6.4 数列求和练习题
高考数学一轮复习《数列求和》练习题(含答案)

高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。
课件3:6.4 数列求和

(2)由(1)知a2n-11a2n+1=3-2n11-2n =12(2n1-3-2n1-1), 从而数列a2n-11a2n+1的前 n 项和为12(-11-11+11-13+… +2n1-3-2n1-1)=1-n2n.
三 错位相减法求和
【例 3】(2013·湖南)设 Sn 为数列{an}的前项和,已知 a1≠0,2an-a1=S1·Sn,n∈N*
【跟踪训练 2】 已知等差数列{an}的前 n 项和 Sn 满足 S3 =0,S5=-5.
(1)求{an}的通项公式; (2)求数列{a2n-11a2n+1}的前 n 项和.
解析:(1)设{an}的公差为 d, 则 Sn=na1+nn-2 1d. 由已知可得35aa11++31d0=d=0-5 ,解得ad1==-1 1 . 故{an}的通项公式为 an=2-n.
(2)因为 an=n,所以 a1=1,Sn=1+2+…+n=nn+2 1, 所以S1n=nn2+1=2(1n-n+1 1), 所以S11+S12+…+S1n
=2[(1-12)+(12-13)+…+(1n-n+1 1)] =2(1-n+1 1)=n2+n1.
【温馨提示】使用裂项相消法求和时,要注意正负项 相消时消去了哪些项,保留了哪些项,切不可漏写未被消 去的项,未被消去的项有前后对称的特点,实质上造成正 负相消是此法的根源与目的.
(1)证明:数列ann是等差数列; (2)设 bn=3n· an,求数列{bn}的前 n 项和 Sn.
解析:(1)证明:由已知可得na+n+11=ann+1, 即na+n+11-ann=1, 所以ann是以a11=1 为首项,1 为公差的等差数列.
(2)由(1)得ann=1+(n-1)·1=n,所以 an=n2. 从而 bn=n·3n. Sn=1×31+2×32+3×33+…+n·3n,① 3Sn=1×32+2×33+…+(n-1)·3n+n·3n+1.② ①-②得,-2Sn=31+32+…+3n-n·3n+1
数列求和、数列的综合应用练习题

数列求和、数列的综合应用练习题1.数列20,,2,,2101+++a k a a k 共十项,且其和为240,则101a a a k ++++ 的值为 ( ) A.31 B.120 C.130 D.1852. 已知正数等差数列}{n a 的前20项的和为100,那么147a a ⋅的最大值是 ( ) A.25 B.50 C.100 D.不存在3. 设函数x x f m log )(=(0>m ,且1≠m ),数列}{n a 的公比是m 的等比数列,若8)(200931=⋅⋅a a a f ,则)()()(220102221a f a f a f +++ 的值等于 ( ) A.-1974 B.-1990 C.2022 D.2042 4. 设等差数列}{n a 的公差0≠d ,又921,,a a a 成等比数列,则=++++1042931a a a a a a .5. 已知二次函数x x x f 23)(2-=,数列}{n a 的前n 项和为n s ,点(n s n ,)(*N ∈n )在函数)(x f y =的图像上. (1)球数列}{n a 的通项公式;(2)设13+=n n n a a b ,n T 是数列}{n b 的前n 项和,求使20mT n <对所有*N ∈n 都成立的最小正整数m .6.(2014广东湛江模拟)已知数列}{n a 各项均为正,其前n 项和为n s ,且满足2)1(4+=n n a S .(1)求}{n a 的通项公式;(2)设11+⋅=n n n a a b ,求数列}{n b 的前n 项和n T 及n T 的最小值.7. (2014安徽,18,12分)数列}{n a 满足)1()1(,111+++==+n n a n na a n n ,*N ∈n .(1)证明:数列⎭⎬⎫⎩⎨⎧n a n 是等差数列;(2)设n n n a b ⋅=3,求数列}{n b 的前n 项和为n s .8. (2014湖北,19,12分)已知等差数列}{n a 满足:21=a ,且521,,a a a 成等比数列.(1)求数列}{n a 的通项公式;(2)记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得80060+>n S n ?若存在,求n 的最小值;若不存在,说明理由.9. (2014湖南师大附中第二次月考,19)甲、乙两超市同时开业,第一年的年销售额都为a 万元. 由于经营方式不同,甲超市前n (*N ∈n )年的总销售额为)2(22+-n n a 万元;从第二年起,乙超市第n 年的销售额比前一年的销售额多a n 132-⎪⎭⎫ ⎝⎛万元.(1)设甲、乙两超市第n 年的销售额分别是n n b a ,,求n n b a ,的表达式; (2)若在同一年中,某一超市的年销售额不足另一个超市的年销售额的50%,则该超市将于当年年底被另一家超市收购. 问:在今后若干年内,乙超市能否被甲超市收购?若能,请推算出在哪一年年底被收购;若不能,请说明理由. 10. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入比上年减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (1)设n 年内(本年度为第一年)总投入为n a 万元,旅游业总收入为n b 万元,写出n a ,n b 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?11. (2014四川,19,12分)设等差数列}{n a 的公差为d ,点),(n n b a 在函数x x f 2)(=的图像上(*N ∈n ).(1)证明:数列}{n b 为等比数列;(2)若11=a ,函数)(x f 的图像在点),(22b a 处的切线在x 轴上的截距为2ln 12-,求数列}{2n n b a 的前n 项和n S .12. (2014江西上饶六校第二次联考,18)已知等差数列}{n a 的前n 项和为n S ,且15,252==S a ,数列}{n b 满足211=b ,n n b nn b 211+=+. (1)求数列}{},{n n b a 的通项公式;(2)记n T 为数列}{n b 的前n 项和,2)2(2)(+-=n T S n f n n ,试问)(n f 否存在最大值,若存在,求出最大值,若不存在请说明理由.13.(2012四川,12,5分)设函数3()(3)1f x x x =-+-,数列{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则127a a a ++⋅⋅⋅+= ( ) A.0 B.7 C.14 D.21 14.(2012山东,20,12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(1)求数列{}n a 的通项公式;(2)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .15.(2013课标全国Ⅱ,17,12)已知等差数列{}n a 的公差不为零,251=a ,且13111,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732n a a a a -++++.16. (2014广东,19,14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且nS 满足()()222*330,n n S n n S n n n -+--+=∈N .(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)求证:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.17.(2013山东,20,12分)设等差数列的前项和为,且,(1)求数列的通项公式;(2)设数列满足 ,求的前项和.18. (2014安徽,12,5分)如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.19.(2014课标Ⅰ,17,12分)已知是}{n a 递增的等差数列,42,a a 是方程0652=+-x x 的根.(1)求}{n a 的通项公式;(2)求数列⎭⎬⎫⎩⎨⎧n n a 2的前n 项和. 20. (2014湖南,21,13分)已知函数)0(1sin cos )(>+-=x x x x x f . (1)求)(x f 的单调区间;(2)记i x 为)(x f 的从小到大的第i (*N ∈i )个零点,证明:对一切*N ∈n ,有3211122221<+++n x x x . 21. (2014山东,19,12分)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设()12n n n b a +=,记()12341nn n T b b b b b =-+-+-+-…,求n T .22.(2013重庆,16,13分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈.(1)求{}n a 的通项公式及前n 项和n S ;(2)已知{}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .23.(2013湖南,19,13分)设n S 为数列{n a }的前n 项和,已知01≠a ,n n S S a a ⋅=-11,(1)求1a ,2a ,并求数列{n a }的通项公式; (2)求数列{n na }的前n 项和. 24.(2012安徽,21,13分)设函数)(x f =2x+x sin 的所有正的极小值点从小到大排成的数列为}{n x . (1)求数列}{n x 的通项公式;(2)设}{n x 的前n 项和为n S ,求n S sin .。
高考数学一轮复习: 专题6.4 数列求和(练)

专题6.4 数列求和【基础巩固】一、填空题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.【答案】n 2+1-12n【解析】该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.(·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前2 017项和为________. 【答案】2 0172 0183.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=________.【答案】-200【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.(·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.5.(·泰州模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 【答案】6【解析】由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20, ∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21) =1+10×12=6.6.(·南通、扬州、泰州三市调研)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑100k =1 (a k a k +1)的值为________. 【答案】1001017.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.8.(·镇江期末)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________. 【答案】4n-1【解析】由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.二、解答题9.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.10.(·苏北四市调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足:a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *). (1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解 (1)令n =1,a 1S 2-a 2S 1+a 1-a 2=λa 1a 2,解得a 2=21+λ. 令n =2,a 2S 3-a 3S 2+a 2-a 3=λa 2a 3,解得a 3=2λ+4λ+12λ+1.由a 22=a 1a 3得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=n +32a n ,①当n ≥2时,S n -1+1=n +22a n -1,②由①-②得a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n-1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是首项为13的常数列,所以a n =13(n +2). 代入①得S n =n +32a n -1=n 2+5n 6.【能力提升】11.(·长治联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________. 【答案】92【解析】a n =1+(n -1)=n ,S n =n 1+n2,∴S n +8a n=n 1+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时,取等号. ∴S n +8a n 的最小值是92. 12.(·盐城中学模拟)在数列{a n }中,a n +1+(-1)na n =2n -1,则数列{a n }的前12项和为________. 【答案】7813.(·南京、盐城模拟)已知函数f (x )=⎩⎨⎧1-x -12,0≤x <2,f x -2,x ≥2,若对于正数k n (n ∈N*),直线y=k n x与函数y=f(x)的图象恰有(2n+1)个不同交点,则数列{k2n}的前n项和为________.【答案】n4n+4【解析】函数f(x)的图象是一系列半径为1的半圆,因为直线y=k n x与f(x)的图象恰有(2n+1)个不同交点,所以直线y=k n x与第(n+1)个半圆相切,则2n+1k n1+k2n=1,化简得k2n=14n n+1=14⎝⎛⎭⎪⎫1n-1n+1,则k21+k22+…+k2n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4n+4.14.(·苏、锡、常、镇四市调研)正项数列a1,a2,…,a m(m≥4,m∈N*),满足a1,a2,a3,…,a k-1,a k(k<m,k∈N*)是公差为d的等差数列,a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列.(1)若a1=d=2,k=8,求数列a1,a2,…,a m的所有项的和S m;(2)若a1=d=2,m<2 016,求m的最大值;(3)是否存在正整数k,满足a1+a2+…+a k-1+a k=3(a k+1+a k+2+…+a m-1+a m)?若存在,求出k的值;若不存在,请说明理由.又a1,a m,a m-1,…,a k+1,a k是公比为2的等比数列,则a k=a1·2m+1-k,故a1+(k-1)d=a1·2m+1-k,即(k-1)d=a1(2m+1-k-1).又a 1+a 2+…+a k -1+a k =3(a k +1+a k +2+…+a m -1+a m ),a m =2a 1, 则ka 1+12k (k -1)d =3×2a 1×1-2m -k1-2,即ka 1+12ka 1(2m +1-k -1)=3×2a 1(2m -k-1),则12k ·2m +1-k +12k =6(2m -k -1), 即k ·2m +1-k+k =6×2m +1-k-12,显然k ≠6,则2m +1-k=k +126-k =-1+186-k,。
高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)

6.4数列求和、数列的综合应用考点数列求和及数列的综合应用1.(2014课标Ⅱ文,5,5分)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =()A.n(n+1)B.n(n-1)C.or1)2D.ot1)2答案A ∵a 2,a 4,a 8成等比数列,∴42=a 2·a 8,即(a 1+3d)2=(a 1+d)(a 1+7d),将d=2代入上式,解得a 1=2,∴S n =2n+ot1)·22=n(n+1),故选A.2.(2012课标文,12,5分)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为()A.3690B.3660C.1845D.1830答案D 当n=2k 时,a 2k+1+a 2k =4k-1,当n=2k-1时,a 2k -a 2k-1=4k-3,∴a 2k+1+a 2k-1=2,∴a 2k+1+a 2k+3=2,∴a 2k-1=a 2k+3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1830.3.(2019浙江,10,4分)设a,b∈R,数列{a n }满足a 1=a,a n+1=2+b,n∈N *,则()A.当b=12时,a 10>10 B.当b=14时,a 10>10C.当b=-2时,a 10>10D.当b=-4时,a 10>10答案A 本题以已知递推关系式判断指定项范围为载体,考查学生挖掘事物本质以及推理运算能力;考查的核心素养为逻辑推理,数学运算;体现了函数与方程的思想,创新思维的应用.令a n+1=a n ,即2+b=a n ,即2-a n +b=0,若有解,则Δ=1-4b≥0,即b≤14,∴当b≤14时,a n *,即存在b≤14,且使数列{a n }为常数列,B 、C 、D 选项中,b≤14成立,故存在使a n*),排除B 、C 、D.对于A,∵b=12,∴a 2=12+12≥12,a 3=22+12≥+12=34,a4+12=1716,∴a5,a 6,…,a 10,=1=1+C 641×116+C 642+…=1+4+638+…>10.故a 10>10.4.(多选)(2020新高考Ⅰ,12,5分)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),∑=ni 1p i =1,定义X 的信息熵H (X )=-∑=ni 1p i log 2p i .()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p 1的增大而增大C.若p i =1(i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )答案AC 对于A ,若n =1,则p 1=1,∴H (X )=-1×log 21=0,A 正确.对于B ,若n =2,则p 1+p 2=1,∴H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),∵p 1+p 2=1,∴p 2=1-p 1,p 1∈(0,1),∴H (X )=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],令f (p 1)=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],∴f '(p 1)=-p 1·11·ln2+log 2p 1+(1-p 1)·−1(1−1)·ln2-log 2(1-p 1)=-[log 2p 1-log 2(1-p 1)]=log 21−11,令f '(p 1)>0,得0<p 1<12;令f '(p 1)<0,得12<p 1<1.∴y =f (p 1)在0,1上为减函数,∴H (X )随着p 1的增大先增大后减小,B 不正确.对于C ,由p i =1(i =1,2,…,n )可知,H (X )=-∑=ni 1pEog2B =−∑=ni 11log21=log 2n ,∴H (X )随着n 的增大而增大,C 正确对于D ,解法一(特例法):不妨设m =1,n =2,则H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),由于p 1+p 2=1,不妨设p 1=p2=12,则H (X )212+12log 22=1,H (Y )=-1×log 21=0,故H (X )>H (Y ),D 不正确.解法二:由P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),得P (Y =1)=p 1+p 2m ,P (Y =2)=p 2+p 2m -1,……,P (Y =m )=p m +p m +1,∴H (Y )=-∑=mj 1[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m -1)log 2(p 2+p 2m -1)+…+(p m +p m +1)log 2(p m +p m +1)],由n =2m ,得H (X )=-∑=mi 21p i log 2p i =-(p 1log 2p 1+p 2log 2p 2+…+p 2m log 2p 2m ),不妨设0<a <1,0<b <1,且0<a +b ≤1,则log 2a <log 2(a +b ),a log 2a <a log 2(a +b ),同理b log 2b <b log 2(a +b ),∴a log 2a +b log 2b <(a +b )log 2(a +b ),∴p 1log 2p 1+p 2m log 2p 2m <(p 1+p 2m )log 2(p 1+p 2m ),p 2log 2p 2+p 2m -1log 2p 2m -1<(p 2+p 2m -1)log 2(p 2+p 2m -1),……p m log 2p m +p m +1log 2p m +1<(p m +p m +1)log 2(p m +p m +1),∴∑=mi 21pEog2B <∑=mj 1(p j +p 2m +1-j )log 2(p j +p 2m +1-j ),∴H (X )>H (Y ),D 不正确.5.(2021新高考Ⅰ,16,5分)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么∑=nk 1S k =dm 2.答案5;240×3解析解法一:列举法+归纳法.由上图可知,对折n 次后,共可以得到(n +1)种不同规格的图形,故对折4次可以得到5种不同规格的图形.归纳上述结论可知,对折n次后得到不同规格的图形的面积之和为120(+K1dm 2(n ∈N *),故S k =120(+dm 2(k ∈N *),记T n =∑=nk 1(k +1,∴T n =220+321+422+…+2K2+r12K1,①12B =221+322+423+…+2K1+r12,②①-②得,122+12+122+…+12K1−r1221−12r12=3−r32,∴T n =6-r32K1,∴∑=nk 1S =120×6=240×32.解法二:对折3次可以得到208dm×12dm ,204dm ×122dm ,202dm ×124dm ,20dm×128dm ,共四种不同规格的图形,对折4次可以得到2016dm×12dm ,208dm ×122dm ,204dm ×124dm ,202dm ×128dm ,20dm×1216dm ,共五种不同规格的图形,由此可以归纳出对折n 次可得到(n +1)种不同规格的图形,每种规格的图形的面积均为20×122dm 2,∴∑=nk 1S k =20×12×12×2+14×3+18×4+…+12×(n +1)dm 2,记T n =22+34+…+r12,则12B =24+38+…+r12r1,∴T n -12B =12B =1+18+…−r12r1=32−12−r12r1=32−r32r1,∴T n =3-r32,∴∑=nk 1S =240×32.6.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N *},B={x|x=2n ,n∈N *}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为.答案27解析本题考查数列的插项问题.设A n =2n-1,B n =2n,n∈N *,当A k <B l <A k+1(k,l∈N *)时,2k-1<2l<2k+1,有k-12<2l-1<k+12,则k=2l-1,设T l =A 1+A 2+…+2t1+B 1+B 2+…+B l ,则共有k+l=2l-1+l 个数,即T l =2t1+l ,而A 1+A 2+…+2t1=2×1−1+2-12×2l-1=22l-2,B 1+B 2+…+B l =2(1−2)1−2=2l+1-2.则T l =22l-2+2l+1-2,则l,T l ,n,a n+1的对应关系为l T l n a n+112a n+1132336210456033079108494121720453182133396611503865780观察到l=5时,T l =S 21<12a 22,l=6,T l =S 38>12a 39,则n∈[22,38),n∈N *时,存在n,使S n ≥12a n+1,此时T 5=A 1+A 2+…+A 16+B 1+B 2+B 3+B 4+B 5,则当n∈[22,38),n∈N *时,S n =T 5+(t22+1)(22−5+t5)2=n 2-10n+87.a n+1=A n+1-5=A n-4,12a n+1=12[2(n-4)-1]=24n-108,S n -12a n+1=n 2-34n+195=(n-17)2-94,则n≥27时,S n -12a n+1>0,即n min =27.7.(2014安徽理,12,5分)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q=.答案1解析设{a n }的公差为d,则a 3+3=a 1+1+2d+2,a 5+5=a 1+1+4d+4,由题意可得(a 3+3)2=(a 1+1)(a 5+5).∴[(a 1+1)+2(d+1)]2=(a 1+1)[(a 1+1)+4(d+1)],∴(a 1+1)2+4(d+1)(a 1+1)+[2(d+1)]2=(a 1+1)2+4(a 1+1)(d+1),∴d=-1,∴a 3+3=a 1+1,∴公比q=3+31+1=1.8.(2020江苏,11,5分)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n-1(n∈N *),则d+q 的值是.答案4解析设数列{a n }的首项为a 1,数列{b n }的首项为b 1,易知q≠1,则{a n +b n }的前n 项和S n =na 1+ot1)2d+1(1-)1−=2n 2+1n-11−q n +11−=n 2-n+2n -1,∴2=1,q=2,则d=2,q=2,∴d+q=4.9.(2020课标Ⅰ文,16,5分)数列{a n }满足a n+2+(-1)na n =3n-1,前16项和为540,则a 1=.答案7解析令n=2k(k∈N *),则有a 2k+2+a 2k =6k-1(k∈N *),∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41,∴前16项的所有偶数项和S 偶=5+17+29+41=92,∴前16项的所有奇数项和S 奇=540-92=448,令n=2k-1(k∈N *),则有a 2k+1-a 2k-1=6k-4(k∈N *).∴a 2k+1-a 1=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2k+1-a 2k-1)=2+8+14+…+6k-4=o2+6t4)2=k(3k-1)(k∈N *),∴a 2k+1=k(3k-1)+a 1(k∈N *),∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1,a 15=140+a 1,∴前16项的所有奇数项和S 奇=a 1+a 3+…+a 15=8a 1+2+10+24+44+70+102+140=8a 1+392=448.∴a 1=7.10.(2015江苏理,11,5分)设数列{a n }满足a 1=1,且a n+1-a n =n+1(n∈N *),10项的和为.答案2011解析由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,……,a n -a n-1=n-1+1(n≥2),则有a n -a 1=1+2+3+…+n-1+(n-1)(n≥2),因为a 1=1,所以a n =1+2+3+…+n(n≥2),即a n =2+n2(n≥2),又当n=1时,a 1=1也适合上式,故a n =2+n 2(n∈N *),所以1=22+n=2从而11+12+13+…+110=2×11=2011.11.(2020新高考Ⅰ,14,5分)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为答案3n 2-2n审题指导:数列{2n -1}表示首项为1,公差为2的等差数列,各项均为正奇数,而数列{3n -2}表示首项为1,公差为3的等差数列,数列的项为交替出现的正奇数与正偶数,它们的公共项为数列{3n -2}中的奇数项,所以{a n }是首项为1,公差为6的等差数列.解题思路:∵数列{2n -1}的项为1,3,5,7,9,11,13,…,数列{3n -2}的项为1,4,7,10,13,…,∴数列{a n}是首项为1,公差为6的等差数列,∴a n=1+(n-1)×6=6n-5,∴数列{a n}的前n项和S n=(1+6K5)×2=3n2-2n.12.(2022新高考Ⅰ,17,10分)记S n为数列{a n}的前n项和,已知a1=113的等差数列.(1)求{a n}的通项公式;(2)证明:11+12+…+1<2.解析(1)解法一:依题意得,S1=a1=1.∴=11+(n-1)×13=r23.∴3S n=(n+2)a n,则3S n+1=(n+1+2)a n+1=(n+3)a n+1,∴3S n+1-3S n=(n+3)a n+1-(n+2)a n,即3a n+1=(n+3)a n+1-(n+2)a n,∴na n+1=(n+2)a n,即r1=r2,由累乘法得r11=(r1)(r2)1×2,又a1=1,∴a n+1=(r1)(r2)2,∴a n=or1)2(n≥2),又a1=1满足上式,∴a n=or1)2(n∈N*).解法二:同解法一求得na n+1=(n+2)a n,∴r1r2,即r1(r1)(r2)=or1),or1)是常数列,首项为12,∴or1)=12,∴a n=or1)2.(2)证明:由(1)知1=2or1)2∴11+12+…+1=2++…+=21=2−2r1<2. 13.(2021新高考Ⅰ,17,10分)已知数列{a n}满足a1=1,a n+1=+1,为奇数,+2,为偶数.(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.解题指导:(1)由已知条件求出{a n}的递推式,从而得出{b n}的递推式,再由已知条件求出b1,从而求出数列{b n}的通项公式.(2)根据题目条件把{a n}的前20项分成两组,并用其中偶数项的和表示前20项的和,再用数列{b n}的前10项的和表示,根据等差数列前n项和公式求出结果.解析(1)由题意得a2n+1=a2n+2,a2n+2=a2n+1+1,所以a2n+2=a2n+3,即b n+1=b n+3,且b1=a2=a1+1=2,所以数列{b n}是以2为首项,3为公差的等差数列,所以b1=2,b2=5,b n=2+(n-1)×3=3n-1.(2)当n为奇数时,a n=a n+1-1.设数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=[(a2-1)+(a4-1)+…+(a20-1)]+(a2+a4+…+a20)=2(a2+a4+…+a20)-10,由(1)可知a2+a4+…+a20=b1+b2+…+b10=10×2+10×92×3=155,故S20=2×155-10=300,即{a n}的前20项和为300.解题关键:一是对已知关系式进行转化,进而利用等差数列定义求得数列{b n}的通项公式;二是利用分组求和的方式对S20进行重组变形,结合a n与b n的关系求得结果.14.(2020课标Ⅲ理,17,12分)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.解析(1)a2=5,a3=7.猜想a n=2n+1.由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1.所以S n =(2n -1)2n +1+2.方法总结数列求和的5种方法解决数列的求和问题,首先要得到数列的通项公式,有了通项公式,再根据其特点选择相应的求和方法.数列求和的方法有以下几类:(1)公式法:等差或等比数列的求和用公式法;(2)裂项相消法:形如a n =1orp ,可裂项为a n =13)错位相减法:形如c n =a n ·b n ,其中{a n }是等差数列,{b n }是等比数列;(4)分组求和法:形如c n =a n +b n ,其中{a n }是等差数列,{b n }是等比数列;(5)并项求和法.15.(2017课标Ⅲ文,17,12分)设数列{a n }满足a 1+3a 2+…+(2n-1)a n =2n.(1)求{a n }的通项公式;(2)n 项和.解析(1)因为a 1+3a 2+…+(2n-1)a n =2n,故当n≥2时,a 1+3a 2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n =2.所以a n =22t1(n≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22t1(n∈N *).(2)n 项和为S n .由(1)知2r1=2(2r1)(2t1)=12t1-12r1.则S n =11-13+13-15+…+12t1-12r1=22r1.思路分析(1)条件a 1+3a 2+…+(2n-1)a n =2n 的实质就是数列{(2n-1)a n }的前n 项和,故可利用a n 与S n 的关系求解.(2)利用(1)求得的{a n }的通项公式,然后用裂项相消法求和.易错警示(1)要注意n=1时,是否符合所求得的通项公式;(2)裂项相消后,注意留下了哪些项,避免遗漏.16.(2016课标Ⅱ文,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析(1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3.解得a 1=1,d=25.(3分)所以{a n }的通项公式为a n =2r35.(5分)(2)由(1)知,b n 分)当n=1,2,3时,1≤2r35<2,b n =1;当n=4,5时,2≤2r35<3,b n =2;当n=6,7,8时,3≤2r35<4,b n =3;当n=9,10时,4≤2r35<5,b n =4.(10分)所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.(12分)评析本题考查了等差数列,同时对考生的创新能力进行了考查,充分理解[x]的意义是解题的关键.17.(2016浙江文,17,15分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n∈N *.(1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.解析(1)由题意得1+2=4,2=21+1,则1=1,2=3.又当n≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n ,得a n+1=3a n .所以,数列{a n }的通项公式为a n =3n-1,n∈N *.(2)设b n =|3n-1-n-2|,n∈N *,则b 1=2,b 2=1.当n≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n≥3时,T n =3+9(1−3t2)1−3-(r7)(t2)2=3-2-5n+112,所以T n =1,≥2,n ∈N *.易错警示(1)当n≥2时,得出a n+1=3a n ,要注意a 1与a 2是否满足此关系式.(2)在去掉绝对值时,要考虑n=1,2时的情形.在求和过程中,要注意项数,最后T n 要写成分段函数的形式.18.(2016北京文,15,13分)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解析(1)等比数列{b n }的公比q=32=93=3,(1分)所以b 1=2=1,b 4=b 3q=27.(3分)设等差数列{a n }的公差为d.因为a 1=b 1=1,a 14=b 4=27,所以1+13d=27,即d=2.(5分)所以a n =2n-1(n=1,2,3,…).(6分)(2)由(1)知,a n =2n-1,b n =3n-1.因此c n =a n +b n =2n-1+3n-1.(8分)从而数列{c n }的前n 项和S n =1+3+…+(2n-1)+1+3+…+3n-1=o1+2t1)2+1−31−3=n 2+3-12.(13分)规范解答要规范解答过程,分步书写,这样可按步得分.19.(2016山东,理18,文19,12分)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1.(1)求数列{b n }的通项公式;(2)令c n =(+1)r1(+2),求数列{c n }的前n 项和T n .解析(1)由题意知,当n≥2时,a n =S n -S n-1=6n+5.当n=1时,a 1=S 1=11,所以a n =6n+5.设数列{b n }的公差为d.由1=1+2,2=2+3,即11=21+d,17=21+3d,可解得b 1=4,d=3.所以b n =3n+1.(2)由(1)知c n =(6r6)r1(3r3)=3(n+1)·2n+1.又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n+1)×2n+1],2T n =3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n =3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×4+4(1−2)1−2-(n +1)×2r2=-3n·2n+2.所以T n =3n·2n+2.方法总结若某数列的通项是等差数列与等比数列的通项的积或商,则该数列的前n项和可以采用错位相减法求解,注意相减后的项数容易出错.评析本题主要考查了等差数列及前n项和,属中档题.20.(2016天津,18,13分)已知{an }是等比数列,前n项和为Sn(n∈N*),且11-12=23,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2a n和log2a n+1的等差中项,求数列{(-1)n2}的前2n项和.解析(1)设数列{a n}的公比为q.由已知,有11-11q=212,解得q=2,或q=-1.又由S6=a1·1−61−=63,知q≠-1,所以a1·1−261−2=63,得a1=1.所以a n=2n-1.(2)由题意,得bn=12(log2a n+log2a n+1)=12(log22n-1+log22n)=n-12,即{b n}是首项为12,公差为1的等差数列.设数列{(-1)n2}的前n项和为T n,则T2n=(-12+22)+(-32+42)+…+(-2t12+22)=b1+b2+b3+b4+…+b2n-1+b2n=2o1+2)2=2n2.评析本题主要考查等差数列、等比数列及其前n项和公式等基础知识,考查数列求和的基本方法和运算求解能力.21.(2015福建文,17,12分)等差数列{an }中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2-2+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{a n}的公差为d.由已知得1+d=4,(1+3d)+(1+6d)=15,解得1=3,=1.所以a n=a1+(n-1)d=n+2.(2)由(1)可得bn=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=2(1−210)1−2+(1+10)×102=(211-2)+55=211+53=2101.评析本小题主要考查等差数列、等比数列、数列求和等基础知识,考查运算求解能力.22.(2015课标Ⅰ理,17,12分)S n 为数列{a n }的前n 项和.已知a n >0,2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1r1,求数列{b n }的前n 项和.解析(1)由2+2a n =4S n +3,可知r12+2a n+1=4S n+1+3.可得r12-2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=r12-2=(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又12+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分)(2)由a n =2n+1可知b n =1r1=1(2r1)(2r3)=设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n++…+=3(2r3).(12分)23.(2015安徽文,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =r1r1,求数列{b n }的前n 项和T n .解析(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得1=1,4=8或1=8,4=1(舍去).由a 4=a 1q 3得公比为q=2,故a n =a 1q n-1=2n-1.(2)S n =1(1-)1−=2n -1,又b n =r1=r1-r1=1-1,所以T n =b 1+b 2+…+b n =11-1r1=1-12r1-1.评析本题考查等比数列通项公式及等比数列性质,等比数列求和.24.(2015天津理,18,13分)已知数列{a n }满足a n+2=qa n (q 为实数,且q≠1),n∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 222t1,n∈N *,求数列{b n }的前n 项和.解析(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q≠1,故a 3=a 2=2,由a 3=a 1·q,得q=2.当n=2k-1(k∈N *)时,a n =a 2k-1=2k-1=2t12;当n=2k(k∈N *)时,a n =a 2k =2k=22.所以,{a n }的通项公式为a n =2t12,n 为奇数,22为偶数.(2)由(1)得b n =log 222t1=2t1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12t2+n×12t1,12S n =1×121+2×122+3×123+…+(n-1)×12t1+n×12,上述两式相减,得12S n =1+12+122+…+12t1-2=1−121−12-2=2-22-2,整理得,S n =4-r22t1.所以,数列{b n }的前n 项和为4-r22t1,n∈N *.评析本题主要考查等比数列及其前n 项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.25.(2015山东文,19,12分)已知数列{a n }是首项为正数的等差数列,n 项和为2r1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2,求数列{b n }的前n 项和T n .解析(1)设数列{a n }的公差为d.令n=1,得112=13,所以a 1a 2=3.令n=2,得112+123=25,所以a 2a 3=15.解得a 1=1,d=2,所以a n =2n-1.(2)由(1)知b n =2n·22n-1=n·4n,所以T n =1·41+2·42+…+n·4n,所以4T n =1·42+2·43+…+n·4n+1,两式相减,得-3T n =41+42+ (4)-n·4n+1=4(1−4)1−4-n·4n+1=1−33×4n+1-43.所以T n =3t19×4n+1+49=4+(3t1)4r19.26.(2015浙江文,17,15分)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n∈N *),b 1+12b 2+13b 3+…+1b n =b n+1-1(n∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解析(1)由a 1=2,a n+1=2a n ,得a n =2n(n∈N *).由题意知:当n=1时,b 1=b 2-1,故b 2=2.当n≥2时,1b n =b n+1-b n ,整理得r1r1=,所以b n =n(n∈N *).(2)由(1)知a n b n =n·2n,因此T n =2+2·22+3·23+…+n·2n,2T n =22+2·23+3·24+…+n·2n+1,所以T n -2T n =2+22+23+ (2)-n·2n+1.故T n =(n-1)2n+1+2(n∈N *).评析本题主要考查数列的通项公式,等差和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力.27.(2015湖北文,19,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =,求数列{c n }的前n 项和T n .解析(1)由题意有,101+45d =100,1d =2,即21+9d =20,1d =2,解得1=1,=2,或1=9,=29.故=2n-1,=2t1,或=1979),=.(2)由d>1,知a n =2n-1,b n =2n-1,故c n =2t12t1,于是T n =1+32+522+723+924+…+2t12t1,①12T n =12+322+523+724+925+…+2t12.②①-②可得12T n =2+12+122+…+12t2-2t12=3-2r32,故T n =6-2r32t1.28.(2014湖南文,16,12分)已知数列{a n }的前n 项和S n =2+n2,n∈N *.(1)求数列{a n }的通项公式;(2)设b n =2+(-1)na n ,求数列{b n }的前2n 项和.解析(1)当n=1时,a 1=S 1=1;当n≥2时,a n =S n -S n-1=2+n 2-(t1)2+(n-1)2=n.故数列{a n }的通项公式为a n =n.(3)由(1)知,b n =2n+(-1)nn,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n).记A=21+22+ (22),B=-1+2-3+4-…+2n,则A=2(1−22)1−2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{b n }的前2n 项和T 2n =A+B=22n+1+n-2.评析本题考查数列的前n 项和与通项的关系,数列求和等知识,含有(-1)n的数列求和要注意运用分组求和的方法.29.(2014课标Ⅰ文,17,12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)n 项和.解析(1)方程x 2-5x+6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d,则a 4-a 2=2d,故d=12,从而a 1=32.所以{a n }的通项公式为a n =12n+1.(2)n 项和为S n ,由(1)知2=r22r1,则S n =322+423+…+r12+r22r1,12S n =323+424+…+r12r1+r22r2.两式相减得12S n =34+…-r22r2=34+-r22r2.所以S n =2-r42r1.评析本题考查等差数列及用错位相减法求数列的前n 项和,第(1)中由条件求首项、公差,进而求出结论是基本题型,第(2)问中,运算准确是关键.30.(2014安徽文,18,12分)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n∈N *.(1)证明:;(2)设b n =3n·,求数列{b n }的前n 项和S n .解析(1)证明:由已知可得r1r1=+1,即r1r1-=1.是以11=1为首项,1为公差的等差数列.(2)由(1)得=1+(n-1)·1=n,所以a n =n 2.从而b n =n·3n.S n =1·31+2·32+3·33+…+n·3n,①3S n =1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2S n =31+32+ (3)-n·3n+1=3·(1−3)1−3-n·3n+1=(1-2p ·3r1-32.所以S n =(2t1)·3r1+34.评析本题考查等差数列定义的应用,错位相减法求数列的前n项和,解题时利用题(1)提示对递推关系进行变形是关键.31.(2014山东文,19,12分)在等差数列{an }中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{an}的通项公式;(2)设bn=or1)2,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解析(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知bn=or1)2=n(n+1).所以T n=-1×2+2×3-3×4+…+(-1)n n×(n+1).因为b n+1-b n=2(n+1),所以当n为偶数时,T n =(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)=4+8+12+ (2)=2(4+2n)2=or2)2,当n为奇数时,T n =Tn-1+(-bn)=(t1)(r1)2-n(n+1)=-(r1)22.所以T n为奇数,为偶数.评析本题考查等比数列和等差数列的综合应用、等差数列的通项公式及数列的求和,分类讨论思想和逻辑推理能力.32.(2013课标Ⅰ文,17,12分)已知等差数列{an }的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)n 项和.解析(1)设{a n }的公差为d,则S n =na 1+ot1)2d.由已知可得31+3d =0,51+10d =−5.解得a 1=1,d=-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1=1(3-2p(1-2p =n 项和为121-1-11+11-13+…+12t3-12t1=1−2.评析本题考查等差数列的通项公式及前n 项和公式,考查了裂项求和的方法,考查了运算求解能力与方程思想.33.(2011课标理,17,12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,32=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,n 项和.解析(1)设数列{a n }的公比为q.由32=9a 2a 6得32=942,所以q 2=19.由条件可知q>0,故q=13.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=13.故数列{a n }的通项公式为a n =13.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n)=-or1)2.故1=-2or1)=-211+12+…+1=-2123=-2r1.n 项和为-2r1.评析本题主要考查等比数列的通项公式以及裂项求和的基本方法,属容易题.34.(2020课标Ⅲ文,17,12分)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8.(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m+1=S m+3,求m.解析(1)设{a n }的公比为q,则a n =a 1q n-1.由已知得1+1q =4,12-1=8.解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1.(2)由(1)知log 3a n =n-1.故S n =ot1)2.由S m +S m+1=S m+3得m(m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0.解得m=-1(舍去)或m=6.35.(2020浙江,20,15分)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n+1-a n ,c n+1=r2c n ,n∈N *.(1)若{b n }为等比数列,公比q>0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d>0,证明:c 1+c 2+c 3+…+c n <1+1,n∈N *.解析本题主要考查等差数列、等比数列等基础知识,同时考查数学运算和逻辑推理等素养.(1)由b 1+b 2=6b 3得1+q=6q 2,解得q=12.由c n+1=4c n 得c n =4n-1.由a n+1-a n =4n-1得a n =a 1+1+4+…+4n-2=4t1+23.(2)证明:由c n+1=c n 得c n =121=所以c 1+c 2+c 3+…+c n 由b 1=1,d>0得b n+1>0,因此c 1+c 2+c 3+…+c n <1+1,n∈N *.36.(2020江苏,20,16分)已知数列{a n }(n∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n,均有r11-1=λr11成立,则称此数列为“λ~k”数列.(1)若等差数列{a n }是“λ~1”数列,求λ的值;(2)若数列{a n }是数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ~3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.解析本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)因为等差数列{a n }是“λ~1”数列,则S n+1-S n =λa n+1,即a n+1=λa n+1,也即(λ-1)a n+1=0,此式对一切正整数n 均成立.若λ≠1,则a n+1=0恒成立,故a 3-a 2=0,而a 2-a 1=-1,这与{a n }是等差数列矛盾.所以λ=1.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列{a n }(n∈N *)是3数列,所以r1-=即r1-=因为a n >0,所以S n+1>S n >0,n ,则b n 即(b n -1)2=13(2-1)(b n >1).解得b n =2,也即r1=4,所以数列{S n }是公比为4的等比数列.因为S 1=a 1=1,所以S n =4n-1.则a n =1(=1),3×4t2(n ≥2).(3)设各项非负的数列{a n }(n∈N *)为“λ~3”数列,则r113-13=λr113,即3r1-3=λ3r1-.因为a n ≥0,而a 1=1,所以S n+1≥S n >0,n ,则c n -1=λ33-1(c n ≥1),即(c n -1)3=λ3(3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)②若λ>1,则(*)化为(c n -1)2+3+23-1+1=0,因为c n ≥1,所以2+3+23-1c n+1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则2+3+23-1c n+1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t).所以S n+1=S n 或S n+1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果,所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ~3”数列,λ的取值范围是0<λ<1.37.(2019课标Ⅱ文,18,12分)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解析本题主要考查等比数列的概念及运算、等差数列的求和;考查学生的运算求解能力;体现了数学运算的核心素养.(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0.解得q=-2(舍去)或q=4.因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2.38.(2019天津文,18,13分)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =1,为奇数,2为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n∈N *).解析本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力,体现了数学运算素养.满分13分.(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.依题意,得3=3+2s 32=15+4d,解得=3,=3,故a n =3+3(n-1)=3n,b n =3×3n-1=3n.所以,{a n }的通项公式为a n =3n,{b n }的通项公式为b n =3n.(2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n-1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=×3+ot1)2×6+(6×31+12×32+18×33+…+6n×3n )=3n 2+6(1×31+2×32+…+n×3n).记T n =1×31+2×32+…+n×3n,①则3T n =1×32+2×33+…+n×3n+1,②②-①得,2T n =-3-32-33-…-3n +n×3n+1=-3(1−3)1−3+n×3n+1=(2t1)3r1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2t1)3r1+32=(2t1)3r2+62+92(n∈N *).思路分析(1)利用等差、等比数列的通项公式求出公差d,公比q 即可.(2)利用{c n }的通项公式,进行分组求和,在计算差比数列时采用错位相减法求和.解题关键根据n 的奇偶性得数列{c n }的通项公式,从而选择合适的求和方法是求解的关键.39.(2019江苏,20,16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an }(n∈N*)满足:a2a4=a5,a3-4a2+4a1=0,求证:数列{an}为“M-数列”;(2)已知数列{bn }(n∈N*)满足:b1=1,1=2-2r1,其中S n为数列{b n}的前n项和.①求数列{bn}的通项公式;②设m为正整数,若存在“M-数列”{cn }(n∈N*),对任意正整数k,当k≤m时,都有ck≤bk≤ck+1成立,求m的最大值.解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)设等比数列{an }的公比为q,所以a1≠0,q≠0.由24=5,3-42+41=0,得124=14,12-41q+41=0,解得1=1,=2.因此数列{a n}为“M-数列”.(2)①因为1=2-2r1,所以b n≠0.由b1=1,S1=b1,得11=21-22,则b2=2.由1=2-2r1,得S n=r12(r1-),当n≥2时,由b n=S n-S n-1,得b n=r12(r1-)-t12(-t1),整理得b n+1+b n-1=2b n.所以数列{b n}是首项和公差均为1的等差数列.因此,数列{b n}的通项公式为b n=n(n∈N*).②由①知,bk=k,k∈N*.因为数列{c n}为“M-数列”,设公比为q,所以c1=1,q>0.因为c k≤b k≤c k+1,所以q k-1≤k≤q k,其中k=1,2,3,…,m.当k=1时,有q≥1;当k=2,3,…,m时,有ln≤lnq≤ln t1.设f(x)=ln(x>1),则f'(x)=1−ln2.令f'(x)=0,得x=e.列表如下:x(1,e)e(e,+∞) f'(x)+0-f(x)↗极大值↘因为ln22=ln86<ln96=ln33,所以f(k)max =f(3)=ln33.取q=33,当k=1,2,3,4,5时,ln≤lnq,即k≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.40.(2018北京文,15,13分)设{a n }是等差数列,且a 1=ln2,a 2+a 3=5ln2.(1)求{a n }的通项公式;(2)求e 1+e 2+…+e .解析(1)设{a n }的公差为d.因为a 2+a 3=5ln2,所以2a 1+3d=5ln2.又a 1=ln2,所以d=ln2.所以a n =a 1+(n-1)d=nln2.(2)因为e 1=e ln2=2,e e t1=e -t1=e ln2=2,所以{e }是首项为2,公比为2的等比数列.所以e 1+e 2+…+e =2×1−21−2=2(2n-1).41.(2018江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m∈N *,q∈(1,2],证明:存在d∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n =(n-1)d,b n =2n-1.因为|a n -b n |≤b 1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立.即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得73≤d≤52.因此,d (2)由条件知:a n =b 1+(n-1)d,b n =b 1q n-1.若存在d∈R,使得|a n -b n |≤b 1(n=2,3,…,m+1)均成立,即|b 1+(n-1)d-b 1q n-1|≤b 1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d 满足t1-2t1b 1≤d≤t1t1b 1.因为q∈(1,2],所以1<q n-1≤q m≤2,从而t1-2t1b 1≤0,t1t1b 1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n -b n |≤b 1对n=2,3,…,m+1均成立.(n=2,3,…,m+1).①当2≤n≤m 时,-2-t1-2t1=B --n t1+2ot1)=o -t1)-+2ot1),当1<q≤21时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,,的最大值为-2.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m 时,t1t1=ot1)≤因此,当2≤n≤m+1时,,的最小值为.因此,d 疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d 的范围,使得|a n -b n |≤b 1对n=2,3,…,m+1都成立,首先把d 分离出来,变成t1-2t1b 1≤d≤t1t1b 1,难点在于讨论t1-2t1b 1的最大值和t1t1b 1的最小值.可以通过作差讨论其单调性,要作商讨论单调性,∵t1t1=ot1)=q 1当2≤n≤m 时,1<q n ≤2,∴q 1−可以构造函数f(x)=2x (1-x),通过讨论f(x)在(0,+∞)上的单调性去证明得到数列,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断1的大小是难点,平时多积累,多思考,也是可以得到的.42.(2017课标Ⅱ文,17,12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解析本题考查了等差、等比数列.设{a n }的公差为d,{b n }的公比为q,则a n =-1+(n-1)d,b n =q n-1.由a 2+b 2=2得d+q=3.①(1)由a 3+b 3=5得2d+q 2=6.②联立①和②解得=3,=0(舍去),或=1,=2.因此{b n }的通项公式为b n =2n-1.(2)由b 1=1,T 3=21得q 2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S 3=21.当q=4时,由①得d=-1,则S 3=-6.43.(2017课标Ⅰ文,17,12分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.解析本题考查等差、等比数列.(1)设{a n }的公比为q,由题设可得1(1+q)=2,1(1+q +2)=-6.解得q=-2,a 1=-2.。
(完整版)数列求和习题及答案

(完整版)数列求和习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§6.4 数列求和(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.在等比数列{a n } (n ∈N *)中,若a 1=1,a 4=18,则该数列的前10项和为( )A .2-128 B .2-129 C .2-1210D .2-12112.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -23.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于( ) A .126B .130C .132D .1344.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-4005.数列1·n ,2(n -1),3(n -2),…,n·1的和为( )A.16n(n +1)(n +2)B.16n(n +1)(2n +1)C.13n(n +2)(n +3)D.13n(n +1)(n +2) 二、填空题(每小题6分,共24分)6.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.7.已知数列{a n }的通项a n 与前n 项和S n 之间满足关系式S n =2-3a n ,则a n =__________.8.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n项和S n =________.9.设关于x 的不等式x 2-x<2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 三、解答题(共41分)10.(13分)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足关系式2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正数n ,总有T n <1.11.(14分)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n·2n +1>50成立的最小正整数n 的值.12.(14分)已知等差数列{a n }的首项a 1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式;(2)设b n =1n (a n +3) (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t36总成立?若存在,求出t ;若不存在,请说明理由.答案 1.B 2.C 3.C4.B5.A6. 13(4n -1)7. 12⎝ ⎛⎭⎪⎫34n -18.n n +19.10 10010. (1)解 由已知得⎩⎪⎨⎪⎧2S n =3a n -3,2S n -1=3a n -1-3(n ≥2).故2(S n -S n -1)=2a n =3a n -3a n -1,即a n =3a n -1 (n ≥2). 故数列{a n }为等比数列,且公比q =3.又当n =1时,2a 1=3a 1-3,∴a 1=3.∴a n =3n . (2)证明 ∵b n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+…+b n=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1<1.11解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28, ① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2,∴a n =2n . (2)由(1)得b n =-n·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n·2n ).设T n =1×2+2×22+…+n·2n ,③ 则2T n =1×22+2×23+…+n·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n -n·2n +1 =2n +1-2-n·2n +1=(1-n)·2n +1-2, ∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n·2n +1>50成立,即-(n -1)·2n +1-2+n·2n +1>50,即2n >26.∵24=16<26,25=32>26,且y =2x 是单调递增函数, ∴满足条件的n 的最小值为5.12解 (1)由题意得(a 1+d)(a 1+13d)=(a 1+4d)2,整理得2a 1d =d 2.∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *).(2)b n =1n (a n +3)=12n (n +1)=12⎝⎛⎭⎫1n -1n +1,∴S n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2(n +1).假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12(n +2)-n 2(n +1)=12(n +2)(n +1)>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t<9. 又∵t ∈Z ,∴适合条件的t 的最大值为8.。
数列求和专项练习(含答案)

数列求和专项练习1.在等差数列{}n a 中,已知34151296=+++a a a a ,求前20项之和。
2.已知等差数列{}n a 的公差是正数,且,4,126473-=+-=a a a a 求它的前20项之和。
3.等差数列{}n a 的前n 项和S n =m ,前m 项和S m =n (m>n ),求前m+n 项和S n+m4.设y x ≠,且两数列y a a a x ,,,,321和4321b y b b x b ,,,,,均为等差数列,求1243a a b b --5.在等差数列{}n a 中,前n 项和S n ,前m 项和为S m ,且S m =S n , n m ≠,求S n+m6.在等差数列{}n a 中,已知1791,25S S a ==,问数列前多少项为最大,并求出最大值。
7.求数列的通项公式:(1){}n a 中,23,211+==+n n a a a(2){}n a 中,023,5,21221=+-==++n n n a a a a a9.求证:对于等比数列前n 项和S n 有)(32222n n n n n S S S S S +=+10. 已知数列{}n a 中,前n 项和为S n ,并且有1),(241*1=∈+=+a N n a S n n (1)设),(2*1N n a a b n n n ∈-=+求证{}n b 是等比数列;(2)设),(2*N n a c nn ∈=求证{}n b 是等差数列;11.设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n 项和.【规范解答】(Ⅰ)由已知,当时,而,满足上述公式,所以的通项公式为. (Ⅱ)由可知,①从而 ②①②得{}n a 12a ={}n a n n b na ={}n b n S 1n ≥[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=12a ={}n a 212n n a -=212n n n b na n -==•35211222322n n n s -=•+•+•++•23572121222322n n n s +=•+•+•++•-3521212(12)22222n n n n s -+-=++++-•即 12.已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-13.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;211(31)229n n S n +⎡⎤=-+⎣⎦(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n qa a . (Ⅰ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .14. 设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】所以,13,1,3,1,n n n a n -=⎧=⎨>⎩1363623n n +=-⨯ ,又1T 适合此式.13631243nnn T +=-⨯ 15.知等差数列满足:,,的前n 项和为.(1)求及;(2)令(n N *),求数列的前n 项和. 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列的公差为d ,因为,,所以有,解得, 所以;==. (2)由(1)知,所以b n ===, 所以==,即数列的前n 项和=.{}n a 37a =5726a a +={}n a n S n a n S n b =211n a -∈{}n b n T n a nS n b {}n a 37a =5726a a +=112721026a d a d +=⎧⎨+=⎩13,2a d ==321)=2n+1n a n =+-(n S n(n-1)3n+22⨯2n +2n 2n+1n a =211n a -21=2n+1)1-(114n(n+1)⋅111(-)4n n+1⋅n T 111111(1-+++-)4223n n+1⋅-11(1-)=4n+1⋅n4(n+1){}n b n T n4(n+1)。
数列求和小练习10份-教师版

数列求和练习题一、解答题1.已知公差不为零的等差数列{}n a 的前n 项和为n S , 12a =,且124,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)若11n n b S +=,数列{}n b 的前n 项和为n T ,求n T . 【答案】(1) 2n a n =;(2)()22n nT n =+.【解析】试题分析:(1)利用等差等比基本公式,计算数列{}n a 的通项公式;(2)利用裂项相消法求和. 试题解析:(1)设公差为d ,因为1a , 2a , 4a 成等数列,所以2214a a a =,即()()22223d d +=+,解得2d =,或0d = (舍去), 所以()2212n a n n =+-=. (2)由(1)知()()2212nn n S nn +==+,所以()()111111212n n b S n n n n +===-++++, 111111233412n T n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,所以()112222n nT n n =-=++. 2.设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.【答案】(1) a 1=1 a 2=2 a n =2n-1(2) B n =1+(n-1)·2n 【解析】解:(1)令n=1,得2a 1-a 1=21a ,即a 1=21a . 因为a 1≠0,所以a 1=1.令n=2,得2a2-1=S2=1+a2,解得a2=2.当n≥2时,由2a n-1=S n,2a n-1-1=S n-1两式相减,得2a n-2a n-1=a n,即a n=2a n-1.于是数列{a n}是首项为1,公比为2的等比数列.因此,a n=2n-1.所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知,na n=n·2n-1.记数列{n·2n-1}的前n项和为B n,于是B n=1+2×2+3×22+…+n×2n-1,①2B n=1×2+2×22+3×23+…+n×2n.②①-②,得-B n=1+2+22+…+2n-1-n·2n=2n-1-n·2n.从而B n=1+(n-1)·2n.3.已知公差不为0的等差数列的首项,且成等比数列.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.【答案】(Ⅰ)(Ⅱ)【解析】试题分析:(1)依题意可求得等差数列的公差,从而可数列的通项公式;(2)由已知可得,则,两式相减,可得,当时也适合,故,用错位相减法即可试题解析:(Ⅰ)设等差数列的公差为,由得:.因为,所以所以.(Ⅱ)①②②-①得:+.所以 +当 时, , 所以,, 上述两式相减得, 所以点睛:本题考查等比数列的性质与错位相减法求和,求得 , 的通项公式是关键,考查分析与转化的解决问题的能力,属中档题.4.已知各项都不相等的等差数列{}n a 的前6项和为60,且6a 为1a 和21a 的等比中项.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足1()n n n b b a n N *+-=∈,且13b =,求数列1{}nb 的前n 项和n T . 【答案】(1)23n a n =+;(2)2354(1)(2)n n nT n n +=++.【解析】试题分析:(1)根据等差数列的前n 项和公式及等比中项的概念联立方程组,可建立首项和公差的一元二次方程组,解出首项和公差,写出通项公式;(2)因为123n n n b b a n +-==+,故可采取累加法,求得b (2)n n n =+,从而11111()(2)22n b n n n n ==-++,采用裂项相消的办法求和. 试题解析:(1)设等差数列的公差为(),则解得 ∴. (2)由,{}n a d 0d ≠()()1211161560,205,a d a a d a d +=⎧⎪⎨+=+⎪⎩12,5,d a =⎧⎨=⎩23n a n =+1n n n b b a +-=∴,.∴. ∴. 考点:1、等差数列的前n 项和;2、等差数列的通项公式;3、累加法求通项;4、裂项相消求和.5.在公差不为0的等差数列{}n a 中,148,,a a a 成等比数列,数列{}n a 的前10项和为45.(1)求数列{}n a 的通项公式; (2)若11n n n b a a +=,且数列{}n b 的前项和为n T ,求n T . 【答案】(1)83n n a +=; (2)9nn +. 【解析】 【分析】(1)根据条件列关于公差与首项的方程组,再将结果代入通项公式得结果,(2)利用裂项相消法求和. 【详解】(1)设等差数列{}n a 的公差为d ,由148,,a a a 成等比数列可得,2418•a a a =,即()()211137a d a a d +=+,11n n n b b a ---=()*2,n n ≥∈N ()()()112211n n n n n b b b b b b b b ---=-+-++-+1211n n a a a b --=++++()()()11432n n n n =--++=+()2n b n n =+()*n ∈N ()11111222n b n n n n ⎛⎫==- ⎪++⎝⎭111111123242n T n n ⎛⎫=-+-++- ⎪+⎝⎭()()21311352212412n nn n n n +⎛⎫=--=⎪++++⎝⎭22211116+97a a d d a a d ∴+=+,0d ≠,1=9a d ∴.由数列{}n a 的前10项和为45,得101104545S a d =+=,即904545d d +=,故13d =,13a =. 故数列{}n a 的通项公式为83n n a +=;(2)()()1191198989n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, 111111111199++=9=19101011111289999n T n n n n ⎛⎫⎛⎫=-+-+-⋯--- ⎪ ⎪++++⎝⎭⎝⎭ 9nn =+ 【点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +. 6.已知等差数列{a n }的公差大于0,且a 3,a 5是方程x 2﹣14x +45=0的两根,数列{b n }的前n 项的和为S n ,且()*12nn b S n N -=∈. (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =a n •b n ,求数列{c n }的前n 项和T n .【答案】(Ⅰ)a n =2n ﹣113n n b =,(Ⅱ)113nnn T +=- 【解析】 【分析】(Ⅰ)由已知可得,35351445a a a a +=⎧⎨⋅=⎩且a 5>a 3,联立方程解得a 5,a 3,进一步求出数列{a n }通项,数列{b n }中,利用递推公式1121n n n s s n b s n --≥⎧=⎨=⎩,,(Ⅱ)用错位相减求数列{c n }的前n 项和 【详解】(Ⅰ)∵a 3,a 5是方程x 2﹣14x +45=0的两根,且数列{a n }的公差d >0, ∴a 3=5,a 5=9,公差53253a a d -==-. ∴a n =a 5+(n ﹣5)d =2n ﹣1. 又当n =1时,有11112b b S -== ∴113b =当2n ≥时,有()1112n n n n n b S S b b --=-=-,∴()1123n n b n b -=≥. ∴数列{b n }是首项113b =,公比13q =等比数列, ∴1113n n nb b q-==. (Ⅱ)由(Ⅰ)知213n n n n n c a b -==,则123135213333n nn T -=++++(1) ∴234111352321333333n n n n n T +--=+++++(2) (1)﹣(2)得:2312312122221111121233333333333n n n n n n n T ++--⎛⎫=++++-=++++- ⎪⎝⎭ 化简得:113n n n T +=- 【点睛】本题主要考查了等差数列的通项公式的求解,利用递推公式求通项,体现了数学中的转化思想;一般的,若数列{a n }为等差数列,{b n }为等比数列,求数列{a n •b n }的前n 和可采用错位相减法7.已知等差数列 的公差 ,它的前 项和为 ,若 ,且 成等比数列.(1)求数列 的通项公式 及前 项和 ; (2)令,求数列 的前 项和 .【答案】(1) , ;(2).【解析】试题分析:(1)列出关于 和 的的方程组,解出 和 ,从而可求出 和 ;(2)利用裂项相消法求出 .试题解析:(1)依题意,有 ,即,又 ,解得∴ ,.(2).∴.点睛:本题主要考查了等差数列,等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于 ,其中 和 分别为特殊数列,裂项相消法类似于,错位相减法类似于 ,其中 为等差数列, 为等比数列等. 8. 已知数列{}n a 是等差数列,且8161,24a S ==.(1) 求数列{}n a 的通项公式n a ;(2) 若数列{}n b 是递增的等比数列,且14239,8b b b b +==,求()()()()113355n n a b a b a b a b ++++++++L9.等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式;(2)设 31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)13n n a = (2)21nn -+ 【解析】试题分析:(Ⅰ)设出等比数列的公比q ,由23269a a a =,利用等比数列的通项公式化简后得到关于q 的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简12231a a +=,把求出的q 的值代入即可求出等比数列的首项,根据首项和求出的公比q 写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设b n =log 3a 1+log 3a 2+…+log 3a n ,利用对数的运算性质及等差数列的前n 项和的公式化简后,即可得到bn 的通项公式,求出倒数即为1nb 的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{1nb }的前n 项和试题解析:(Ⅰ)设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13. 故数列{a n }的通项公式为a n =13n .(Ⅱ)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+ 考点:等比数列的通项公式;数列的求和10.设数列n a 的前n 项和为n S ,且{}112,2n n n S b -=-为等差数列,且()112211,a b a b b a =-=.(1)求数列n a 和{}n b 的通项公式; (2)设nn nb c a =,求数列{}n c 的前n 项和n T . 【答案】(1)11,212n n n a b n -==-(2)()3232nn T n =+-⋅ 【解析】试题分析:(1)根据数量n a 和n S 的关系,即可求解数列{}n a 的通项公式,再利用等差数列通项公式,即可求解数列{}n b 的通项公式; (2)由(1)可知()1212n n c n -=-⋅,利用乘公比错位相减法,即可求解数列{}n c 的和. 试题解析:(1)当1n =时, 111a S ==, 当2n ≥时, 112111122222n n n n n n a S S ----⎛⎫⎛⎫=-=---= ⎪ ⎪⎝⎭⎝⎭, 经验证当1n =时,此时也成立,所以112n n a -=, 从而1112121,2a b a b b a ==-==, 又因为{}n b 为等差数列,所以公差()2,11221n d b n n =∴=+-⋅=-, 故数列{}n a 和{}n b 通项公式分别为: 11,212n n n a b n -==-. (2)由(1)可知()112121212n n n n c n ---==-⋅, 所以()0121123252212n n T n -=⨯+⨯+⨯++-⋅①①2⨯得()()12312123252232212n n n T n n -=⨯+⨯+⨯++-⋅+-⋅②①-②得: ()()2112222212n n n T n --=++++--⋅()()()()1121212212124212323212n nn n n n n n -+-=+--⋅=+---⋅=---⋅-∴数列{}n c 的前n 项和()3232n n T n =+-⋅.11.知数列 的前 项和.(1)求 的通项公式; (2)设,求数列 的前 项和.【答案】(1) ;(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.4 数列求和一、选择题(每小题5分,共25分)1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25 解析15242451,5551522a a a a a a S ++==⇒=⨯=⨯=.答案 B2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-15解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 A3.数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -1解析 由题意知已知数列的通项为a n =2n -1+12n ,则S n =n 1+2n -1 2+12⎝ ⎛⎭⎪⎫1-12n 1-12=n 2+1-12n .答案 C4.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( ). A .11B .99C .120D .121解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120. 答案 C5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .85 解析 由已知a n =2n +1,得a 1=3,a 1+a 2+…+a n =n 3+2n +12=n(n +2),则b n =n +2,T 10=10 3+122=75,故选B . 答案 B6.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),且S 25=100,则a 12+a 14等于( )A .16B .8C .4D .不确定解析 由数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),可得数列{a n }是等差数列,S 25=a 1+a 25 ·252=100,解得a 1+a 25=8,所以a 1+a 25=a 12+a 14=8.答案 B7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ). A .1-14nB .1-12nC.23⎝⎛⎭⎪⎫1-14nD.23⎝⎛⎭⎪⎫1-12n解析 a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n-1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝⎛⎭⎪⎫1-14n .答案 C 二、填空题8.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________. 解析 由已知,得a n =1n +n +1=n +1-n ,则 S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n)=n +1-1, ∴n +1-1=10,解得n =120,即直线方程化为121x +y +120=0,故直线在y 轴上的截距为-120. 答案 -1209.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1. ∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =1· 1-4n 1-4=13(4n -1).答案 13(4n-1)10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n , 所以1b n b n +1=1n n +1 =1n -1n +1.则S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案n n +111.定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若数列{a n}满足⎪⎪⎪⎪⎪⎪a 1122 1=1且⎪⎪⎪⎪⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________. 解析 由题意得a 1-1=1,3a n +1-3a n =12即a 1=2,a n +1-a n =4. ∴{a n }是以2为首项,4为公差的等差数列. ∴a n =2+4(n -1)=4n -2,a 3=4×3-2=10. 答案 10 4n -212.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和S n 为________.解析 由已知条件可得数列{a n }的通项为a n =1+2+3+…+n n +1=n2.∴b n =1a n a n +1=4n n +1 =4⎝ ⎛⎭⎪⎫1n -1n +1. S n =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 答案4nn +1三、解答题13.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n . 解析:(1)设等差数列{a n }的首项为a 1,公差为d ,由题意,得⎩⎨⎧a 1+2d =5,15a 1+15×142d =225,解得⎩⎨⎧a 1=1,d =2,∴a n =2n -1.(2)∵b n =2a n +2n =12·4n +2n ,∴T n =b 1+b 2+…+b n=12(4+42+…+4n )+2(1+2+…+n ) =4n +1-46+n 2+n =23·4n +n 2+n -23.14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . 解析 (1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2. 所以{a n }的通项为a n =2·2n -1=2n (n ∈N *)(2)S n =2 1-2n 1-2+n ×1+n n -1 2×2=2n +1+n 2-2.15.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和S n .解析 (1)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且⎩⎨⎧1+2d +q 4=21,1+4d +q 2=13,解得⎩⎨⎧d =2,q =2.所以a n =1+(n -1)d =2n -1,b n =q n -1=2n -1. (2)a n b n =2n -12n -1,S n =1+321+522+…+2n -32n -2+2n -12n -1,① 2S n =2+3+52+…+2n -32n -3+2n -12n -2.②②-①,得S n =2+2+22+222+…+22n -2-2n -12n -1=2+2×⎝ ⎛⎭⎪⎫1+12+122+…+12n -2-2n -12n -1=2+2×1-12n -11-12-2n -12n -1=6-2n +32n -1.16.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.解析 (1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎨⎧S 2b 2= 6+d q =64,S 3b 3= 9+3d q 2=960,解得⎩⎨⎧d =2,q =8或⎩⎪⎨⎪⎧d =-65,q =403.(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n (n +2),所以1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n n +2=12⎝⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎪⎫1+12-1n +1-1n +2 =34-2n +32 n +1 n +2.。