新疆克拉玛依市第十三中学七年级数学下《第六章 实数》单元综合(无答案)测试题 (新版)新人教版
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评学能测试试卷

七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评学能测试试卷一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N > C .M N D .M N ≥2.在下面各数中无理数的个数有( )-3.14,23,227,0.1010010001...,+1.99,-3π A .1个 B .2个 C .3个 D .4个3.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 4.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 5.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 6.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 7.若m 、n 满足()21150m n -+-=,则m n +的平方根是( ) A .4± B .2± C .4 D .28.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 229.下列各数中,属于无理数的是( )A .227B 2C 9D .0.1010010001 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.若x +1是125的立方根,则x 的平方根是_________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.2(2)0x -=,则y x -的平方根_________.15.已知2m =,则m 的相反数是________.16. 1.105≈ 5.130≈≈________.17.设a ,b 都是有理数,规定 *=a b ()()48964***-⎡⎤⎣⎦=__________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 的值为______.19.已知a 、b 为两个连续的整数,且a b ,则a +b =_____.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)22.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.23.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.24.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读下列材料: 问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值. 26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…②由② ﹣ ①式,得2S ﹣S =231﹣1即(2﹣1)S =231﹣1所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.C解析:C根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.3.B解析:B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.4.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A 中,当a=0,则a =0;选项B 中,当a=0,则a²=0;选项C 中,当a=100,则(a-100)²=0;选项D 中,无论a 取何值,a²+0.01始终大于0.故选:D.此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质. 5.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<<34<<,3,3a b∴==,)336a b∴-=-=,故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.6.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.7.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.8.D解析:D【分析】设点C 的坐标是x ,根据题意列得12x =-,求解即可. 【详解】解:∵点A 是B ,C 的中点.∴设点C 的坐标是x ,则12x =-,则2x =-+∴点C 表示的数是2-+故选:D .【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.9.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A 、227是小数,不是无理数;B 是无理数;C 是整数,不是无理数;D 、0.1010010001是有限小数,不是无理数,故选:B .【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.14.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y-3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.15.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:. 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.16.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1故答案为:1 【点睛】 本题考查平方解析:1 【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案. 【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*) =(2+2)*(3-4) =4*(-1)==2-1 =1. 故答案为:1 【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键.18.3 【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2, ∴, ,故答案为:3. 【点睛】本题考查了平方根和立方根,熟解析:3 【分析】利用平方根、立方根的定义求出x 与y 的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2,∴25,8x y ==-,∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.9 【分析】首先根据的值确定a 、b 的值,然后可得a+b 的值. 【详解】 ∵<, ∴4<<5, ∵a<<b , ∴a=4,b =5, ∴a+b=9, 故答案为:9. 【点睛】本题主要考查了估算无理数的解析:9 【分析】a 、b 的值,然后可得a +b 的值. 【详解】<∴45,∵a b , ∴a =4,b =5, ∴a +b =9, 故答案为:9. 【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值.20.255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵,,, ∴只解析:255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255, 故答案为:255. 【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2; (3)﹣1.008016×106. 【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到. (2) 根据规律写出即可. (3) 先提取符号,再用规律解题. 【详解】 解:(1)1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52 ……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+…+2019) =﹣10102 =﹣1.0201×106. 【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可. 22.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可. 【详解】.(1)1×2+2×3+3×4+…+10×11=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯. (2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++. 【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.23.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题. 【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩,解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±. 【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)原式=20192020(2)原式=99100(3)原式=417【分析】(1)类比题目中的拆项方法,类比得出答案即可;(2)先把原式拆分成题(1)原式的样子,再根据(1)的拆项方法,类比得出答案即可;(3)分母是相差4的两个自然数的乘积,类比拆成以两个自然数为分母,分子为1的两个自然数差的14即可.【详解】解:(1)原式=(1-12)+(12-13)+(13-14)+……+(12019-12020)=1-1 2020=2019 2020;(2)原式=1111 12233499100 ++++⨯⨯⨯⨯=(1-12)+(12-13)+(13-14)+……+(199-1100)=1-1 100=99 100(3)原式=14×(4444155********+++⨯⨯⨯⨯)=14×(1-15+15-19+19-113+113-117)=14×(1-117)=14×1617=4 17【点睛】本题考查算式的规律,注意分子、分母的特点,解题的关键是根据规律灵活拆项,并进一步用规律解决问题.26.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
【3套打包】乌鲁木齐市人教版初中数学七年级下册第六章《实数》单元检测试卷(含答案解析)

人教版七年级下册数学单元检测卷:第六章实数一、填空题(每小题4分,共20分)1.比较大小:3-2>-23(填“>”“<”或“=”).2.计算:9-14+38-|-2|=.3.3-5的相反数为,4-17的绝对值为,绝对值为327的数为.4.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .5.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是.二、选择题(每小题3分,共30分)6.-3的绝对值是()A.33B.-33C. 3 D.1 37.在实数-227,9,π,38中,是无理数的是()A.-227B.9C.πD.3 88.下列四个数中,最大的一个数是() A.2 B. 3 C.0 D.-29.某正数的平方根为a5和4a-255,则这个数为()A.1 B.2 C.4 D.9 10.下面实数比较大小正确的是()A.3>7 B.3> 2C.0<-2 D.22<311.实数a在数轴上的位置如图1所示,则下列说法不正确的是()图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<012.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B 之间表示整数的点共有()图2A.3个B.4个C.5个D.6个13.|5-6|=()A.5+ 6 B.5- 6C.-5- 6 D.6- 514.若x-1+(y+1)2=0,则x-y的值为()A.-1 B.1C.2 D.315. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2C.547.7 D.±547.7三、解答题(共70分)16.(6分)求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a-π|+|2-a|(2<a<π).(精确到0.01)17.(8分)求下列各式中x的值.(1)x2-5=4;(2)(x-2)3=-0.125.18.(8分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm,宽为2 dm,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm2和3 dm2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732)20.(8分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.21.(10分)“欲穷千里目,更上一层楼”说的是登得高看得远,如图3,若观测点的高度为h,观测者视线能达到的最远距离为d,则d=2hR,其中R是地球半径(通常取6 400 km).小丽站在海边一块岩石上,眼睛离海平面的高度h 为20 m,她观测到远处一艘船刚露出海平面,求此时d的值.22.(1人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()(-C.(﹣2)2 D.|﹣2|A.﹣22 B.2)18无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.〈<b,且a、b是两个连续的整数,则|a+b|= .4.已知,a235.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参 考 答 案:人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( ) A .16=±4 B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( )A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a -1的平方根是±3,2b +3。
七年级下册第六章实数测试题.doc

七年级下册第六章《实数》单元测试题班级: 姓名:成绩:一、选择题(每小题2分,共18分)1.下列说法:(1)无理数就是开方开不尽的数;(2)无理数包括正无理数、零、负有理数;(3)无理数是无限不循环小数(4)无理数都可以用数 轴上的点来表示。
A. 0B.正整数5, 下列说法错误的是() A. a 2与(一a ) 2相等C,喝与3是互为相反数 6. 下列说法正确的是( )C. 0和 1D. 1B. 与 J (-a )。
相等 D. \a \与a|互为相反数A. 0.25是0.5的一个平方根B. 正数有两个平方根,且这两个平方根之和等于0C. 72的平方根是7D.负数有一个平方根7, 下列各数中,不是无理数的是() A. V7 B. 0.5 C. 2H D. 0.151151115-(两个 5 之间依次 多1个1) 8. 下列说法正确的是() A. -0.064的立方根是0.4 B. —9的平方根是±3C. 16的立方根是应D. 0.01的立方根是0.000001 其中正确的说法的个数是( A.2.A.3.A. 1B. 2 (-0.7)之的平方根是( -0.7 B. ±0.7 能与数轴上的点一一对应的是 整数 B.有理数C. 3 ) C. C. 0.7 ) 无理数 4.D. D. 0.49 如果一个实数的平方根与它的立方根相等,)D.实数 则这个数是9.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是()A. a ~ +2B. ± Ja" + 2C. Ja ~ + 2D. Ja + 2二、填空题(每个空1分,共24分)10.在数轴上表示一必的点离原点的距离是。
11.9的算术平方根是—;(-3尸的算术平方根是; 3的一 4 /—平方根是;E的平方根是;岳的平方根是。
912.—的立方根是;9的立方根是;一125的立方根是。
27 —13.V5-2的相反数是;绝对值是—;V2的相反数是—。
七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测试卷

七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测试卷一、选择题1.已知:表示不超过的最大整数,例:,令关于的函数(是正整数),例:=1,则下列结论错误..的是( ) A .B .C .D .或12.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2-C .()10090,2-D .()10090,23.下列数中,有理数是( ) A 7B .﹣0.6C .2πD .0.151151115…4.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个B .2个C .3个D .4个5.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( ) A .26B .65C .122D .1236.估算231﹣的值是在哪两个整数之间( ) A .0和1B .1和2C .2和3D .3和47.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±,8.下列说法:①±3都是27的立方根;②116的算术平方根是±1438-216的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( ) A .1个B .2个C .3个D .4个9.下列说法正确的是( )A .a 2的正平方根是aB 819=±C .﹣1的n 次方根是1D 321a --一定是负数10.16的平方根是( ) A .4B .4-C .4±D .2±二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.若已知()21230a b c -+++-=,则a b c -+=_____. 13.一个数的平方为16,这个数是 .14.如果某数的一个平方根是﹣5,那么这个数是_____.15.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.16.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____. 17.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 19.34330035.12=30.3512x =-,则x =_____________. 20.若x 、y 分别是811-2x -y 的值为________.三、解答题21.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字.22.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ ,将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 23.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 . (3)求52014+52013+52012+…+52+5+1的值.24.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.25.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++26.已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若M 点在此数轴上运动,请求出M 点到AB 两点距离之和的最小值; (3)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒12个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 能追上点P ?(4)在数轴上找一点N ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有的N 对应的数.(不必说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】 A. ==0-0=0,故A 选项正确,不符合题意;B. ===,=,所以,故B 选项正确,不符合题意;C.=,= ,当k=3时,==0,==1,此时,故C 选项错误,符合题意;D.设n 为正整数,当k=4n 时,==n-n=0,当k=4n+1时,==n-n=0, 当k=4n+2时,==n-n=0, 当k=4n+3时,==n+1-n=1,所以或1,故D 选项正确,不符合题意,故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.D解析:D 【详解】 因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D.3.B解析:B 【分析】根据有理数的定义选出即可. 【详解】解:A 7是无理数,故选项错误; B 、﹣0.6是有理数,故选项正确; C 、2π是无理数,故选项错误;D 、0.l51151115…是无理数,故选项错误. 故选:B . 【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.4.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。
七年级数学下册第六章实数单元综合测试含解析新人教

《第6章实数》一、选择题1.下列数不是有理数的是()A.0 B.C.﹣2 D.π2.正方体的体积为9,它的棱长是()A.整数B.分数C.有理数D.无限不循环小数3.等腰三角形的腰为3,底为2,下列说法不正确的是()A.底边上的高为有理数B.它的周长为有理数C.它的面积不是有理数D.腰上的高不是有理数4.如图,在4×4的方格纸中,有一个格点三角形ABC,关于它的描述正确的是()A.三边长都是有理数B.是等腰三角形C.是直角三角形D.有一条边长为55.面积为6的正方形边长,估计介于()A.1和2之间B.2和2.5之间C.2.5和3之间D.3和4之间6.在2,﹣,π,0,,2.101010…(相邻两个1之间有1个0),3.14,0.1212212221…(相邻两个1之间2的个数逐次加1)这些数中无理数的个数是()A.1 B.2 C.3 D.47.下列说法正确的是()A.0.是无理数B.是分数C.是无限小数,是无理数D.0.13579…(小数部分由连续的奇数组成)是无理数8.下列说法正确的是()A.有理数可以用有限小数或无限循环小数表示B.无限小数就是无理数C.不循环小数是无理数D.0既不是有理数,也不是无理数9.下列各数,没有算术平方根的是()A.2 B.﹣4 C.0 D.10.算术平方根等于本身的数是()A.0 B.0和1 C.0,1和﹣1 D.111.下列说法正确的是()A.0.1是0.01的算术平方根 B.0.6是3.6的算术平方根C.3是的算术平方根D.﹣2是(﹣2)2的算术平方根12.下列说法错误的是()A.非负数有算术平方根B.是的算术平方根C.没有意义 D.无选项。
精选初中数学七年级下册第六章《实数》单元检测试卷(解析版)

人教版七年级数学下册第六章实数单元检测题一、选择题。
(每小题3分,共30分)1.下列选项中正确的是()A.27的立方根是±3B.16的平方根是±4C.9的算术平方根是3D.立方根等于算术平方根的数是12.下列各数中是无理数的为()A. 2 B.0 C.12017D.-13. 已知m=4+3,则以下对m的估算正确的() A.2<m<3 B.3<m<4C.4<m<5 D.5<m<64.比较4,17,363的大小,正确的是()A.4<17<363 B.4<363<17C.363<4<17 D.17<363<45.如图6-X-1所示,实数a=3,则在数轴上表示-a的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上6.下列说法中,正确的有( )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个7.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( )A.0个B.1个om]C.2个D.3个8.已知5+11的整数部分为a,5-11的小数部分为b,则a+b的值为( )A.10 B.211C.11-12 D.12-11[9.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1.若输入7,则输出的结果为()A.5 B.6 C.7 D.810. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题。
(每空3分,共15分)1.请写出两个你喜欢的无理数,使它们的和为有理数,你写出的两个无理数是________________.2.化简-(5+7)-|5-7|的结果为________.3.a +3的立方根是2,3a +b -1的平方根是±4,则a +2b 的算术平方根是________.4.规定用符号[m]表示一个实数m 的整数部分,例如:⎣⎢⎡⎦⎥⎤23=0,[3.14]=3.按此规定[10+1]的值为________.5..已知数轴上有A ,B 两点,且这两点之间的距离为4 2,若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为________.三、计算题(10分)(1)2+3 2-5 2;(2)|3-2|+|3-2|-|2-1|;四、解下列方程:(10分)(1)(x -2)3=64;(2)4(3x+1)2-1=0.五、综合题(共35分)1.(8分)在数轴上表示a,b,c三个数的点的位置如图6-X-2所示.化简:|c|-(c+a)2+b2-|a-b|.图6-X-22.(8分)已知一个正数x的两个平方根分别是2a-3和5-a,求a和x的值.3.(9分)已知A=m-2n-m+3是n-m+3的算术平方根,B=2n-17m-12n是7m-12n的立方根,求B+A的平方根.4.(10分)如图所示,长方形内相邻两个正方形的面积分别为2和4,求长方形内阴影部分的面积.参考答案一、选择题。
七年级初一数学下学期第六章 实数单元达标测试综合卷检测

七年级初一数学下学期第六章 实数单元达标测试综合卷检测一、选择题1.设n 为正整数,且1n n <<+,则n 的值为( )A .42B .43C .44D .452.对于实数a ,我们规定,用符号为a 的根整数,例如:3=,3=.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5 B .10 C .15 D .16 3.若一个正数x 的平方根为27a -和143a -,则x =( ) A .7B .16C .25D .494. )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5, 1.==按照此规定, 1⎤⎦的值为( )A 1B 3C 4D 1+6.+1的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间7.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2;(4是7的平方根. A .1B .2C .3D .48.下列各数中,属于无理数的是( )A .227B C D .0.10100100019.3的平方根是( )A .B .9C D .±910.估计2 ) A .1到2之间B .2到3之间C .3到4之间D .4到5之间二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.1264___________.13.若()2320m n ++-=,则m n 的值为 ____. 14.观察下列算式:246816⨯⨯⨯+2(28)⨯1616+4=20; 4681016⨯⨯⨯+2(410)⨯1640+4=44;… 3032343616⨯⨯⨯+__________ 15.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 16.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡=⎣→2=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.17.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.18.若x <0323x x ____________. 1946________.20.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫=⎪⎝⎭;(2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 22.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.23.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是 ,小数部分是 ;(2)如果5的小数部分为a ,13的整数部分为b ,求a +b ﹣5的值.24.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用). 25.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?26.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到4445<<,再根据已知条件即可求得答案. 【详解】解:∵193620192025<<∴2244201945<<.<∴4445<<∵n 为正整数,且1n n <<+∴44n =. 故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.2.C解析:C 【分析】对各选项中的数分别连续求根整数即可判断得出答案. 【详解】 解:当x=5时,5221,满足条件; 当x=10时,10331,满足条件; 当x=15时,15331,满足条件; 当x=16时,16442,不满足条件;∴满足条件的整数x 的最大值为15, 故答案为:C . 【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂题意.3.D解析:D 【解析】 【分析】首先根据正数的两个平方根互为相反数,列的方程:(27a -)+(143a -)=0,解方程即可求得a 的值,代入即可求得x 的两个平方根,则可求得x 的值. 【详解】∵一个正数x 的平方根为27a -和143a -, ∴(27a -)+(143a -)=0, 解得:a=7.∴27a -=7,143a -=-7, ∴x=(±7)2 =49.故选D. 【点睛】此题考查平方根,解题关键在于求出a 的值.4.D解析:D 【分析】用平方法进行比较,看27在哪两个整数平方之间即可. 【详解】∵252527=<,263627=>∴5<6 故选:D 【点睛】本题考查比较二次根式的大小,常见方法有2种: (1)将数字平方,转化为不含二次根号的数字比较; (2)将数字都转化到二次根式中,然后进行比较.5.B解析:B 【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案. 【详解】解:由34,得4+1<5.3, 故选:B . 【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.6.B解析:B 【分析】的范围,继而可求得答案. 【详解】 ∵22=4,32=9,∴<3,∴+1<4, 故选B. 【点睛】本题考查了无理数的估算,熟练掌握是解题的关键.7.C解析:C【解析】4=-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;是7的平方根.故(4)对;故选C.8.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A、227是小数,不是无理数;B是无理数;C是整数,不是无理数;D、0.1010010001是有限小数,不是无理数,故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键. 9.A解析:A【分析】直接根据平方根的概念即可求解.【详解】解:∵(2=3,∴3的平方根是为.故选A.【点睛】本题主要考查了平方根的概念,比较简单.10.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5,故选:D.【点睛】键.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】=,8的立方根是2,8故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.13.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.14.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.15.【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由 解得:x=8故答案为. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.16.255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】 解:(1)解析:255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.17.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,x x=-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.三、解答题21.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.22.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可, 此时最大值为89,最小值为67-; 当a-b-c≤0时, 原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-. 【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.23.(1)3,﹣3;(2)1.【分析】(1)根据34<解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<,3﹣3,故答案为:3﹣3;(2)∵23,a 2,∵34,∴b =3,a +b 2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.24.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.25.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.26.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.。
新疆克拉玛依市七年级数学下册第六单元《实数》测试卷(提高培优)

一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤2.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( )A .2B .4C .6D .84.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .45.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是( )A .3B .4C .5D .66.下列实数中,是无理数的为( ) A .3.14 B .13C .5D .9 7.下列实数:32233.14640.010*******-;;;; (相邻两个1之依次多一个0);52-,其中无理数有( )A .2个B .3个C .4个D .5个8.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4079.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间 10.在 1.4144-,2-,227,3π,23-,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .411.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( ) A .3B .3-C .3±D .3± 12.和数轴上的点一一对应的数是( ) A .自然数 B .有理数 C .无理数 D .实数 13.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m =C .5的小数部分是0.236D .9m n +=14.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±915.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题16.计算:201()( 3.14)20|252π---+--17.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(2332x -35x +12x -的值.18.计算:(1223168(2)(3)--(2)22(2)8x -=19.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.20.(1)计算:①231698(2)-+-; ②3121125|63|6+-+--.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.21.把下列各数填在相应的横线上1.4,2020,2-,32-,0.31,0,38-,π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______22.37-的相反数是________;绝对值等于3的数是________23.求下列各式中的x :(1)2940x -=;(2)3(1)8x -= 24.计算:31891224-++-+. 25.求下列各式中x 的值.(1)2(1)2x +=; (2)329203x +=. 26.2(2)-的平方根是 _______ ;38a 的立方根是 __________.三、解答题27.已知()253|53|0x y -++--=.(1)求x ,y 的值;(2)求xy 的算术平方根.28.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.29.求下列各式中的x的值.(1)4x2=9;(2)(2x﹣1)3=﹣27.30.计算:(1)2019-(1)|2|(2)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
A.1 B.2 C.3 D.4
12. 的平方小题2分,共20分)
13.若x的立方根是- ,则x=___________.
A. B. C. D.
6.下列说法中,正确的是……………………………………………………..().
A.不带根号的数不是无理数B. 8的立方根是±2
C.绝对值是 的实数是 D.每个实数都对应数轴上一个点
7.若 -3,则 的取值范围是……………………………………..( ).
A. >3 B. ≥3C. <3 D. ≤3
A. 5 B.2 C.3 D.4
3.已知下列结论:①在数轴上只能表示无理数 ;②任何一个无理数都能用数轴上的点
表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.
其中正确的结论 是………………………………………………………………( ).
A.①②B.②③C.③④D.②③④
4.下列各式中,正确的是……………………………………………………..( ).
29.若一正数a的两个平方根分别是2m-3和5-m,求a 的值。(5分)
30.M是大于的最小整数,N是小于的最大整数,求M+N的平方根 。(5分)
9.下列说法错误的是……… …………………………………………………….()
A. 是9的平方根B. 的平方等于5 C. 的平方根是 D.9的算术平方根是3
10.下列说法中正确的是………………………………………………………..()
A.实数 是负数B. C. 一定是正数D.实数 的绝对值是
11.有下列说法:其中正确的说法的个数是………………………………….()
14.化 简=___________。
15.1- 的相反数是_________,绝对值是__________.
16. 的平方根是。
17.平方根等于本身的数是________;立方根等 于本身的数是_______
18.已知 =0,则- =_______.
19.如果 ,那么 的算术平方根是.
20.比较大小 ______ ; ________ .
新疆克拉玛依市第十三中学七年级数学下《第六章实数》单元测试题(新版)新人教版
一.选择题(每小题2分,共24分)
1.计算 的结果是……………………………………………… …………………..().
A.2B.±2C.-2D.4.
2.在-1.732, ,π,3. ,2+ ,3.212212221…,3.14这些数中,无理数的个数为( ).
三、解答题
24.化 简或计算:(每小题4分,共16分)
(1) + (2)
(3)(4)
25.求 的值(每小题4分,共12分)
(1) ;(2) ;(3)
26.若 ,求 的值。(5分)
27. 和 都是5的立方根,求a、b的值。(4分)
28.一个正方体的体积是16 ,另一正方体的体积是这个正方体体积的4倍,求另一个正方体的表面积。(5分)
21.绝对值小于的整数有个。
22.的算术平方根为a, =2,则a-b=.
23.把下列各数 填入相应的大括号内(12分) ,-3,0,3.1415 , , , , , ,
,1.121221222122221…(两个1之间依次多个2)
(1)无理数集合: … ;(2)非负数集合: … ;
(3 )整数集合: … ;(4)分数集合: … 。