大体积混凝土施工的裂缝预控
大体积混凝土裂缝控制方法

不同品种水泥因混合材的差异,混凝土干燥收 缩值也不同,按收缩值排序:大掺量矿渣矿渣水泥> 矿渣水泥> 普通硅酸盐水泥> 早强水泥> 中热水泥 粉煤灰水泥。较粗的熟料颗粒如大于75um ,其水 化不完全的核心类似于集料抑制混凝土收缩的作用: 细颗粒熟料水化较完全,细颗粒增多时,C-S-H凝胶 产生也更多,收缩也增大。
根据上述定义,200~600mm长墙,80~ 300 mm的楼板采用泵送商品混凝土现浇整体 式都具有大体积混凝土的性质,一不小心就 开裂,这是我们从事混凝土工程设计、施工、 材料及质量监督工作的一个新的基本概念。
大体积混凝土裂缝增多的原因
现代混凝土技术的重大发展是商品混凝土和泵送混凝土 的出现,它以其高匀质性、高效率、自动化、环境保护好、 便捷的施工和运输给我们的城市建设代来了快速的发展。但 是却使裂缝控制的技术难度大大增加了,其综合原因是:
3.现浇混凝土结构,砖混结构刚度增加,抗震烈度提高, 结构约束较过去显著提高,约束应力增大。采用高强度 钢筋代替中低强度钢筋,导致钢筋使用应力显著增加, 与裂缝宽度成正比。特别是在超长、超厚、超静定结构 为常用结构形式的情况下,约束应力就更大。
4.结构设计中只重视承载力极限状态(结构不倒塌、不破坏、 不失稳、无安全问题)而忽略正常使用极限(结构必须满足 正常使用,最大允许变形、允许无害裂缝、防止渗漏、耐久 性、美观及精神作用的极限状态);忽略构造设计及构造配 筋的作用。保护层偏厚。
用系统方法控制混凝土工程裂缝
系统方法是以对系统的基本认识为依据,用以指导 人们研究和处理科学技术问题的一种科学方法。当 人们运用系统方法的基本原则对各种复杂系统进行 规划、研究、设计、制造、试验和实施时,便形成 了所谓的系统工程。
大体积混凝土温度裂缝控制措施

大体积混凝土温度裂缝控制措施
大体积混凝土温度裂缝控制措施主要包括以下几点:
1.合理选择原材料:选用低水化热的水泥,如矿渣水泥、粉煤灰水泥等,以降低混凝土浇筑温度。
同时,掺加粉煤灰或高效减水剂等外加剂,减少混凝土的用水量,改善混凝土的和易性和可泵性,降低水灰比。
2.优化配合比:通过优化配合比,降低混凝土的收缩,提高混凝土的抗裂性。
例如,采用级配良好的骨料,控制砂率,掺加适量的膨胀剂等。
3.控制混凝土浇筑温度:在高温季节,应采取措施降低混凝土的浇筑温度,如对骨料进行洒水降温,避免在高温时段进行浇筑等。
4.加强混凝土养护:在混凝土浇筑完成后,应及时进行养护,保持适宜的温度和湿度,防止出现温度梯度引起的裂缝。
可以采用覆盖保温材料、洒水、喷雾等方式进行养护。
5.适当增加构造钢筋:在容易出现温度裂缝的部位,适当增加构造钢筋的数量和直径,提高混凝土的抗裂性。
6.施加外力约束:在混凝土表面施加外力约束,如加装钢板约束带、预应力钢筋等,限制混凝土的变形,防止裂缝的产生。
7.加强温度监测:在施工过程中,应加强温度监测,及时掌握混凝土内部的温度变化情况,采取相应的措施进行控制和调整。
综上所述,大体积混凝土温度裂缝控制需要从多个方面入手,包括原材料选择、配合比优化、施工方法、养护方式、构造钢筋增加、外力约束和温度监测等方面。
在实际施工过程中,应根据具体情况采取相应的措施,确保大体积混凝土的施工质量符合要求。
大体积混凝土裂缝控制措施

大体积混凝土裂缝控制措施在建筑工程中,大体积混凝土的应用越来越广泛,如大型基础、大坝、桥墩等。
然而,由于大体积混凝土结构的尺寸较大,水泥水化热释放集中,混凝土内部温度升高较快,与外部环境形成较大温差,从而容易产生裂缝。
这些裂缝不仅会影响混凝土的外观质量,还会降低混凝土的耐久性和承载能力,给工程带来安全隐患。
因此,采取有效的措施控制大体积混凝土裂缝的产生至关重要。
一、大体积混凝土裂缝产生的原因(一)温度变化水泥在水化过程中会释放出大量的热量,使混凝土内部温度升高。
由于混凝土的导热性能较差,热量在内部积聚,导致内部温度高于外部温度,形成内外温差。
当温差过大时,混凝土内部产生压应力,外部产生拉应力,一旦拉应力超过混凝土的抗拉强度,就会产生裂缝。
(二)收缩变形混凝土在硬化过程中会发生体积收缩,包括自收缩、干燥收缩和碳化收缩等。
收缩变形受到约束时,会产生拉应力,从而导致裂缝的产生。
(三)约束条件混凝土在浇筑后,由于基础、模板等的约束,使其不能自由变形。
当混凝土内部产生的应力超过其约束所能承受的极限时,就会产生裂缝。
(四)原材料质量水泥的品种、用量、细度等都会影响混凝土的水化热和收缩性能。
骨料的级配、含泥量等也会对混凝土的强度和变形性能产生影响。
如果原材料质量不合格,容易导致混凝土裂缝的产生。
(五)施工工艺混凝土的搅拌、浇筑、振捣、养护等施工工艺不当,也会增加裂缝产生的风险。
例如,搅拌不均匀会导致混凝土性能不稳定;浇筑速度过快会使混凝土内部产生空隙;振捣不密实会影响混凝土的强度和密实度;养护不及时或养护方法不当会使混凝土失水过快,导致收缩裂缝的产生。
二、大体积混凝土裂缝控制的设计措施(一)合理选择混凝土强度等级在满足结构设计要求的前提下,尽量选用低强度等级的混凝土,以减少水泥用量,降低水化热。
(二)优化结构设计减少结构的约束程度,合理设置变形缝、后浇带等,以释放混凝土的收缩变形。
(三)配置抗裂钢筋在混凝土中配置适量的抗裂钢筋,如温度筋、分布筋等,可以提高混凝土的抗裂性能。
大体积混凝土施工中的裂缝防治范文(2篇)

大体积混凝土施工中的裂缝防治范文裂缝是大体积混凝土施工中常见的问题之一,严重影响结构的安全性和使用寿命。
为了有效防治裂缝,在施工过程中需要采取一系列的措施。
本文将分析裂缝的产生原因,介绍常见的裂缝防治措施,并提出一些改进方法,以期有效解决大体积混凝土施工中的裂缝问题。
一、裂缝产生原因1. 温度变化:混凝土的体积变化系数较大,在温度变化大的情况下会产生温度裂缝。
2. 干缩:混凝土养护期间由于水分的蒸发和收缩而引起干缩裂缝。
3. 内应力:混凝土内部的应力不均匀,会产生内应力裂缝。
4. 设计和施工缺陷:结构设计和施工质量不合格也会导致裂缝的产生。
二、常见的裂缝防治措施1. 控制温度变化:在混凝土施工过程中,应尽量控制温度变化,避免快速升温或降温。
可以采取覆盖物体、喷水等措施来控制混凝土温度。
2. 加强养护:混凝土在初凝期和养护期需要进行充分的湿养护,以减少干缩引起的裂缝。
可以采用覆盖保温、喷水养护等方法。
3. 合理设计:在结构设计中,应考虑混凝土的体积变化和应力分布,避免产生过大的内应力。
合理控制浇筑量、浇筑层次和结构形式等因素。
4. 施工质量控制:加强施工质量控制,确保混凝土的配合比、浇筑工艺、养护等符合标准要求。
同时,应定期检查施工过程中的缺陷,及时进行整改。
三、改进方法1. 使用控制裂缝剂:控制裂缝剂是一种特殊的添加剂,可以有效抑制混凝土裂缝的产生。
它可以减少混凝土的收缩率,提高其抗裂性能。
2. 采用预应力技术:预应力技术可以通过施加预应力,使混凝土内部产生压应力,从而有效减少裂缝的发生。
同时,预应力技术还可以提高结构的承载能力和抗震性能。
3. 使用高性能混凝土:高性能混凝土具有较低的收缩率和较高的抗裂性能,可以有效减少裂缝的产生。
其强度和耐久性也更高,能够提高结构的使用寿命。
4. 引入复合材料:在混凝土中添加适量的纤维材料,如玻璃纤维、碳纤维等,可以有效增加混凝土的韧性和抗裂性能,减少裂缝的产生。
大体积混凝土裂缝产生原因及控制措施

大体积混凝土裂缝产生原因及控制措施大体积混凝土造粒的裂缝是指混凝土某一部分中的裂缝,该部分的尺寸比一般的钢筋混凝土结构大得多。
这样的混凝土结构由于自重和重载等的压力,受到了较大的拉应力,容易产生裂纹,影响其使用寿命和结构性能。
本文将探讨大体积混凝土裂缝的产生原因及控制措施。
一、产生原因:1. 温度变化:混凝土构造物受季节变化和日夜变化的影响,会发生温度变化。
由于温度的变化会导致混凝土膨胀和收缩,因此在膨胀和收缩的过程中,如果其能力和约束力不匹配,就会产生应力,从而产生裂缝。
2. 湿度变化:混凝土中水的变化也是裂缝的一个重要原因。
如果混凝土湿度变化过大,会导致水的蒸发和吸收。
水分的吸收会造成混凝土的膨胀,而水的蒸发会使混凝土干缩。
如果混凝土不能够吸收或释放水分,就容易产生裂缝。
3. 材料的反应:如果混凝土中的一些化学受潮或自发燃烧,会在混凝土中产生碱性物质的反应,从而导致混凝土的膨胀和收缩,产生裂缝。
4. 应力集中:混凝土制造和施工过程中涉及到的应力分布是不均匀的,某些区域容易出现应力集中。
应力集中区域因受到超负荷应力而破裂成裂缝。
5. 其他原因:混凝土中存在的空气孔隙,坍落度不合适,水灰比偏高或者混凝土受到的外力等都可能导致裂缝的产生。
二、控制措施:1. 选用合适的混凝土比例和材料:首先,为了避免混凝土的裂缝,应该选择合适的混凝土比例和材料,确保混凝土的坍落度、水灰比和密实度达到最佳水平。
2. 加强混凝土的质量控制:加强混凝土的质量控制,确保混凝土的制作和浇筑过程中不出现任何失误。
结实,未受到外力损害的混凝土在日常使用中容易受到外力的损害而破裂。
3. 选择正确的施工方法:为了避免因施工不当而造成混凝土裂缝,应该根据所建造的混凝土结构采用合适的施工方法,在施工过程中控制混凝土软化或者干缩时间,以确保结构体的完整性。
4. 控制场地温度和湿度:为了控制混凝土结构中水分和温度的变化,在施工过程中需要控制场地的温度和湿度。
2024年大体积商品混凝土裂纹的控制

2024年大体积商品混凝土裂纹的控制
1. 使用低收缩的混凝土:选择低收缩性能优良的混凝土材料,可以减少混凝土在硬化过程中的收缩,减少裂缝的产生。
2. 控制混凝土表面的蒸发速率:在混凝土浇筑后,要注意控制浇水或使用覆盖物来减少混凝土表面的蒸发速率,以防止裂纹的发生。
3. 控制温度变化:在混凝土浇筑后,要通过控制温度变化来减少混凝土的热应力,可以采取降低浇筑温度、使用降温剂等措施。
4. 使用添加剂:在混凝土配制中加入一些添加剂,如减水剂、增稠剂、增强剂等,可以改善混凝土的流动性、减少收缩等问题,从而降低裂纹的发生。
5. 控制施工过程:在混凝土浇筑过程中,要注意控制浇注速度、浇筑高度、振捣等施工参数,以确保混凝土的均匀性,减少裂纹的产生。
这些仅仅是一些一般性的建议,具体的控制裂纹的方法还需要根据具体的工程要求和现场条件进行综合考虑和控制。
建议您在实施前咨询专业的工程师或混凝土技术人员,以确保正确的建议和方法。
第 1 页共 1 页。
大体积混凝土施工技术及裂缝预防措施

大体积混凝土施工技术及裂缝预防措施大体积混凝土指的是在建筑工程中使用的混凝土,其体积较大,通常用于支撑大型建筑物或基础设施。
在大体积混凝土的施工过程中,裂缝是一个常见的问题,因为混凝土在固化的过程中容易出现收缩裂缝和温度裂缝。
为了确保大体积混凝土结构的稳定和安全,施工技术及裂缝预防措施显得尤为重要。
一、大体积混凝土施工技术1. 混凝土配合比设计:在大体积混凝土的施工过程中,混凝土的配合比设计非常重要。
合理的配合比设计可以确保混凝土的强度和稳定性,从而减小裂缝的产生可能性。
2. 混凝土浇筑温度控制:在大体积混凝土浇筑过程中,浇筑温度的控制至关重要。
过高或过低的浇筑温度都会影响混凝土的质量,从而增加裂缝的可能性。
施工人员应根据气温和混凝土特性来控制浇筑温度,保证混凝土的质量。
3. 混凝土浇筑工艺控制:大体积混凝土的施工需要严格控制浇筑工艺,确保混凝土的均匀性和稳定性。
在浇筑过程中,需控制浇筑速度、浇筑厚度以及振捣作业,以减小裂缝的产生可能性。
4. 细部施工控制:大体积混凝土的施工中,细部施工尤为重要。
对于大型混凝土梁、墙或板,需要特别注意细部施工控制,如保温、养护、缩砂等,以确保施工质量。
二、裂缝预防措施1. 采用适当的掺合料:在大体积混凝土的配制中,可适当添加一些掺合料,如粉煤灰、矿渣粉等。
掺合料的使用可以提高混凝土的抗裂性能,减小裂缝的产生可能性。
2. 控制混凝土收缩:混凝土在固化过程中会产生收缩,从而导致裂缝的产生。
采用合适的混凝土设计和养护方法,控制混凝土的收缩,是减小裂缝的重要手段。
3. 合理的浇筑顺序:在大体积混凝土结构的施工过程中,合理的浇筑顺序可以减小裂缝的产生可能性。
施工人员应注意分段浇筑、交错浇筑和分层浇筑等措施,以减小温度裂缝和收缩裂缝的产生。
4. 加强混凝土养护:混凝土养护是防止混凝土裂缝的重要措施之一。
在大体积混凝土施工完成后,需对混凝土进行适当的养护,保持水分充足,防止混凝土龟裂。
大体积混凝土防止开裂的措施

大体积混凝土防止开裂的措施一、引言混凝土是一种常用的建筑材料,具有强度高、耐久性强等优点。
然而,在施工过程中,由于各种因素的影响,混凝土往往容易出现开裂问题。
本文将介绍一些针对大体积混凝土防止开裂的措施。
二、合理控制水灰比水灰比是影响混凝土开裂的重要因素之一。
水灰比过高会导致混凝土内部含水量过大,干燥收缩过程中会产生较大的内应力,从而引起开裂。
因此,在设计混凝土配合比时,应合理控制水灰比,避免过高水灰比对混凝土强度和收缩性能产生不利影响。
三、添加合适的掺合料掺合料的添加可以改善混凝土的性能,减少开裂的风险。
常用的掺合料有矿渣粉、粉煤灰等。
这些掺合料可以填充混凝土内部的空隙,增加混凝土的紧密性和强度,降低干燥收缩。
因此,在混凝土配合比中添加适量的掺合料是防止开裂的有效措施之一。
四、增加混凝土的骨料粒径骨料粒径的选择也会对混凝土的开裂性能产生影响。
较大的骨料粒径可以降低混凝土的干燥收缩性,减少开裂的风险。
因此,在混凝土配合比中适当增加骨料粒径,可以有效防止混凝土的开裂。
五、控制施工温度和湿度混凝土在施工过程中,会受到环境温度和湿度的影响。
高温和低湿度条件下,混凝土内部的水分挥发速度加快,容易引起干燥收缩和开裂。
因此,在施工过程中,应控制好施工环境的温度和湿度,避免极端条件下对混凝土的不利影响。
六、合理的养护措施混凝土在初凝和硬化过程中需要进行适当的养护,以保证混凝土的强度和耐久性。
养护过程中,应注意控制水分蒸发,避免快速干燥引起的收缩和开裂。
同时,可以采用喷水养护、覆盖湿布等方式,保持混凝土内部的水分充足,有助于减少开裂的发生。
七、采用预应力技术在大体积混凝土结构中,为了进一步增加混凝土的抗裂能力,可以采用预应力技术。
预应力技术通过施加预先施加的压力,使混凝土在受力过程中产生的应力达到一定程度,从而抵抗外部加载引起的开裂。
这种技术可以有效提高大体积混凝土结构的抗裂能力。
八、控制施工过程中的温度变化大体积混凝土结构在施工过程中,由于混凝土内部体积较大,温度变化会引起混凝土内部产生较大的热应力,从而导致开裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设定混凝土 入模 温度 7 =2 偏安 全 ) " 1 0 o C( 预计高炉混凝 土最 高温度
∑ T=7 + " 0 =2 +3 . 1 3 3=5 .  ̄ 4 3C
22 2 各 龄期 温升情况 .. 应 用同类结构类 似施工条件下 , 升 曲线 进行 温差应 力 温
计算 , 况 如 表 2 情 。
热温 升值 、 各龄期 收 缩变 形值 , 估量 可能 产生 的最 大温 度收 缩应 力 , 在施工之 前 和施 工过 程 中采取 有 效 的技术措 施 , 具
有重 大意 义。 1 大 体 积 混 凝 土 裂 缝 形 成 机 理
表 1 混凝 土Βιβλιοθήκη 合比 (∥m ) k 3
大体 积混凝土 由于截 面大 , 泥用 量 大 , 泥 水化 释 放 水 水 的水化热 会产生较 大的温度 变化 , 由此形成 的温度 应力是导 致 产生 裂缝的主要 原因 , 这种裂缝分 为两种 : 第 一种 , 混凝土 浇筑初期 , 泥水化产 生大量水化 热 , 水 使 混凝土 的温度很快 上 升 , 由于混凝 土表 面散 热条 件 较好 , 但 热量 可 向大 气 中散 发 。 因而 温度 上升 较少 ; 而混凝 土 内部 由 于散热条 件较差 , 热量散 发少 。 因而温度 上升较 多 , 内部形成 温 度梯度 , 成 内约 束。结果 。 形 混凝 土 内部 产生压应力 , 而面 层产 生拉应力 , 当该拉 应 力超 过 混凝 土 的抗拉 强度 时 , 混凝 土 表面就产 生裂缝 。 第二种 , 混凝土 浇筑后数 日, 泥水化 热基本 已释 放 。 水 混 凝结试验环境 : 温度 1  ̄ 0C~1o 相对 湿度 ( H) 4 % 5C; R :5
结 构混凝土 实测温度 下的强度抗拉 实验 , 论证其质量 的可靠性 , 在施工之前 和施工 中采取有 效措施 , 制温 度 变形 控 裂 缝 的开 展 , 证混凝土 的施工质量 。 保
【 关键词】 绝热温升; 混凝土收缩当量温差; 混凝土劈裂抗拉强度; 结构模型
【 中图分类号】 哪
【 文献标识码1 B
约束 ) 阻止 这种. 变。一旦温度应 力超过 混凝土 所能 承受的 应
抗拉 强度就会 产生 裂缝 。总结 过 去大 体积 混凝 土 裂缝 产生 的情况 , 可知 道产生裂 缝的主要原 因是 : 泥水化热 ; 束条 水 约 件 汐 界气 温变化 ; 混凝土 收缩变形 。
表2
龄期 3
5 5% 。
2 2 大体积 混凝土 内应力计算 .
2 2 1 绝 热 温 升 ..
=
C q cp / ・
式中 : —— 每 m 混凝土 中的水 泥用量 3 0 gm ; C 3 2K/ 3 Q 每 K 水泥的水化热 量 20 JK ; 一 g 3 K/ g c 混凝 土的 比热取 0 9K / g o 一 .2 J (・ l C; p 混凝土质量 密度取 2o g,  ̄ 一 4o e m 。 /
【 文章编号】 13 66 ( 0 ) — 02 0 0 1 842 2O 09 — 2 . 0 3
综上所述 : 在施工 中, 混凝 土温 度应 力 进行 计算 分 析 对 是非常重要 的。
2 温 度 应 力 分 析
大体积混 凝土 结 构 , 由外 荷 载引 起裂 缝 的可 能性 较小 , 而 由于水泥水 化过 程 中释 放的水 化 热 引起 的温度 变化 和混 凝土 收缩产 生的温度应 力和收缩应 力 , 将是其 产生 裂缝 的主
鞍钢新 1 高炉 建设 , 鞍钢 “ 五” 间 的 一项 重 大技 ’ 是 十 期 改工程 , 高炉基础几何尺寸 : 4 .m, 2 .m, 9 2 m, 长 3 2 宽 72 高 .6 体 积约 61 3 8  ̄m 。设计混 凝土强度等 级 为 (5 混凝 土 配合 比如 2 ,
表 1 。
= =3 3 C 3.  ̄
凝土 从最高 温逐渐 降 温 , 温 的结 果 引起 混凝 土 收缩 , 降 再加 上 由于混凝 土 中多余 水分 蒸 发 、 化 等 引起 的 体积 收 缩变 碳
形 , 到地基 和结构边 界 条件 的约 束 ( 约束 ) 不 能 自由变 受 外 , 形, 导致 产生温 度应力 (2 力 ) 当该 温 度应力 超 过混 凝土 g应 。 抗拉 强度 时 , 以约束面 开始向上开 裂形成 温度裂 缝。如果 则 该温 度应力 足够大 , 重 时 可能产 生 贯穿 裂缝 , 坏 了结构 严 破 韵整 体性 、 耐久性 和防水性 , 影响正 常使用 。 大体积混凝 土施工 阶段产生 的温度裂缝 。 其 内部矛盾 是 发展 的结果 。一 方 面是 混凝 土 由于 内外温 差产 生应 力 和应 变; 另一方 面是结构 的外 约 束和 混凝 土 各质 点间 的约束 ( 内
维普资讯
低
温
建
筑
技
术
20 02年第 3期 ( 总第 8 ) 9期
冬施质量 通病
道星 拘 缝颓 湟
田雨 泽 张 彤
( 山钢 铁 学 院 土 木 交 通 工 程 系 14 0 鞍 10 0)
【 摘
要】 阐述大体积混凝土基础可能出现裂缝的机理及其影响因素, 对温度应力进行 了计算 、 分析。模拟
最 高温升点逐 日温 度升降
6 9 1 1 1 2 2 2 3 2 5 8 1 4 7 o
温 度 ℃ 5 . 4 . 4 . 25 95 3 . 3 . 3 . 35 2 0 20 9 5 6 0 4 . 3 . 75 5 7 48 3 . 3 .
要 因素 。这些 裂缝给 工程带来不 同程度 的危害 , 因此控制温
度应 力和温 度变形 裂缝的开展 , 是大 体积混凝 土结 构施工 中 的一个 重大课题 : 大体 积 混凝 土浇筑 前 , 据施 工拟 采取 在 根 的防裂措施 和 已知 施工条件 , 先计算 混凝土 的水 泥水 化热绝
2 1 原 始 条 件 .