圆扇形弓形的面积三

合集下载

圆、扇形、弓形的面积(一)

圆、扇形、弓形的面积(一)

圆、扇形、弓形的面积(一)圆的面积在几何学中,圆是一个平面上所有点到一个固定点的距离都相等的点的集合。

圆的面积是围绕圆心一周的区域。

公式推导设圆的半径为r,我们可以使用数学公式计算圆的面积。

圆的面积公式如下:面积= πr²其中,π(pi)是一个常数,约等于3.14159。

例子例如,如果一个圆的半径为 5 cm ,那么它的面积可以用以下公式计算:面积= π × (5 cm)² ≈ 3.14159 × 25 cm² ≈ 78.53975 cm²所以,这个圆的面积约为 78.54 平方厘米。

扇形的面积扇形是一个由圆心、圆弧及两个半径所围成的图形,其中圆心角等于360度(或2π弧度)。

扇形的面积是扇形圆心角所对应的圆弧面积。

公式推导设扇形的半径为r,圆心角为θ(单位为弧度),我们可以使用下面的公式计算扇形的面积:面积= (θ/2π) × πr² = (θ/2) × r²例子例如,如果一个扇形的半径是 6 cm ,圆心角是 60 度,我们可以使用以下公式计算扇形的面积:面积= (60/360) × π × (6 cm)² = (1/6) × 3.14159 ×36 cm² ≈ 18.84956 cm²所以,这个扇形的面积约为 18.85 平方厘米。

弓形的面积弓形是一个由圆弧、半径和两个弦所围成的图形。

弓形的面积是弓形圆心角所对应的圆弧面积减去弓形中的三角形面积。

公式推导设弓形的半径为r,圆心角为θ(单位为弧度),我们可以使用下面的公式计算弓形的面积:面积= (θ/2π) × πr² - (1/2) × r² × sin(θ)其中,sin(θ) 是角度θ的正弦值。

例子例如,如果一个弓形的半径是 8 cm ,圆心角是 90 度,我们可以使用以下公式计算弓形的面积:面积= (90/360) × π × (8 cm)² - (1/2) × (8 cm)² × sin(90°)= (1/4) × 3.14159 × 64 cm² - (1/2) × 64 cm² × 1≈ 12.56637 cm² - 32 cm²≈ -19.43363 cm²因为弓形在这个例子中是开口向下的,并且sin(90°)等于1,所以面积为负数。

扇形、三角形、弓形、菱形公式[整理版]

扇形、三角形、弓形、菱形公式[整理版]

常用面积公式面积公式扇形面积公式00在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:00S=nπR²÷360 00比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:00C=2R+nπR÷180 00=2×1+135×3.14×1÷180 00=2+2.355 00=4.355(cm)=43.55(mm) 00扇形的面积:00S=nπR²÷360 00=135×3.14×1×1÷360 00=1.1775(cm²)=117.75(mm²) 00扇形还有另一个面积公式00S=1/2lR 00其中l为弧长,R为半径00扇环面积00圆环周长:外圆的周长+内圆的周长(圆周率X(大直径+小直径)) 0圆环面积:外圆面积-内圆面积(圆周率X大半径的平方-圆周率X小半径的平方\圆周率X(大半径的平方-小半径的平方)) 00用字母表示:00S内+S外(∏R方)00S外—S内=∏(R方-r方)00还有第二种方法:00S=π[(R-r)×(R+r)] 00R=大圆半径00r=圆环宽度=大圆半径-小圆半径00还有一种方法:00已知圆环的外直径为D,圆环厚度(即外内半径之差)为d。

00d=R-r,00D-d=2R-(R-r)=R+r,00可由第一、二种方法推得S=π[(R-r)×(R+r)]=π(D-d)×d,0圆环面积S=π(D-d)×d 00这是根据外直径和圆环厚度(即外内半径之差)得出面积。

这两个数据在现实易于测量,适用于计算实物,例如圆钢管。

三角形面积公式00海伦公式00任意三角形的面积公式(海伦公式):S²=p(p-a)(p-b)(p-c), p=(a+b+c)/2, a.b.c为三角形三边。

初中几何圆、扇形、弓形的面积及阴影部分面积专项

初中几何圆、扇形、弓形的面积及阴影部分面积专项

初中几何圆、扇形、弓形的面积及阴影部分面积专项一、圆的面积计算公式:S=R 2,圆心角是1°的扇形面积等于圆面积的1360,圆心角是n 度的扇形面积等于圆的面积的360n ,扇形的弧长等于l=180n R ,⇒S 扇=12lR 。

二、运用公式法、割补法、拼凑法、等积变化法、平移法、旋转法、构造方程法等方法求组合图形的面积。

三、运用割补法、平移法、旋转法、等积变换法、容斥原理求阴影部分面积。

1、弓形面积弓形的面积可以转化为扇形的面积与三角形的面积之差,如下图所示,弓形AmB 的面积S弓形=S 扇性AOB -S △AOB弓形的面积可以转化为:扇形的面积与三角形的面积之和,如下图所示弓形AmB 的面积S 弓形= S 扇性AOB +S △AOB注:①当弓形所含的弧是劣弧时如甲图所示,弓形AmB 的面积S 弓形=S 扇性AOB -S △AOB②当弓形所含的弧是优弧时,如图乙所示,AnB 的面积S 弓形= S 扇性AOB +S △AOB③当弓形所含的弧是半圆时,弓形的面积S 弓形=12S 圆 如图:半径OA=6cm,C 为OB 的中点,∠AOB=120°,求阴影部分面积S 。

(右:乙图)解:由图形可知,S 阴影ABC =S 扇性ABO -S △ACO ,而S 扇形ABO =21206360⋅=12,S △ACO =12×6×3×sin60°=932,所以S 阴影ABC =(93122-)cm 2。

2、割补法凡求与圆有关的不规则图形面积问题,一般都要把它转化为三角形、扇形、弓形的面积来求解,在进行复杂的图形的面积计算时,时常通过添加辅助线,把图形分割成若干个基本图形求解,这种求解的方法是经常用到的。

如图:⊙O 中的弦AC=2cm ,圆周角∠ABC=45°,求图中阴影部分的面积。

(部分与整体)解:做⊙O 的直径AB 1,则连结OC 、B 1C ,∠ACB=90°,∠B=∠B 1,AB 1=22,∵OA=2,∴S △AOC=1,S 扇形AOC =12,∴S 阴影=S 扇形AOC -S △AOC =12-1 例二:如图在两个半圆中大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN=a ,ON ,CD 分别为两圆的半径,求阴影部分的面积。

[资料]弓形的面积计算公式

[资料]弓形的面积计算公式

关于弓形的公式如下;
F=弓形面积,c=弓形弦长,r=弓形半径,L=弓形弧长,a=弓形圆心角,
h=弓形弦高,√=根号
F=1/2[rL-c(r-h)]
c=2√[h(2r-h)]
r=(c²+4h²)/8h
L=0.01745ra
a=57.296L/r
h=r-1/2√(4r²-c³)
以上公式抄录于《常用金属材料手册》
设弓形AB所对的弧为弧AB,那么:当弧AB是劣弧时,那么S弓形=S 扇形-S△AOB(A、B是弧的端点,O是圆心)。

当弧AB是半圆时,那么S弓形=S扇形=1/2S圆=1/2×πr²。

当弧AB是优弧时,那么S弓形=S 扇形+S△AOB(A、B是弧的端点,O是圆心)计算公式分别是:
S=nπR²/360-ah/2 S=πR²/2 S=nπR²/360+ah/2
弓形面积的通用计算公式
2011-10-02 00:35:03| 分类:几何学| 标签:平面几何|字号大中小订阅
一、已知弓形的底为(2a)、高为h;
二、弓形半径公式:
R=(a2+h2) /(2h);
三、弓形面积的通用计算公式:
S=a(h-R)+R2arccos(1-h/R)(劣弧弓形、优弧弓形,二者通用)。

弧形面积的计算公式

弧形面积的计算公式

弧形面积的计算公式弧形是数学中常见的一个几何形状,用于描述两个点之间的弧线段。

计算弧形的面积是几何学中的一个经典问题,有多种方法可以解决。

本文将介绍三种常见的计算弧形面积的方法和公式。

一、扇形面积公式扇形是一种特殊的弧形,其两个端点与圆心连线构成一个三角形,我们可以通过计算扇形的三角形面积再减去扇形中央的三角形面积来得到扇形的面积。

扇形面积公式如下:S=(θ/360)×π×r²其中,S表示扇形的面积,θ表示扇形的圆心角(夹角),r表示扇形的半径。

二、弓形面积公式弓形是一种将两个不同的弧线段连接起来的形状,计算弓形的面积可以通过计算各个弧形的面积之和来得到。

弓形面积公式如下:S=S1+S2其中,S表示弓形的面积,S1和S2表示两个弧形的面积。

三、圆环形面积公式圆环形是一种由两个同心圆构成的形状,计算圆环形的面积可以通过计算外圆形的面积减去内圆形的面积来得到。

圆环形面积公式如下:S=π×(R²-r²)其中,S表示圆环形的面积,R表示外圆的半径,r表示内圆的半径。

需要注意的是,这些公式都是在二维平面上计算弧形的面积,如果涉及到三维空间中的弧形,则需要进行相应的扩展。

除了这些基本的计算公式,还有一些更复杂的问题需要考虑,比如计算两个不同半径的圆弧所围成的面积、计算两个非圆形的弧线段所围成的面积等。

这些问题通常需要采用数值计算或者数学模型来求解。

总结起来,计算弧形面积的公式主要包括扇形面积公式、弓形面积公式和圆环形面积公式。

通过学习和理解这些公式,我们可以更好地理解和应用弧形的几何性质。

六年级奥数:扇形的周长与面积和弓形面积

六年级奥数:扇形的周长与面积和弓形面积

六年级奥数:扇形的周长与面积和弓形面积圆规和直尺圆规和直尺一块儿住进了文具盒。

圆规说:“我能画圆,你行吗?”“我横竖都会画,你行吗?”直尺很不服气。

文具盒听了,说:“别争了,谁能画一面扇形,谁就最行。

”圆规和直尺都为难了。

文具盒又说:“你俩一块儿合作,不就行了吗?”圆规和直尺同心协力,很快画好了扇形。

从此,它们成了好朋友。

编后语:圆规和直尺各有自己的长处,也各有自己的不足,两者是不应互相瞧不起的。

后来,由于双方的真诚合作,充分发挥了各自的优势,创造了许多新的事物。

这则寓言告诉我们这样一个道理:一个人的智慧和力量是有限的,众人合作就会创造出新事物,新生活。

知识框架圆的知识:1.当一条线段绕着它的一个端点O在平面上旋转一周时,它的另一端点所画成的封闭曲线叫做圆,点O叫做这个圆的圆心.2.连结一个圆的圆心和圆周上任一点的线段叫做圆的半径.3.连结圆上任意两点的线段叫做圆的弦.过圆心的弦叫做圆的直径.4.圆的周长与直径的比叫做圆周率.圆周上任意两点间的部分叫做弧.5.圆周长=直径×π.=半径×2π 圆面积=π×半径2.扇形的知识:1.扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧组成的图形.顶点在圆心的角叫做圆心角.2.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n. 3. 扇形中的弧长= 180r n π.扇形的周长= 180r n π+2r.扇形的面积=3602r n π =.弓形的知识:【例 1】 弦与它所对的弧所组成的图形叫做弓形.【一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)】重点:圆与扇形的面积和周长计算公式;弓形的面积公式。

难点:计算周长时,首先要分清围成这一图形的边有哪些,再正确计算。

计算面积时,首先要根据图形组合的形式,用会求的图形的面积去求的题目所要求的图形面积。

圆内弓形面积计算公式

圆内弓形面积计算公式

圆内弓形面积计算公式1. 弓形的定义。

- 弓形是由弦及其所对的弧组成的图形。

在圆中,弦与它所对应的弧围成的部分就是弓形。

2. 弓形面积的计算(分两种情况)- 情况一:当弓形所对的圆心角为锐角时。

- 设圆的半径为r,弓形所对的圆心角为α(弧度制),弦长为l。

- 首先求扇形的面积S_扇=(1)/(2)α r^2。

- 然后求三角形的面积S_=(1)/(2)r^2sinα。

- 那么弓形的面积S = S_扇-S_=(1)/(2)α r^2-(1)/(2)r^2s inα=(1)/(2)r^2(α -sinα)。

- 若圆心角α是角度制,需要先将其转化为弧度制,α=(nπ)/(180)(n为角度数)。

- 情况二:当弓形所对的圆心角为钝角时。

- 同样设圆的半径为r,弓形所对的圆心角为α(弧度制),弦长为l。

- 扇形面积S_扇=(1)/(2)α r^2。

- 三角形面积S_=(1)/(2)r^2sin(π-α)=(1)/(2)r^2sinα。

- 此时弓形面积S = S_扇+S_=(1)/(2)α r^2+(1)/(2)r^2sinα=(1)/(2)r^2(α+sinα)。

- 已知弦长l和半径r求弓形面积(通用方法)- 先根据cos(α)/(2)=(√(r^2)-<=ft(frac{l)/(2))^{2}}{r}求出(α)/(2),进而得到圆心角α = 2arccos(√(r^2)-<=ft(frac{l)/(2))^{2}}{r}。

- 再按照前面的方法根据圆心角α的大小判断是用S=(1)/(2)r^2(α - sinα)(α为锐角)还是S=(1)/(2)r^2(α+sinα)(α为钝角)来计算弓形面积。

扇形弓形面积计算公式(一)

扇形弓形面积计算公式(一)

扇形弓形面积计算公式(一)扇形弓形面积计算公式扇形面积计算公式扇形是圆形的一部分,计算扇形的面积需要知道圆的半径和扇形的弧度。

扇形面积计算公式如下:扇形面积 = (圆的半径 * 圆的半径 * 弧度) / 2其中,圆的半径是指从圆心到圆上任意一点的距离,弧度是扇形所对应的圆心角的弧度值(1弧度= 180/π度)。

例子假设有一个半径为5 cm的扇形,对应的圆心角为60°,则可以使用扇形面积计算公式来计算扇形的面积:圆的半径 = 5 cm弧度= 60° * π / 180° = π / 3 rad扇形面积= (5 cm * 5 cm * π / 3 rad) / 2= (25 cm² * π / 3 rad) / 2≈ cm²因此,该半径为5 cm,圆心角为60°的扇形的面积约为cm²。

弓形面积计算公式弓形是圆的一部分,同时含有一条弦线。

计算弓形的面积需要知道圆的半径和弓形的弧度,以及弦线的长度。

弓形面积计算公式如下: 弓形面积 = (圆的半径 * 圆的半径 * 弧度 - 弦线的长度 * 圆的半径 * ) / 2其中,圆的半径和弧度的含义与扇形相同,弦线的长度是弓形上两点所连成的线段的长度。

例子假设有一个半径为8 cm的弓形,对应的圆心角为90°,弦线的长度为10 cm,则可以使用弓形面积计算公式来计算弓形的面积: 圆的半径 = 8 cm弧度= 90° * π / 180° = π / 2 rad弦线的长度 = 10 cm弓形面积= (8 cm * 8 cm * π / 2 rad - 10 cm * 8 cm * ) / 2= (64 cm² * π / 2 rad - 40 cm²) / 2≈ cm²因此,该半径为8 cm,圆心角为90°,弦线长度为10 cm的弓形的面积约为cm²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆、扇形、弓形的面积(三)
教学目标:
1、简单组合图形的分解;
3、通过简单组合图形的分解,培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力.
4、通过对S△与S扇形关系的探讨,进一步研究正多边形与圆的关系,培养学生抽象思维能力和归纳概括能力.
教学重点:
简单组合图形的分解.
教学难点:
正确分解简单的组合图形.
教学过程:
一、新课引入:
上节课学习了弓形面积的计算,并且从中获得了简单组合图形面积的计算可转化为规则图形的和与差来解决的方法.今天我们继续学习“7.20圆、扇形、弓形的面积(三)”,巩固化简单组合图形为规则图形和与差的方法.
学生在学习弓形面积计算的基础上,获得了通过分解简单组合图形,计算其面积的方法.但要正确分解图形,还需一定题量的练习,所以本堂课为学生提供练习题让学生们互相切磋、探讨.通过正多边形的有关计算的复习进一步理解正多边形与圆的关系,随着正多边形边数增加,周长越来越趋向于圆的周长,面积越来越趋向于圆的面积,使学生初步体会极限的思想,了解S△与S扇形之间的关系.
二、新课讲解:
(复习提问):1.圆面积公式是什么?2.扇形面积公式是什么?如何选择公式?3.当弓形的弧是半圆时,其面积等于什么?4.当弓形的弧是劣弧时,其面积怎样求?5.当弓形的弧是优弧时,其面积怎样求?(以上各题均安排中下生回答.)
(幻灯显示题目):如图7-168,已知⊙O上任意一点C为圆心,以R
从题目中可知⊙O的半径为R,“以⊙O上任意一点C为圆心,以R
为半径作弧与⊙O相交于A、B.”为我们提供的数学信息是什么?(安排中上生回答:A、B到O、C的距离相等,都等于OC等于R.)
转化为弓形面积求呢?若能,辅助线应怎样引?(安排中等生回答:能,连结AB.)
大家观察图形不难发现我们所求图形实质是两个弓形的组合,即
倍?(安排中下生回答:因已知OA=OC=AC所以△OAC是等边三角
同学们讨论研究一下,S△AOB又该如何求呢?(安排中上等生回答:求S△AOB,需知AB的长和高的长,所以设OC与AB交点为
D.∵∠AOC=60°,OA=R∴解Rt△AOD就能求出AB与高OD.)连结OC 交AB于D怎么就知OD⊥AB?(安排中等生回答:根据垂径定理∵C是AB中点.)
同学们互相研究看,此题还有什么方法?
下面给出另外两种方法,供参考:
幻灯展示题目:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积.
请同学们仔细观察图形,思考如何分解这个组合图形.同学间互相讨
论、研究、交流看法:
现将学生可能提出的几种方案列出,供参考:
方案1.S阴=S正方形-4S空白.观察图形不难看出SⅡ+SⅣ=S正方形-
方案2.观察图形,由于正方形ABCD∴∠AOB=90°,由正方形的轴对称性可知阴影部分被分成八部分.观察发现半圆AOB的面积-△
即可.即S阴=4S瓣而S瓣=S半⊙-S△AOB∴S阴=4.(S半
⊙-S△AOB)=2S⊙-4S△AOB=2S⊙-S正方形.
方案4.观察扇形EAO,一瓣等于2个弓形,一个S弓形=S扇OA-
方案5.观察Rt△ABC部分.用半圆BOC与半圆AOB去盖Rt△ABC,发现这两个半圆的和比Rt△ABC大,大出一个花瓣和两个弓形,而这两个弓形的和就又是一个瓣.因此有2个S瓣=2个S半圆-SRt△ABC=
方案6.用四个半圆盖正方形,发现其和比正方形大,大的部分恰是S即:
在学生们充分讨论交流之后,要求学生仔细回味展示出来的不同解法.尤其要琢磨这些解法是怎样观察、思考的.
幻灯展示练习题:1.如图7-176,已知正△ABC的半径为R,则它的外接圆周长是____;内切圆周长是____;它的外接圆面积是____;
2.如图7-177,已知正方形ABCD的半径R,则它的外接圆周长是____;内切圆周长是____;它的外接圆面积是____;它的内切圆面积
3.如图7-178,已知正六边形ABCDEF的半径R,则它的外接圆的周长是____;内切圆周长是____;它的外接圆
将上面三片复合到一起.如图7-179,让学生观察,随着正多边形边数的增加,周长和面积有什么变化?(安排中等学生回答:随着正多边形边数的增加,周长越来越接近圆的周长,面积越来越接近圆的面积.)正因为如此,所以古代人用增加正多边形边数的方法研究圆周率π,研究圆的周长与圆的面积的计算.
大家再观察,随着正多边形边数的增加,边长越来越接近于弧,再看正多边形的边心距越来越接近于圆的半径,所以以边长为底,边心距
三、课堂小结:
安排学生归纳所学知识内容:1.简单组合图形的分解;2.复习了正多边形的计算以及以此为例,复习了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.进一步理解了正多边形和圆的关系定理.四、布置作业。

相关文档
最新文档