磁化率测定
磁化率的测定课件

磁记录技术
磁记录技术是利用磁性材料的磁化率 变化来记录和存储信息的一种技术, 广泛应用于计算机存储、音频和视频 记录等领域。
地球科学中的磁化率测定
地质年代测定
通过测定岩石的磁化率,可以推 断出岩石的年代和地质历史,为
地质学研究提供重要依据。
地球磁场研究
地球磁场是由地球内部的铁、镍 等金属元素产生的,通过测定不 同地点的磁化率,可以研究地球
核磁共振法
总结词
一种高精度磁化率测定方法,利用核磁共振原理测量物质的磁化率。
详细描述
核磁共振法利用原子核的磁矩和磁场相互作用原理来测量物质的磁化率。在测量 过程中,样品被放置在强磁场中,并利用射频脉冲激发原子核产生共振。通过测 量共振信号的强度和频率,可以计算出样品的磁化率。
热磁仪法
总结词
一种测量顺磁性物质磁化率的方法,通过加热样品并测量其磁化率变化。
展望了未来实验装置和技术的发展方向, 以提高测量精度和效率。
多物理场耦合效应的研究
跨学科交叉研究
强调了多物理场耦合效应在磁化率研究中 的重要性,探讨了相关研究的前景。
鼓励跨学科交叉研究,以促进磁化率测量 领域与其他学科领域的交流与合作。
感谢您的观看
THANKS
常用的磁化率测定方法有振动 样品磁强计法、悬浮液法、核 磁共振法等。
在测定过程中,需要注意消除 其他磁场干扰,保证测量结果 的准确性和可靠性。
02
磁化率测定的方法
振动样品磁化率仪法
总结词
一种常用的磁化率测定方法,通过振动样品来测量磁化率。
详细描述
该方法利用振动样品磁化率仪来测量物质的磁化率。在测量 过程中,样品被放置在特定的磁场中,并通过振动来改变磁 场强度。通过测量振动的幅度和频率,可以计算出样品的磁 化率。
磁化率的测定

实验报告:磁化率测定一、实验目的1. 掌握古埃(Gouy)磁天平测定磁化率的原理和方法。
2. 测定三种络合物的磁化率,求算未成对电子数,判断分子配键的类型。
二、实验原理1 .磁化与磁化率外加磁场作用下:B=B0+B′=μ0H+B′其中,B0为外磁场的磁感应强度;B′为物质磁化产生并附加的磁感应强度;H为外磁场强度。
μ0为真空磁导率,数值为4π×10−7。
物质的磁化强度用M表示M=χHχ为体积磁化率,又分为质量磁化率χm=χ/ρ和摩尔磁化率χM=Mχ/ρ2. 摩尔磁化率和分子磁矩物质在外磁场作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场。
物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:H‘=4πχH0物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩μm = 0。
当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。
如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。
这种物质称为反磁性物质,如Hg、Cu、Bi等。
它的χm称为反磁磁化率,用χ反表示,且χ反< 0。
第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩μm≠ 0。
这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn、Cr、Pt等,表现出的顺磁磁化率用χ顺表示。
但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺与反磁磁化率χ反之和。
因|χ顺|≫|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零。
第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。
这种物质称为铁磁性物质。
对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μm关系可由居里——郎之万公式表示:χm=χ顺=Lμm2μ03kT这个公式是在顺磁性下的近似计算。
磁化率的测定

实验十六 磁化率的测定1. 摘要磁化率的测定是一个经典的磁学测量方法。
1889年Gouy [1]建立了在均匀磁场中测量磁化率的古埃法,1964年Mulay [2]设计了在非均匀磁声中测定磁化率的Faraday 法。
摩尔磁化率定义为据κ的特点将物质分为三类:κ>0称顺磁性物质;κ<0称反磁性物质;另外有少数物质的κ值与外磁场H 有关,随外磁场强度的增加而急剧地增强,且伴有剩磁现象,称此为铁磁性物质(如铁、钴、镍等)。
凡原子分子中具有自旋未配对电子的物质都是存在固有磁矩的顺磁性物质。
这些原子分子的磁矩象小磁铁一样,在外磁场中总是趋向顺着磁场方向定向排列,但原子分子的热运动又使这些磁矩趋向混乱,在一定温度下这两个因素达成平衡,使原子分子磁矩部分顺着磁场方向定向排列而得以增强物质内部的磁场,显示顺磁性。
凡是原子分子中电子自旋已配对的物质,一般是反磁性的物质。
大部分物质属反磁性。
其原因是物质内部电子轨道运动受外磁场作用,感应出“分子电流”而产生与外磁场方向相反的诱导磁矩。
一般说来,原子分子中含电子数目较多电子活动范围较大时,其反磁化率就较大。
实际上顺磁物质的磁化率除了分子磁矩定向排列所产生的χ顺外,同时还包含有感应所产生的反磁化率χ反,即:χM =χ顺+χ反由于χ顺比χ反大1~3个数量级,因此顺磁性物质的反磁性被掩盖而表现出顺磁性。
在不很精确的计算中,可近似地视χ顺为χM 。
顺磁化率与分子磁矩的关系一般服从居里定律(2.16.2)式将物质的宏观性质χM 与物质的微观性质μ联系起来,因此可通过实验测定χM 来计算物质分子的永久磁矩μ。
实验表明,对自由基或其它具有未成对电子的分子和某些第一族过渡元素离子的磁矩μ与未成对电子数n 的关系为B n n μμ)2(+= (2.16.3)联系(2.16.2)和(2.16.3)两式,可直接得到n 的表达式 11)2(84.22-++=T n n n 顺χ (2.16.4)(2.16.1)(2.16.2)关键词:顺磁 反磁 分子磁矩 摩尔磁化率 古埃氏天平 2. 仪器药品磁化率的测定通常可用共振法或天平法。
磁化率的测定数据处理

磁化率的测定数据处理磁化率是描述某物质受磁场作用的程度的重要参数。
通过测定磁化率,可以深入了解物质的磁性质,并了解其与外界磁场的相互作用情况。
本文主要介绍了磁化率的测定及其数据处理方法。
一、磁化率的测定方法常见的磁化率测定方法有Susceptometer法和法拉第电桥法。
下面分别介绍这两种方法。
(一)Susceptometer法Susceptometer法是通过测量磁化物质在外界磁场作用下所呈现的磁化强度来确定其磁化率的方法。
通常使用交流恒磁场的自激振荡磁化强度(SRO)进行测量。
Susceptometer 的结构如图1所示:1、交流恒磁场发生器;2、圆柱形样品,左右两端连有线圈;3、SQUID (超导量子干涉器);4、低温漏斗。
测量方法如下:(1)将样品放入Susceptometer,经过恒温、吸氧等处理后,使用计算机控制交流恒磁场发生器,使其在一定的频率范围内施加不同磁场,得到由SQUID和样品产生的恒磁场和反向恒磁场的超导电流响应,通过一系列采样后存储于计算机;(2)计算机对采样进行处理,得到样品在不同频率下的SRO曲线,并根据该曲线计算出样品的磁化率。
(二)法拉第电桥法法拉第电桥法先测定磁场中两同时刻的电压,然后测定有样品存在的同步时间内的电压再进行比较,以求解样品的磁化。
(1)漏斗将样品置于交变磁场中,通过测量桥式电路的电压差ΔU ,计算样品磁化率。
(2)调整小动臂,使得样品的磁化强度为0,记录下来其与O引脚间的电压V0和隔板间的电压差U0,这样,电桥现在是平衡的。
(3)微调小动臂,使样品有一些磁化量,然后测量出它和O引脚之间的电压V1和隔板间的电压差U1。
此时,我们会发现电桥失去了平衡。
(4)根据电桥各个支路上的电压,导出磁化率公式并进行计算。
在进行Susceptometer测量时,关键是选择适当的交变磁场的频率范围。
需要注意的是,磁场的频率不能低于皮肤效应频率,也不能高于自旋共振频率。
磁化率测量的原理和方法

磁化率测量的原理和方法
磁化率是磁介质材料对磁场的响应能力,是描述材料磁性质的重要物理量。
测量磁化率的原理是通过在外加磁场作用下测量磁介质的磁感应强度和磁场强度之间的比值,即磁化率。
测量磁化率的方法包括静态方法和动态方法。
静态方法是指在稳恒磁场作用下测量磁化率,常用的有差动法、极化法、弗朗克-开尔法等。
动态方法是指在交变磁场中测量磁化率,常用的有交变哈密顿法和温度依赖磁化率法。
差动法是常用的测量磁化率的方法之一,它利用了磁场的线性性和叠加性。
差动法的测量原理是在同一均匀恒定磁场中,分别测量放置在磁感应强度相同但方向相反的两个试样的磁感应强度,通过计算两个磁感应强度的差值和试样的体积和质量可以得到磁化率。
极化法是利用了磁场的非线性性,将试样放置在一个强磁场中,使磁矩方向随时间发生正、反变化,测量磁矩的变化曲线,在分析磁矩与磁场的关系得到磁化率。
弗朗克-开尔法是利用磁矩与温度的关系测量磁化率的方法,它的原理是将试样置于一定磁场中,温度从高到低变化时,测量试样在不同温度下的磁矩和磁场强度,从而求出磁化率与温度的关系。
交变哈密顿法是基于频率依赖磁化率原理的测量方法,它是通过在交变磁场中测量试样的阻抗变化来确定磁化率。
温度依赖磁化率法是通过测量试样在不同温度
下的磁滞回线和磁场强度得到磁化率随温度的变化规律。
磁化率的测定

磁化率的测定磁化率是描述物质磁性的物理量,它是一个无量纲的比例系数,表示物质在外加磁场下的磁化程度。
磁化率的测定是物理学研究中的重要实验方法之一。
本文将介绍磁化率的测定原理、测量方法以及实验步骤。
一、磁化率的测定原理磁化率是磁化强度和外加磁场强度之间的比值,可以用公式表示为:χ = M/H其中,χ为磁化率,M为物质的磁化强度,H为外加磁场强度。
通过测量物质在不同外加磁场下的磁化强度,可以得到磁化率的数值。
二、磁化率的测量方法常见的磁化率测量方法有磁感应强度法、霍尔效应法、磁滞回线法等。
1. 磁感应强度法:该方法利用磁场中的磁感应强度与磁化强度之间的关系来测量磁化率。
实验中,通过改变外加磁场的强度,测量物质的磁感应强度,然后计算得到磁化率。
2. 霍尔效应法:该方法利用霍尔效应来测量磁化率。
实验中,将物质置于磁场中,利用霍尔元件测量磁场引起的电势差,通过计算得到磁化率。
3. 磁滞回线法:该方法适用于测量磁化率随外加磁场的变化情况。
实验中,将物质置于交变磁场中,测量物质的磁滞回线,通过分析磁滞回线的形状和大小,可以得到磁化率。
1. 准备实验所需的材料和仪器,包括物质样品、磁场发生器、磁感应强度计等。
2. 根据实验要求选择适当的测量方法,例如磁感应强度法、霍尔效应法或磁滞回线法。
3. 进行实验前的准备工作,包括校准仪器、调整实验参数等。
4. 开始实验,根据测量方法的要求进行实验操作。
例如,在磁感应强度法中,通过改变外加磁场的强度,测量物质的磁感应强度,并记录数据。
5. 根据实验数据计算磁化率的数值,并进行数据处理和分析。
6. 根据实验结果,进行实验讨论和结论,对实验结果进行解释和分析。
四、总结磁化率的测定是物理学实验中的一项重要内容,通过测量物质在不同外加磁场下的磁化强度,可以得到磁化率的数值。
常用的测量方法包括磁感应强度法、霍尔效应法和磁滞回线法。
在进行实验时,需要注意实验步骤的正确性和仪器的准确性。
实验二十一磁化率的测定

实验十一磁化率的测定一、目的要求1.掌握Gouy磁天平测定物质磁化率的实验原理和技术。
2.通过对一些配合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。
二、实验原理物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场H'。
这时该物质内部的磁感应强度B为外磁场强度H与附加磁场强度H'之和:B=H十H'=H十4πχH=μH (1)式中χ称为物质的体积磁化率、表示单位体积物质的磁化能力,是无量纲的物理量。
μ称为导磁率,与物质的磁化学性质有关。
由于历史原因,目前磁化学在文献和手册中仍多半采用静电单位(CGSE),磁感应强度的单位用高斯(G),它与国际单位制中的特斯拉(T)的换算关系是1T=10000G磁场强度与磁感应强度不同、是反映外磁场性质的物理量.与物质的磁化学性质无关。
习惯上采用的单位为奥斯特(oe).它与国际单位A·m-1的换算关系为1oe= 1/4πX10-3 A·m-1由于真空的导磁率被定为:μ=4π×10-7Wb·A-1·m-1,而空气的导磁率μ空≈μ0,因而1oe=1×10-4Wb·m-2=1×10-4T=1G这就是说1奥斯特的磁场强度在空气介质中所产生的磁感应强度正好是1高斯,二者单位虽然不同.但在量值上是等同的。
习惯上用测磁仪器测得的"磁场强度"实际上都是指在某一介质中的磁感应强度,因而单位用高斯,测磁仪器也称为高斯计。
除χ外化学上常用单位质量磁化率χm和摩尔磁化率χM来表示物质的磁化能力:χm=χ/ρ(2)χM=M·χM=M·χ/ρ(3)式中ρ和M是物质的密度(g·cm-3)和分子量,χm的单位取cm3·g-1,χM的单位取cm3·mol-1。
物质在外磁场作用下的磁化有三种情况1.χM<o,这类物质称为逆磁性物质。
磁化率的测定

磁化率的测定磁化率的测定是研究物质磁性性质的一种常用方法。
磁化率是描述物质在外磁场作用下磁化程度的物理量,是磁场强度与物质磁化强度之间的比值。
测定磁化率可以帮助我们了解物质的磁性特征,对于研究磁性材料、电磁器件设计等具有重要意义。
磁化率的测定可以通过多种方法实现,下面将介绍几种常见的测定方法。
一、磁化曲线法磁化曲线法是一种基于磁化过程的测定方法。
它通过在外磁场中改变物质的磁化状态,测定物质的磁化强度,从而计算出磁化率。
常用的仪器是霍尔差分磁化仪。
通过在不同磁场强度下测量样品的磁化强度,得到磁化曲线,通过对磁化曲线的分析,可以得到物质的磁化率。
二、振荡磁滞回线法振荡磁滞回线法是一种利用物质在交变磁场中的磁滞特性来测定磁化率的方法。
该方法通过在交变磁场中测量物质的磁化强度和磁场强度的关系,得到磁滞回线,进而计算出磁化率。
常用的仪器是交流磁滞仪。
该方法适用于测量低频范围内的磁化率。
三、饱和磁化法饱和磁化法是一种通过测量物质在饱和磁场下的磁化强度来计算磁化率的方法。
该方法利用了物质在饱和磁场下,磁化强度与磁场强度成线性关系的特点。
通过在饱和磁场下测量磁化强度,可以准确计算出磁化率。
常用的仪器是饱和磁化强度计。
四、库仑法库仑法是一种通过物质在恒定磁场中的磁导率来计算磁化率的方法。
该方法利用了物质在恒定磁场中,磁感应强度与磁场强度成线性关系的特点。
通过测量磁感应强度和磁场强度的比值,可以计算出磁化率。
常用的仪器是库仑磁感应强度计。
以上介绍了几种常见的磁化率测定方法,每种方法都有其适用范围和优缺点。
在实际应用中,选择合适的测定方法需要考虑样品特性、测量精度、实验条件等因素。
磁化率的测定在研究物质磁性性质、材料科学、电磁器件设计等领域具有重要应用价值。
磁化率的测定可以帮助我们了解物质的磁性特征,指导材料的选择和设计,推动科学研究的进展。
通过不断改进测定方法和提高测量精度,我们能够更好地理解和应用磁性材料,为科学技术的发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学实验教学中心
实验报告
化学测量与计算实验Ⅱ
实验名称:磁化率测定
学生姓名:学号:
院(系):年级:级班
指导教师:研究生助教:
实验日期: 2017.05.18 交报告日期: 2017.05.25
一、实验目的
1.测定物质的摩尔磁化率,估计待测金属配合物中心离子的未成对电子数,并判断分子配键的类型;
2.掌握磁天平测定磁化率的原理和方法。
二、实验原理
1. 摩尔磁化率和分子磁矩
在外磁场作用下,由于电子等带电粒子的运动,物质会被磁化而感应出一个附加磁场,这个附加磁场 H′的强度由物质的磁化率 χ 决定: H′=4πχH0①化学上常用摩尔磁化率 χm表示磁化程度,它与 χ 的关系为 χm=χM
ρ
②
式中,M、ρ 分别为物质的摩尔质量与密度。
χm的单位为 m3·mol−1。
对于顺磁性物质而言,摩尔顺磁化率与分子磁矩 μm关系可由居里-郎之万公式表示:
χm=χ
顺=Lμ0μm2
3kT
③
式中,L 为阿伏伽德罗常数,即6.02×1023 mol−1;k 为玻尔兹曼常数,k=1.3806×10−23J/K ;μ0为真空磁导率,μ0=4π×10−7N/A2;T 为热力学温度。
上式可作为由实验测定磁化率来研究物质内部结构的依据。
分子磁矩 μm由分子内未配对电子数 n 决定,其关系为:μm=μB√n(n+2)④
式中,μB为波尔磁子,是磁矩的自然单位。
μB=9.274×10−24J/T (T为
磁感应强度的单位,即特斯拉)。
求得 n 值后,可以进一步判断有关配合
物分子的配键类型。
2. 摩尔磁化率的测定
本实验用古埃磁天平测定物质的摩尔磁化率 χm,测定原理如右图所
示。
一个截面为A的样品管,装入高度为h、质量为m的样品后,放入非
均匀磁场中。
样品管底部位于磁场强度最大之处,即磁极中心线上,此处
磁场强度为H。
样品最高处磁场强度为零。
摩尔磁化率测定原理图样品管内样品受到的力为:F=1
2
A(χ−χ0)μ0H2⑤
式中,χ0为空气的体积磁化率,将 χ 代以χm,并考虑到ρ=m
ℎM
,而χ0值很小,相应的项可以忽略,
可得 F=1
2mχmμ0H2
ℎM
⑥
在磁天平中利用精度为0.1mg的电子天平间接测量 F。
设Δm0为空样管在有磁场和无磁场时的称量值的变化,Δm为装样品后在有磁场和无磁场时的称量值的变化,则
F=(Δm−Δm0)g(g 为重力加速度,取g=9.8 m•s−2)⑦
对比⑥⑦两式可知χm=2(Δm−Δm0)gℎM
μ0mH2
⑧
磁场强度H可由高斯计测量。
应该注意,高斯计测量的实际上是磁感应强度B,单位为T(特斯
六、实验误差来源与注意事项
1.天平称量时,必须关上磁极架外面的玻璃门,以免空气流动对称量的影响。
2.励磁电流的变化应平稳、缓慢,调节电流时不宜用力过大。
加上或去掉磁场时,不要改变永磁体在磁极架上的高低位置及磁极间矩,使样品管处于两磁极的中心位置,磁场强度前后一致。
3.装在样品管内的样品要均匀紧密、上下一致、端面平整、高度测量准确。
4. 样品管一定要干净。
装在样品管内的样品要均匀紧密、上下一致、端面平整、高度测量准确。
样品管的底部要位于磁极极缝的中心,与两磁极两端距离相等。
5. 由于实验实际操作时仪器受环境影响较大,故称量时应尽量不要有大动作的走动,或太多人围观、说话等,应该尽量保持整个称量过程是在没有太多干扰磁场的因素的环境下进行。
6. 读数时最好自始至终由同一个人来读数,以减少由于各人读数时因时间间隔不同所造成的误差。
七、实验思考与讨论
1.简述用磁天平法测定磁化率的基本原理。
答:本实验用古埃磁天平测定物质的摩尔磁化率 χm,测定原理如右图所
示。
一个截面为A的样品管,装入高度为h、质量为m的样品后,放入
非均匀磁场中。
样品管底部位于磁场强度最大之处,即磁极中心线上,
此处磁场强度为H。
样品最高处磁场强度为零。
样品管内样品受到的力为:F=1
2
A(χ−χ0)μ0H2
式中,χ0为空气的体积磁化率,将 χ 代以χm,并考虑到ρ=m
ℎM
,而χ0值很小,相应的项可以忽
略,可得 F=1
2mχmμ0H2
ℎM
在磁天平中利用精度为0.1mg的电子天平间接
测量 F。
设Δm0为空样管在有磁场和无磁场时的称量值的变化,Δm为装样品后在有磁场和无磁场时的称量值的变化,则
F=(Δm−Δm0)g(g 为重力加速度,取g=9.8 m•s−2)
对比以上两式可知χm=2(Δm−Δm0)gℎM
μ0mH2
磁场强度H可由高斯计测量。
应该注意,高斯计测量的实际上是磁感应强度B,单位为T(特斯拉),1T=104高斯。
磁场强度H可由关系式B=µ0H计算得到,H的单位为A/m。
磁场强度也可用已知磁化率的莫尔盐标定。
莫尔盐的摩尔磁化率与热力学温度 T 的关系为
χm B=9500
T+1×4π×M×10−9(m3mol
⁄)(M为莫尔盐的摩尔质量)
2. 本实验中为什么样品装填高度要求在15 cm左右?
答:要求样品装填高度在15cm左右是要确保管顶端位于场强最弱的区域(即场强为0),如果不够高就达不到场强最弱的区域,实验结果将不准确,会有很大误差。
3. 在不同的励磁电流下测定的样品的摩尔磁化率是否相同?为什么实验结果若有不同应如何解释?
答:从理论分析在不同的励磁电流下测定的样品的摩尔磁化率应相同,因为这是由物质本身的性质。