣1),去括号得:2x>12﹣3x+3,移项,合并同类项得:5x>15,系数化为1得:x>3.。
自主招生不等式(附答案)

第一部分奠基篇不等关系一、要点考点1. ⑴平均数不等式(平方平均数≥算术平均数≥几何平均数≥调和平均数):(a、b为正数,当a = b时取等号)⑵含立方的几个重要不等式(a、b、c为正数):①②(只需,时取等号);(时取等号)⑶绝对值不等式:⑷柯西不等式:设则等号成立当且仅当.(约定时,)例如:.⑸常用不等式的放缩法:①②2. 常用不等式的解法举例(x为正数):①②类似于③二、技能方法● 配方● 比较● 观察● 等价转化● 函数单调性● 基本不等式● 放缩● 构造● 数学归纳法三、典型例题例1、(复旦2008选拔)已知一个三角形的面积为,且它的外接圆半径为1,设分别是该三角形的三边长,令,,则和的关系是()A. B.C. D. 无法确定解析:答案:例2、(浙大2008自招)已知,试问是否存在正数,使得对于任意正数可使为三边构成三角形?如果存在,求出的取值范围;如果不存在,请说明理由.解析:例3、(复旦2003保送),,,…,是各不相同的正自然数,,求证:.证明:例4、(复旦2004保送)求证:.证明:不等关系——不等关系(1)【课后作业】1. (复旦2009自招)如果一个函数在其定义区间内对任意x,y都满足,则称这个函数是下凸函数,下列函数(1)(2)(3) (4)中是下凸函数的有A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)2.(中科大2009年自招)命题“若,则”的否命题是()A. 若,则B. 若,则C. 若,则D. 若,则3.(南大2008自招)设是正数,且,求的最小值.4.(南开大学2008)有3个实根,证明:.不等关系——不等关系(1)【课后作业】1. (复旦2009自招)如果一个函数在其定义区间内对任意x,y都满足,则称这个函数是下凸函数,下列函数(1)(2)(3) (4)中是下凸函数的有A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)答案:D提示:不等关系,表示了函数图像的形态——下凸,即在函数图像上任取两个点,它们的连线段在函数图像上方.2.(中科大2009年自招)命题“若,则”的否命题是()A. 若,则B. 若,则C. 若,则D. 若,则答案:C.说明:证明不等关系问题时,常常使用反证法,而反证法和四种命题是息息相关的,所以要掌握一定的命题知识,只要这样才能灵活解决数学问题.3.(南大2008自招)设是正数,且,求的最小值.提示:再利用基本不等式可得.答案:36.4.(南开大学2008)有3个实根,证明:. 证明:设三根为,则由韦达定理得,即从上式可知,必是三负或两正一负.用不等式的基本性质可排除两正一负的情形.于是,转化为正数后用基本不等式.。
高中数学3-1不等关系与不等式习题新人教A版必修5

3.1不等关系与不等式一、选择题:本题共8个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】已知a b >,c d >,那么一定正确的是 ( )A .ad bc >B .ac bd >C .a c b d ->-D .a d b c ->-2.【题文】设201612016a ⎛⎫= ⎪⎝⎭,120162016b =,1lg 2016c =,则c b a ,,的大小关系为 ( ) A .c a b << B .b c a <<C .a b c <<D .b a c <<3.【题文】已知,a b 为非零实数,且0a b <<,则下列命题成立的是 ( )A .22a b <B .2211ab a b <C .22a b ab <D .b a a b< 4.【题文】设22(21),(1)(3)M a a N a a =--=+-,则有 ( )A. M N >B. M N ≥C. M N <D. M N ≤5.【题文】如果01a <<,那么下列不等式中正确的是 ( )A .(1)log (1)0a a -+>C .32(1)(1)a a ->+D .1(1)1a a +->6.【题文】设,a b ∈R ,若0a b ->,则下列不等式中正确的是 ( )A .0b a ->B .330a b +<C .220a b -<D .0b a +> 7.【题文】设 1a b >>,0c <,给出下列三个结论:①c c a b>;②c c a b >; ③()()log >log b a a c b c --.其中所有正确结论的个数是 ( )A .0B .1C .2D .38.【题文】已知,,a b c ∈R ,则下列推证中错误的是( )A .22a b ac bc >⇒≥B .,0a b c a b c c><⇒< C .3311,0a b ab a b >>⇒< D .2211,0a b ab a b >>⇒<二、填空题:本题共3小题.9.【题文】132-,123,2log 5三个数中最大的数是 . 10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.11.【题文】若2,a b c ==,则a 、b 、c 的大小顺序是 .三、解答题:解答应写出文字说明,证明过程或演算步骤.12.【题文】已知:m n >,a b <,求证:m a n b ->-.13.【题文】设110,1ab a >->,比较a +1的大小. 14.【题文】已知,a b ∈R ,b a x -=3,a b a y -=2,试比较x 与y 的大小.3.1不等关系与不等式 参考答案及解析1. 【答案】D【解析】由同向不等式的加法性质可知由a b >,c d >,可得,a c b d a d b c +>+∴->-.考点:不等式性质.【题型】选择题【难度】较易2. 【答案】D 【解析】()201612016110,1,20161,lg 0,.20162016a b c c a b ⎛⎫=∈=>=<∴<< ⎪⎝⎭考点:比较大小.【题型】选择题【难度】较易3. 【答案】B 【解析】因为0a b <<,所以可令2,1a b =-=,可排除A 、C 、D ,故选B.考点:不等式的性质.【题型】选择题【难度】较易4. 【答案】B【解析】()()()()22222211324223M N a a a a a a a a a -=---+-=-----=-()22110a a +=-≥恒成立,所以M N ≥.故B 正确.考点:作差法比较大小.【题型】选择题【难度】一般5. 【答案】A【解析】因为01,a <<所以011,a <-<所以(1)x y a =-在R 上单调递减,所以A.本题也可以用特殊值法,如:令12a =来解决. 考点:比较大小.【题型】选择题【难度】一般6. 【答案】D 【解析】由0a b ->得a b >,0,,0.a b a b a b ∴>≥∴>±∴+>考点:不等式性质.【题型】选择题【难度】一般7. 【答案】C【解析】①∵1a b >>,0c <,∴(0c c c b a a b ab --=>),故c c a b>,正确; ②∵0c <,∴c y x =在()0,+∞上是减函数,而0a b >>,所以c c a b <,错误;③当1a b >>时,有()()()log >log >log b b a a c b c b c ---,正确.故选C .考点:比较大小.【题型】选择题【难度】一般8. 【答案】D【解析】对于A : 20c ≥,则22ac bc ≥,故A 正确;对于B :0a b a b c c c--=> ,当0c <时,有a b <,故B 正确; 对于C :∵33a b >,0ab >,∴不等式两边同乘以()3ab 的倒数,得到3311b a >,即11a b<,故C 正确; 对于D :∵22a b >,0ab >,∴不等式两边同乘以()2ab 的倒数,得到2211b a >,不一定有11a b<,故D 错误.故选D . 考点:不等关系与不等式.【题型】选择题【难度】较难9. 【答案】2log 5 【解析】11322221,12,log 5log 42-<<<>=,所以最大的数为2log 5. 考点:指数、对数式大小判定.【题型】填空题【难度】一般10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般10. 【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般11. 【答案】a b c >>【解析】a ==,2bc ===,因为20+>,>>,故a b c >>. 考点:不等关系与不等式.【题型】填空题【难度】一般12. 【答案】证明略【解析】证法一:由m n >知0m n ->,由a b <知0b a ->.∴()()()()0m a n b m n b a m a n b ---=-+->⇒->-.证法二:∵a b <,∴a b ->-,又∵m n >,∴()()m a n b +->+-,即m a n b ->-.考点:不等式的性质.【题型】解答题【难度】较易13. 【答案】ba ->+111 【解析】由,10111,0<<⇒>->b a b a2211111ab a b ab b a b b ⎛⎫-- ⎪--⎝⎭∴-==--, 又110,10,1ab b b a>->->,22∴-⇒> 考点:平方法作差比较大小.【题型】解答题【难度】一般14. 【答案】详见解析 【解析】()()()32221x y a b a b a a a b a b a b a -=--+=-+-=-+, 当b a >时,0>-y x ,所以y x >;当b a =时,0=-y x ,所以y x =;当b a <时,0<-y x ,所以y x <.考点:作差法比较大小.【题型】解答题【难度】一般。
2024年高考数学真题分类汇编02:不等式与不等关系

不等式与不等关系一、单选题1.(2024·全国1卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <2.(2024·全国1卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ì---<=í++³î,在R 上单调递增,则a 取值的范围是()A .(,0]-¥B .[1,0]-C .[1,1]-D .[0,)+¥3.(2024·全国2卷)已知命题p :x "ÎR ,|1|1x +>;命题q :0x $>,3x x =,则()A .p 和q 都是真命题B .p Ø和q 都是真命题C .p 和q Ø都是真命题D .p Ø和q Ø都是真命题4.(2024·全国2卷)设函数()()ln()f x x a x b =++,若()0f x ³,则22a b +的最小值为()A .18B .14C .12D .15.(2024·全国甲卷文)若实数,x y 满足约束条件43302202690x y x y x y --³ìï--£íï+-£î,则5z x y =-的最小值为()A .5B .12C .2-D .72-6.(2024·北京)已知集合{|41}M x x =-<£,{|13}N x x =-<<,则M N È=()A .{}43x x -<<B .{}11x x -<£C .{}0,1,2D .{}14x x -<<7.(2024·北京)记水的质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且1 2.1d =,2 2.2d =,则1n 与2n 的关系为()A .12n n <B .12n n >C .若1S <,则12n n <;若1S >,则12n n >;D .若1S <,则12n n >;若1S >,则12n n <;8.(2024·北京)已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是()A .12122log 22y y x x ++>B .12122log 22y y x x ++<C .12212log 2y y x x +>+D .12212log 2y y x x +<+9.(2024·天津)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A .a b c >>B .b a c >>C .c a b >>D .b c a>>二、填空题10.(2024·上海)已知,x ÎR 则不等式2230x x --<的解集为.三、解答题11.(2024·全国甲卷文)已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a £时,证明:当1x >时,()1e xf x -<恒成立.12.(2024·全国甲卷理)已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ³时,()0f x ³恒成立,求a 的取值范围.参考答案:1.B【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为()f x 在R 上单调递增,且0x ³时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -ì-³ï´-íï-£+î,解得10a -££,即a 的范围是[1,0]-.故选:B.3.B【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【解析】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p Ø是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q Ø是假命题,综上,p Ø和q 都是真命题.故选:B.4.C【分析】解法一:由题意可知:()f x 的定义域为(),b ¥-+,分类讨论a -与,1b b --的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【解析】解法一:由题意可知:()f x 的定义域为(),b ¥-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-£-a b ,当(),1x b b Î--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b Î--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b Î--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ¥Î-+时,可知()0,ln 0x a x b +³+³,此时()0f x ³;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a Î--时,可知()0,ln 0x a x b ++,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a æö+=++=++³ç÷èø,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b ¥-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b Î--时,()ln 0x b +<,故0x a +£,所以10b a -+£;()1,x b ¥Î-+时,()ln 0x b +>,故0x a +³,所以10b a -+³;故10b a -+=,则()2222211112222a b a a a æö+=++=++³ç÷èø,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.D【分析】画出可行域后,利用z 的几何意义计算即可得.【解析】实数,x y 满足43302202690x y x y x y --³ìï--£íï+-£î,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=ìí+-=î,解得321x y ì=ïíï=î,即3,12A æöç÷èø,则min 375122z =-´=-.故选:D.6.A【分析】直接根据并集含义即可得到答案.【解析】由题意得()4,3M N È=-,故选:A.7.C【分析】根据题意分析可得12.1112.22e e S S n n --ì=ïíï=î,讨论S 与1的大小关系,结合指数函数单调性分析判断.【解析】由题意可得11221 2.1ln 1 2.2ln S d n S d n -ì==ïïí-ï==ïî,解得12.1112.22e e S S n n --ì=ïíï=î,若1S >,则112.1 2.2S S -->,可得112.1 2.2e e S S -->,即12n n >;若1S =,则1102.1 2.2S S --==,可得121n n ==;若1S <,则112.1 2.2S S --<,可得112.1 2.2e e S S --<,即12n n <;结合选项可知C 正确,ABD 错误;故选:C.8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB:可得121222222x x x x ++>=,即12122202x x y y ++>>,根据函数2log y x =是增函数,所以121212222log log 222x x y y x x +++>=,故A 正确,B 错误;对于选项C :例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=Î,即12212log 12y y x x +<=+,故C 错误;对于选项D :例如121,2x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-Î--,即12212log 32y y x x +>-=+,故D 错误,故选:A.9.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B10.{}|13x x -<<【分析】求出方程2230x x --=的解后可求不等式的解集.【解析】方程2230x x --=的解为=1x -或3x =,故不等式2230x x --<的解集为{}|13x x -<<,故答案为:{}|13x x -<<.11.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【解析】(1)()f x 定义域为(0,)+¥,11()ax f x a x x¢-=-=当0a £时,1()0ax f x x-¢=<,故()f x 在(0,)+¥上单调递减;当0a >时,1,x a ¥æöÎ+ç÷èø时,()0f x ¢>,()f x 单调递增,当10,x a æöÎç÷èø时,()0f x ¢<,()f x 单调递减.综上所述,当0a £时,()f x 在(0,)+¥上单调递减;0a >时,()f x 在1,a ¥æö+ç÷èø上单调递增,在10,a æöç÷èø上单调递减.(2)2a £,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-³-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -¢=-+,再令()()h x g x ¢=,则121()e x h x x-¢=-,显然()h x ¢在(1,)+¥上递增,则0()(1)e 10h x h ¢¢>=-=,即()()g x h x =¢在(1,)+¥上递增,故0()(1)e 210g x g ¢¢>=-+=,即()g x 在(1,)+¥上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证12.(1)极小值为0,无极大值.(2)12a £-【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a £-、102a -<<、0a ³分类讨论后可得参数的取值范围.【解析】(1)当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+¢=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,¥-+上为增函数,故()f x ¢在()1,¥-+上为增函数,而(0)0f ¢=,故当10x -<<时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+¢+-=-+->++,设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++¢+,当12a £-时,()0s x ¢>,故()s x 在()0,¥+上为增函数,故()()00s x s >=,即()0f x ¢>,所以()f x 在[)0,¥+上为增函数,故()()00f x f ³=.当102a -<<时,当210a x a+<<-时,()0s x ¢<,故()s x 在210,a a +æö-ç÷èø上为减函数,故在210,a a +æö-ç÷èø上()()0s x s <,即在210,a a +æö-ç÷èø上()0f x ¢<即()f x 为减函数,故在210,a a +æö-ç÷èø上()()00f x f <=,不合题意,舍.当0a ³,此时()0s x ¢<在()0,¥+上恒成立,同理可得在()0,¥+上()()00f x f <=恒成立,不合题意,舍;综上,12a £-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主招生数学习题选编 不等关系
1、用长度为12的篱笆围成长方形,一边靠墙,则所围成面积S 的最大值是_______________. 答案:18
2、设不等式(1)(1)x x y y -≤-与22x y k +≤的解集分别为M 和N .若M N ⊂,则k 的最小值为 .
答案:2
3、若不等式2054x ax ≤++≤只有唯一实数解,则a =_______________.
提示:“2054x ax ≤++≤只有唯一实解”等价于“254y x ax y =++=与相切”。
答案:2±
4、实数,a b 满足1=,则
22a b +=_______________.
提示:令cos ,cos (,[0,])a b αβαβπ==∈,则
cos |sin |cos |sin |αββα=+cos sin cos sin sin()1αββααβ=+=+= 所以22k παβπ+=+
,所以2222cos cos 1a b αβ+=+=。
答案:1
5、设有正数a 与b ,满足a b <,若实数1x ,1y ,2x ,2y ,其中1x ,1y 与a ,b 的算术平均数相同,2x ,
2y 与a ,b 22的取值范围是_________________. 答案:(0,]8a b ab
+ 6、非零实数,,x y z 满足2221x y z ++=,则222
111x y z ++的最小值是________. 提示:“1”代换,222111x y z ++=222222222
222
x y z x y z x z y x y z ++++++++=。
答案:9
7、设,,0x y z >满足12xyz y z ++=,则422log log log x y z ++的最大值是( )
A.3
B.4
C.5
D.6
提示:因为221264xyz y z xy z ++=≥≤,
所以2242244log log log log ()log 643x y z xy z ++=≤=。
答案:A
8、若实数x 满足对任意正数0a >,均有21x a <+,则x 的取值范围是( )
A.(-1,1)
B.[-1,1]
C.(
D.不能确定
答案:B
9、已知221,()2a f x a x ax c ≥=-++,求证对于任意[0,1]x ∈,使()1f x ≤成立的充要条件是34
c ≤. 提示:利用二次不等式()0f x ≤在[,]p q 上恒成立的充要条件. 10、不等式22222log 0364
x kx k x x ++<++对于任意R x ∈都成立,求k 的取值范围.
2k << 11、(清华2009自招)已知,,0x y z >,,,a b c 是,,x y z 的一个排列. 求证:3a b c x y z
++≥. 提示:因为,,a b c 是,,x y z 的一个排列,所以xyz abc =,可用基本不等式求解。
提示:基本不等式.
12、比较24log 25与25log 26的大小并说明理由. 提示:2225252525252524log 26log 26log 24log (2624)log 26log 24()()log 2522
+⨯=<= 22
222525log (251)log 25()()122
-=<=,且2525log 260,log 240>>。
答案:2425log 25log 26>
13、求证:对于任何实数a 与b ,三个数:|a +b |,|a -b |,|1-a |中至少有一个不小于12. 提示:反证法.(等价于证明其“逆否命题”)
14、(交大2000保送)
证明不等式:3
412≤,[0,]2
x π
∈.
15、(浙大2008自招)已知0,0a b >>,
求证:1112
a b
a b a nb
+++
<+++.。