ArcGIS中几种空间插值方法

合集下载

ArcGIS插值方法及其应用

ArcGIS插值方法及其应用

ArcGIS插值方法及其应用在 ArcGIS 中,插值方法是用来预测未知数据值的一种技术。

插值方法可以用于解决各种空间问题,例如地形分析、环境监测、城市规划等。

在 ArcGIS 中,插值方法可以分为两大类:空间插值和属性插值。

空间插值用于预测二维或三维数据的空间分布,而属性插值则用于预测某一属性值在空间区域中的分布。

ArcGIS 中提供了多种插值方法,包括:1. 全局多项式插值:这是一种传统的插值方法,可以用于预测二维或三维数据。

全局多项式插值方法通过建立一个多项式方程来预测未知数据值。

2. 局部多项式插值:与全局多项式插值不同,局部多项式插值方法可以指定插值区域的不同部分使用不同的多项式阶数和参数。

这种方法可以更好地适应局部数据分布。

3. 样条函数插值:样条函数是一种分段多项式插值函数,可以用于预测二维或三维数据。

样条函数插值方法可以通过选择不同的样条插值方法、参数和超参数来适应不同数据分布和复杂程度。

4. 克里金插值:克里金插值方法是一种基于距离权重的插值方法,可以用于预测二维或三维数据。

克里金插值方法通过将距离函数应用于数据点之间的相互关系来预测未知数据值。

5. 泛克里金插值:泛克里金插值方法是一种改进的克里金插值方法,可以用于预测二维或三维数据。

泛克里金插值方法在克里金插值方法的基础上引入了一个泛克里金参数,可以更好地适应数据分布和变化趋势。

6. 指示克里金插值:指示克里金插值方法是一种基于指示数据的插值方法,可以用于预测二维或三维数据。

指示克里金插值方法通过将指示数据应用于数据点之间的相互关系来预测未知数据值。

7. 概率克里金插值:概率克里金插值方法是一种基于概率统计的插值方法,可以用于预测二维或三维数据。

概率克里金插值方法通过将概率分布应用于数据点之间的相互关系来预测未知数据值。

8. 析取克里金插值:析取克里金插值方法是一种基于析取统计的插值方法,可以用于预测二维或三维数据。

析取克里金插值方法通过将析取统计应用于数据点之间的相互关系来预测未知数据值。

arcgis空间内插值教程

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录一、空间插值的概念和原理当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。

但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。

例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。

空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。

利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。

二、空间插值的几种方法及本次实习采用的原理和方法–整体插值方法»边界内插方法»趋势面分析»变换函数插值–局部分块插值方法»自然邻域法»移动平均插值方法:反距离权重插值»样条函数插值法(薄板样条和张力样条法)»空间自协方差最佳插值方法:克里金插值■局部插值方法的控制点个数与控制点选择问题局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。

为此,第一要注意的是控制点的个数。

控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。

为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。

第二需要注意的是怎样选择控制点。

一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。

S6、按照不同方法进行空间插值,并比较各自优劣打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:A、采用反距离权重法(IDW)对降水量数据进行插值:反距离权重法的特点是按照距离待插值点的远近核定已知数据点的权重,从而对待插值点进行插值的过程。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

arcgis插值方法

arcgis插值方法

arcgis插值方法ArcGIS插值方法是一种利用已知的离散点数据来推算未知地点的值的技术。

在地理信息系统中,插值方法被广泛应用于地形分析、环境模拟、资源评估等领域。

本文将介绍几种常用的ArcGIS插值方法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。

我们来了解一下反距离加权插值(IDW)方法。

IDW方法假设距离越近的点对结果的影响越大,离待插值点越远的点对结果的影响越小。

IDW方法计算待插值点的值时,根据离待插值点的距离和邻域内点的值进行加权平均,得到待插值点的值。

IDW方法的优点是简单易懂,计算速度较快,适用于点密度较大且趋势较明显的情况。

但是IDW方法对异常值敏感,对点密度不均匀的数据拟合效果较差。

克里金插值(Kriging)是一种基于地统计学原理的插值方法。

克里金插值方法假设未知点的值是其周围点值的线性组合,并尽量使残差(即预测值与实际值之差)的方差最小。

根据克里金插值方法的预测模型,可以得到未知点的值。

克里金插值方法考虑了空间相关性,适用于点密度较低、数据不均匀分布的情况。

克里金插值方法的不足之处在于计算复杂度较高,对数据变异性的要求较高,需要根据实际情况选择合适的克里金模型。

除了IDW和克里金插值方法,ArcGIS还提供了样条插值(Spline)方法。

样条插值方法通过拟合一个平滑的曲面来估计未知点的值。

样条插值方法在计算过程中考虑了各个点的权重,能够较好地反映数据的变化趋势。

样条插值方法的优点是对数据分布没有要求,适用于各种数据类型。

但是样条插值方法需要较大的计算量,对数据噪声敏感。

除了上述三种常用的插值方法,ArcGIS还提供了其他一些插值方法,如最近邻插值、自然邻近插值等。

这些方法各有特点,可以根据实际需求选择合适的插值方法。

在使用ArcGIS进行插值分析时,除了选择合适的插值方法,还需要注意数据的质量和分布情况。

数据质量好、点密度均匀的情况下,插值结果会更加准确可靠。

ARCGIS插值操作

ARCGIS插值操作

ARCGIS插值操作在ARCGIS中,有多种插值方法可供选择,如Kriging插值、逆距离权重插值(IDW)、三角网插值(TIN)等。

以下将对这些方法进行探讨。

1. Kriging插值:Kriging是一种基于空间自相关的插值方法,可以通过评估观测点之间的空间相关性来进行数据推断。

Kriging插值对数据点之间的空间关系进行了建模,并生成了准确的等值面。

与其他插值方法相比,Kriging插值可以提供更准确和平滑的结果。

2.逆距离权重插值(IDW):IDW是一种基于观测点之间距离的插值方法,它假设离测量点越近的点对其值的影响越大。

IDW插值通过计算距离加权平均值来生成表面。

这种方法易于实现,并且对数据点的密度变化较为敏感,但可能会产生过度平滑的结果。

3.三角网插值(TIN):TIN是一种基于三角形的插值方法,它通过将测量点连接成三角形网格来生成表面。

TIN插值使用了Delaunay三角剖分算法,该算法有效地处理了不规则观测点布局的数据。

然后,通过线性插值在每个三角形内进行插值。

TIN插值对数据点的布局要求更高,可以有效处理非均匀分布的观测点。

除了这些主要的插值方法外,ARCGIS还提供了其他一些插值方法,如径向基函数插值(RBF),全局多项式插值(GPI),局部多项式插值(LPI)等。

这些方法可以根据数据的特点和用户的需求进行选择。

在ARCGIS中,进行插值操作的步骤包括:1.导入数据集:首先,需要将包含观测点和其对应值的数据集导入ARCGIS中。

2.创建插值图层:选择合适的插值方法,并根据数据分布和用户需求设置相应的插值参数。

然后,创建一个插值图层来表示生成的等值面。

3.插值处理:运行插值操作,ARCGIS会根据所选的插值方法和参数计算观测点的值,并生成光滑的等值面。

4.可视化和分析:通过调整等值面的样式和颜色编码,可以对结果进行可视化。

还可以进一步分析生成的等值面,如计算最大、最小值,获取特定值所在位置等。

ArcGIS三种插值功能

ArcGIS三种插值功能

ArcGIS三种插值功能
arcgis中有三个地方提供了空间插值的功能,
spatial analysis中有interpolate to raster 命令中主要是把矢量的点线图层,插值成栅格图层
3D Analysis中有也有interpolate to raste命令,只是这里面的工具多一个自然临近插值法。

这是传统的空间插值方法,近年来地统计的插值方法逐渐的流行起来,模块Geostatistical analysis中(克里金插值,协同克里金等方法),理论上有基台值等概念,前提是均值为零,方差为1。

这一模块用起来也比较复杂,简单的介绍一下:
步骤一:探索数据(比如十二个气象站点的降雨侵蚀力数据是不是满足某一个方程,具体和哪个方程想匹配,要通过不断的探索)这一过程通过explore data下的 Normal QQPlot来看,这里面有不少函数如long变换后数据在一个轴上,这就要在第二个过程中用long 函数运行
步骤二:wizard向导进行地统计学插值,选用Kriging方法,一路next后,在finish前面的最后一个对话框中观察均值是不是趋近于0,方差是不是趋近于1,这两个条件不满足,就要back到前面的对话框中不断地调整参数,直到满足这两个条件为止。

我还在想一个问题就是插值和重采样(arcgis中可以在arctoolbox中research--resample实现)的区别,当栅格不是我需要的大小是,我一般都是进行重采样的,可以选择不同的采样方法,二次方程,三次卷积等等。

ARCGIS插值方法原理

ARCGIS插值方法原理

ARCGIS插值方法原理ArcGIS是一款具备强大的空间分析和地理信息系统功能的软件。

在该软件中,插值方法是一种常用的空间分析工具,用于估计未知位置上的数据值。

ArcGIS提供了多种插值方法,包括克里金插值、反距离插值、样条插值等。

下面将分别介绍这些方法的原理和使用情况。

1.克里金插值方法克里金插值方法是一种基于空间自相关性原理的插值方法,通过对样本点进行空间相关分析,然后根据该分析结果对未知位置进行插值。

克里金插值方法的原理基于克里金理论,即通过计算样本点与未知点之间的空间相关性,来预测未知点的数值。

在ArcGIS中,克里金插值方法有多种变体,如简单克里金、普通克里金、泛克里金等。

2.反距离插值方法反距离插值方法是一种基于距离程度的插值方法,其原理是认为未知位置的值与其周围已知值的距离成反比。

因此,距离已知点越近的未知位置,其值越可能与该已知点相似。

在ArcGIS中,反距离插值方法提供了多种参数选项,如权重指数、半径等,用户可以根据具体应用场景进行选择和调整。

3.样条插值方法样条插值方法是一种基于数学函数模型的插值方法,在ArcGIS中也被称为Kriging方法。

该方法将空间表面视为一个连续的函数,通过对样本点进行函数拟合,来推断未知位置的值。

样条插值方法可分为二维样条插值和三维样条插值,具体使用哪种方法取决于输入样本数据的空间特征。

ArcGIS还提供了其他插值方法,如最近邻插值、多项式插值等。

这些方法根据数据特性和需求的不同,可以选择相应的插值方法来推断未知位置的值。

在插值过程中,用户可以调整一些参数选项,如网格大小、半径等,以获得更准确的插值结果。

此外,用户还可以通过制作插值模型和验证结果的方式,进一步优化插值的效果。

总结起来,ArcGIS提供了多种插值方法,可以根据实际情况选择适合的方法。

这些方法的原理基于空间自相关性、距离程度和数学函数模型等,利用已知点的信息来推测未知位置的值。

插值方法在地理信息系统中有着广泛的应用,可以用于生成地图、估算地下水位、预测空气质量等。

GIS空间数据插值方法优劣比较分析

GIS空间数据插值方法优劣比较分析

GIS空间数据插值方法优劣比较分析GIS(地理信息系统)是一种以地理坐标为基础,用于存储、处理、分析和可视化地理数据的强大工具。

在GIS中,空间数据插值是一种常用的技术,用于根据已知的点数据来估计未知地点的属性值。

本文将对常见的GIS空间数据插值方法进行优劣比较分析,以帮助用户选择适合自己需求的方法。

1. Kriging插值法Kriging是一种基于统计模型的插值方法,其基本思想是用已知点的值的权重的线性和来估计未知点的值。

Kriging方法考虑了空间数据的空间相关性,针对空间上的各点给予不同的权重,可以得到较为准确的预测结果。

相比于其他插值方法,Kriging在保持空间一致性和稳定性方面具有优势,但其计算复杂度较高,对于大规模数据和计算资源有要求。

2. 反距离加权插值法反距离加权法是一种简单而直观的插值方法。

其基本思想是根据已知点到未知点的距离的倒数来给予权重,在插值时对已知点的值进行加权平均。

反距离加权插值法对于局部数据的变化敏感,对离插值点较近的点给予较大的权重,因此适用于局部变化较为明显的情况。

然而,反距离加权法没有考虑空间相关性,容易受到离群点的影响。

3. 最近邻插值法最近邻插值法是一种简单而快速的插值方法。

其基本思想是在已知点中找到最近的邻居点,将其值作为未知点的值。

最近邻插值法适用于空间数据较为离散、空间相关性较小的情况。

然而,最近邻插值法无法提供流畅的表面,结果可能是一个由离散点组成的表面。

4. 样条插值法样条插值法是一种平滑而连续的插值方法。

其基本思想是通过插值节点处的多项式函数来逼近已知点的形态。

样条插值法能够提供流畅的表面,并在插值点周围具有较高的精度。

但样条插值法对于大规模数据的计算较为复杂,且对插值节点选取较为敏感,需要合适的节点密度来平衡平滑性与精度。

综上所述,不同的GIS空间数据插值方法具有各自的优势和劣势。

Kriging插值法在保持空间一致性和稳定性方面具有优势,但计算复杂度较高;反距离加权法适用于局部变化较为明显的情况,但容易受到离群点的影响;最近邻插值法简单而快速,适用于空间数据较为离散的情况,但无法提供流畅的表面;样条插值法能够提供流畅的表面,具有较高的精度,但计算复杂度较高,对插值节点选取敏感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ArcGIS 中几种空间插值方法
1. 反距离加权法(IDW)
ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:
1111()
()n n
i
p p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法
多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法
样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要
解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法
克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

对于普通克里格法,其一般公式为 01()()n
i i i Z x Z x λ==∑,其中,Z(x i )(i=1,
Λ,n)为n 个样本点的观测值,Z(x 0)为待定点值,i λ为权重,权重由克立格方程组:
011
(,)(,)1n
i i j i i n i i C x y C x x λμλ==⎧-=⎪⎪⎨⎪=⎪⎩∑∑ 决定,其中,C(x i ,x j )为测站样本点之间的协方差,C(x i ,x 0)为测站样本点与插值点之间的协方差,μ为拉格朗日乘子。

插值数据的空间结构特性由半变异函数描述,其表达式为:
()
21
1()(()())2()N h i i i h Z x Z x h N h ν==-+∑ 其中,N(h)为被距离区段分割的试验数据对数目,根据试验变异函数的特性,选
取适当的理论变异函数模型,根据试验半变异函数得到的试验变异函数图,从而确定出合理的变异函数理论模型。

克里格方法考虑了观测点和被估计点的位置关系,并且也考虑各观测点之间的相对位置关系,所以在点稀少时插值效果比反距离权重等其他方法要好。

一般而言,气象要素和高程之间是具有相关性的,气象要素会随着高程的变化而发生显著变化,所以经常应用引入高程信息的协同克里格方法。

GIS中有七类克里格法,下表是这七种方法的名称和适用范围:
克里格法的优点是以空间统计学作为其坚实的理论基础,可以克服内插中误差难以分析的问题,能够对误差做出逐点的理论估计;不但能估计测定参数的空间变异分布,而且还可以估算估计参数的方差分布。

其缺点是计算步骤较繁琐,计算量大,且变异函数有时需要根据经验人为选定。

5.国外的进展
在气象气候学中,气象要素(如降水、温度、太阳辐射等)在空间尺度上连续分布的数据,对各类模型的研究有着重要意义,由于各种气象要素的观测台站分布是稀疏而不均匀的,在各个台站观测的点数据基础上,推算出空间面上气象要素的分布,空间插值方法是有力的工具。

在气象上发展起来的PRISM插值方法和GIDS插值方法。

PRISM(Parameter-elevation Regressions on Independent Slopes Model)方法是由美国气象学家Christopher Daly提出的一种基于地理空间特征和回归统计方法生成气候图的插值模型。

GIDS(Gradient plusinverse distance squared, GIDS)梯度平方反比法是由Nalder等1998年提出的,它在距离权重的基础上考虑了气象要素随海拔和经纬向的梯度变化。

两种方法在各种地区的气象要素插值中都得到了很好的运用。

6.总结
在实际应用中,没有绝对最好的空间插值方法,只有在特定的条件下,对于各种研究区域的实际情况的最佳方法。

在运用空间插值方法时,要得到理想的空间插值效果,必须针对不同研究区域的实际情况,对实测数据样本点进行充分分析,反复试验比较来选择最佳的方法。

最重要的是在运用一般插值方法的基础上,
依据自身需要及学科的特点,对插值方法进行改进以找到更优的空间插值方法。

THANKS
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。

相关文档
最新文档