空间插值方法

合集下载

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法 (Inverse Distanee to a Power ) 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点被给予一个几乎为0.0的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法 (Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法 (Minimum Curvature )最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准4、多元回归法(Polynomial Regression )多元回归被用来确定你的数据的大规模的趋势和图案。

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

空间插值方法对比整理版

空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)

空间插值方法汇总

空间插值方法汇总

空间插值方法汇总Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

第六讲 空间插值

第六讲 空间插值

每个采样点对插值结果的影响随距离增加而减弱,因 此距目标点近的样点赋予的权重较大。
n
a ttr0 a ttri * w i i1
wi
1 pow er (D isti )n
n
1 pow er(D isti )n
i1
二、空间插值方法
4. 距离反比加权法—参数对插值结果的影响
权重的影响
权重过高,较近点的影响较大,拟合表面更细致(不光 滑);
趋势面分析的一个基本要求就是,所选择的趋势面模型应 该是剩余值最小,而趋势值最大,这样拟合度精确度才能 达到足够的准确性;
在数学上,拟合数学曲面要注意两个问题:一是数学曲面 类型(数学表达式)的确定,二是拟合精度的确定。
二、空间插值方法
5.1 趋势面模型的建立
设地理要素的实际观测数据为Zi(xi,yi)(i=1,2,…,n),
基本内容
空间插值:定义及应用 空间插值方法及特征
泰森多边形( Voronoi )及不规则三角网(TIN) 距离反比加权法(IDW) 地质统计学(Geostatistics)
利用样条曲线优化插值结果 插值精度评估 三参数插值方法(体数据或者动态演化特征)
为何进行插值?
1. 2D离散点转化为连续面,如地表、地层界面 如基于空间离散点,剖面数据和等高线等来构建连续
不足——对权重函数的选择十分敏感;易受数据点集群的 影响,结果常出现一种孤立点数据明显高于周围数据点的 “鸭蛋”分布模式;
全局最大和最小变量值都散布于数据之中。 距离反比很少有预测的特点,内插得到的插值点数据在样
点数据取值范围内。
二、空间插值方法
5. 趋势面分析
实际的地理曲面分解为趋势面和剩余面两部分,前者反应 地理要素的宏观分布规律,属于确定性因素作用的结果; 而后者则对应于微观区域,被认为是随机因素影响的结果。

空间插值方法大致总结

空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。

➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。

⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

空间插值介绍简洁明了

空间插值介绍简洁明了

• 反距离权重插值综合了泰森多边形的自然邻近法和多元回归渐变 方法的长处,在插值时为待估点Z值为邻近区域内所有数据点都 的距离加权平均值,当有各向异性时,还要考虑方向权重。 • 权重函数与待估点到样点间的距离的U次幂成反比,即随着距离 增大,权重呈幂函数递减。且对某待估点而言,其所有邻域的样 点数的权重和为1。 • 决定反距离权重插值法结果的参数包括距离的U次幂值的确定, 同时还取决于确定邻近区域的所使用的方法。此外,为消除样点 数据的不均匀分布的影响,还可设置引入一个平滑参数,以保证 没有哪个样点被赋予全部的权重,即使得插值运算时尽可能不只 有一个样点参与运算。 • IDW是一种全局插值法,即全部样点都参与某一待估点的Z值的 估算; • IDW的适用于呈均匀分布且密集程度足以反映局部差异的样点数 据集; • IDW与之前介绍的插值法的不同之处在于,它是一种精确的插值 法,即插值生成的表面中预测的样点值与实测样点值完全相等。
• 多种 kriging 方法
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
• 当数据存在不确定性时,应该使用近似插值,由 于估计值替代了已知变量值,近似插值可以平滑 采样误差。
四、高次曲面插值 (Multiquadric)
高次曲面插值由 Hardy 于1971年首先提出,随后应用于不同的 学科。每个样点对插值点的影响都用样点坐标函数构成的圆锥表 示,插值点的变量值是所有圆锥贡献值的总和(Caruso,1998)。 插值数学表达式为:
ve ci d ei
i 1
其中ci 是样本点(xi,yi)的系数,dei是待估点(xe, ye)与样 本点(xi, yi)的距离。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


数据拟合问题就是根据若干参考点上的已知值求出待定点 上(未知点)的研究值。数据拟合问题通常可分为插值问 题和光顺逼近问题。 插值问题的解要求严格经过已知量测点,而光顺逼近问题 的解虽不要求严格经过已知点,但它要求在某种约束条件 下(比如最上 乘意义下 最小曲面能或最小粗糙度意义 下(比如最上二乘意义下、最小曲面能或最小粗糙度意义 下)达到整体逼近效果。
6/21/2010
空间插值方法
第6讲 空间插值方法及 TIN/TEN构建算法

6.1 问题的提出 6.2 空间数据插值方法概述 6.3 几种空间数据插值方法原理
6.1 空间插值问题的提出

6.2 空间数据插值方法概述

GIS在实际应用过程中,很多情况下,比如采样密度不够、 曲线与曲面光滑处理、空间趋势预测、采样结果的可视化 等,必须对空间数据进行插值和拟合,因此空间数据插值 是GIS数据处理的一项重要任务。其主要目的是根据一组 已知的离散数据,按照某种数学关系推求其他未知点和未 知区域的数据的过程。
Delauny三角化方法自提出后并未引起足够多 的重视,到了20世纪80年代才开始研究这个算 法,目前比较有效的算法有:

分治算法 逐点加入法 生长算法 凸壳法

分治算法

分治算法的基本思想是一个递归思想,把点集划分到足够小, 使其易于生成三角网,然后把子集中的三角网合并生成最终 的三角网。 逐点加入法有两个基本步:1.定位,找到包含新加点的三角 形;2.更新,形成新的三角形。 生长法从第一个DT开始,而后由三角形边逐步形成新的DT。 如果二维上的任意一点对应到三维点,可以计算出提升点的 凸壳,除去朝上的凸壳面,剩下的朝下的面就是原始点的DT (这个关系适合于任意n维)。
TIN/TEN构建算法

TIN: Triangular Irregular Network TEN: Tetrahedron Network 二维三角形和三维四面体剖分是计算几何中的 重要研究课题,它在有限元非结构化网格生成、 重要研究课题 它在有限元非结构化网格 成 实体造型、曲面逼近、数据场可视化、地学数 字高程模型等领域有着广泛的应用。

给定一个点集S={x1,x2,…,xn},可以为集合中的每一 个点定义一个区域,这个区域满足:
x xi x x j , i j

所有区域的集合称为Diriclet图形,每个区域称为 Voronoi区域,也称为Voronoi多边形。

Voronoi多边形可以被想象成细胞的生长过程:

3
6/21/2010
The power of kriging results from the fact that, as a preceding step to the interpolation between the known observation points, a structural analysis of the spatial correlation revealing details of the geological forming process has to be performed. Semivariograms reveal important details of the geological generation since they provide an analytical means to quantify the anisotropy and the range of the underlying forming process. To speak in statistical terms, semivariograms quantify the distance (range) at which samples become uncorrelated from each other and they give an idea of the direction of the best and worst spatial correlation.
6.5 二维TIN逐点插入算法及实例


逐点加入法

该方法的基本过程是:


生长算法


凸壳法


给定将要插入的点P; 找到一个单元,这个单元包含P; 形成空腔。所谓空腔是指外接圆包含插入点P的单 元的集合,这些单元是将要被删除的单元。空腔的 形成准则一般采用圆形准则和邻接关系相结合的方 法; 形成空腔的单元。空腔的边界将来与新近插入的点 一起形成新的单元。
空间统计分析理论(地质统计学)
Kriging插值方法
2 2 i y( xi , , x0 ) i j y ( xi , x j )
i 1 i 1 j 1
n
n
n
上式表示用每个点作为估计依据时 方差(semi-variogram),减去采样点相互 之间的方差(semi-variogram)除。
(2)反距离加权插值法(Shepard’s Method)
(3) 移动内插法(Moving Interpolating Method)
2
6/21/2010
(4) 克里金法(Kriging Method)
克里金法是一种地质统计方法,是一种最优、线性、无 偏内插估计量(Best Linear Unbiased Estimator,简称 BLUE)。较常规方法而言,它的优点在于不仅考虑了各 已知数据点的空间相关性 而且在给出待估计点的数值的 已知数据点的空间相关性,而且在给出待估计点的数值的 同时,还能给出表示估计精度的方差。经过多年的发展完 善,克里金法已经有了好几个变种,如普通克里金法、泛 克里金法等等。以下介绍普通克里金法。
内容提纲

6.4 Delauny三角化方法

6.4 Delaunay三角化方法 6.5 二维TIN逐点插入算法 6.6 二维TIN、三维TEN逐点插入算法实例

Delauny三角剖分从Dirichlet和Voronoi图形发展 起来。 Dirichlet图形由Dirichlet于1850年提出,他给出 了将给定区域剖分成互相联系的凸多边形的方 法:
6.6 二维TIN、三维TEN逐点插入算法 实例

根据上节算法原理,用C++编制Delauny2d和 Delauny3d类,实现二维TIN、三维TEN逐点插 入算法。 类的定义如下:

class Delaunay2d { public: Delaunay2d(int iVQuantity, Vector2<Real>* akVertex, Real fEpsilon); int GetSimplexQuantity () const; bool GetIndexSet (int i, int aiIndex[3]) const; }; class Delaunay3d { public: Delaunay3d(int iVQuantity, Vector3<Real>* akVertex, Real fEpsilon); int GetSimplexQuantity () const; bool GetIndexSet (int i, int aiIndex[4]) const; bool GetHull (int& riTQuantity, int*& raiIndex) const; };
while (stack is not empty){ stack.pop(T, A); compute i0,i1,i2,i3 with T.v(i1)=A.v(i2) and T.v(i2)=A.v(i1); if (T.v(i0) is in Circumcircle(A)) { N0 = mesh.Insert(T.v(i0), T.v(i1), A.v(i3)); B0 = A.adj(i1); if (B0 is not null) stack.push(N0, B0); N1 = mesh.Insert(T.v(i0), A.v(i3), A.v(i2)); B1 = A.adj(i3); if (B1 is not null) stack.push(N1, B1); } } // remove any triangles that share a vertex from the supertriangle mesh.RemoveTriangleSharing(V(0), V(1), V(2)); }
6.3 几种空间数据插值方法原理




代表性的基于整体的插值方法有: 趋势面法 最小二乘法 代表性的基于局部的插值方法有: 反距离加权插值法(谢别德法) 反距离加权插值法 谢别德法) 移动内插法 样条函数法 克里金法
1
6/21/2010
(1)趋势面法(Trend Surface Analysis)
5 4 6
将点集中的每一个点都想角成正在生长的细胞,这 些细胞从他们的细胞核开始,同时并且以相同的速 率向四周扩张。 当一个细胞的边界与另外的细胞边界相遇时这个边 界就停止生长。 最终,除了最外面的边界继续生长外,其余每个点 都将给定的区域分割成一系列的凸多边形,这些凸 多这形互不重叠,每一个凸多边形对应一个细胞核, 即节点。
当p=2时,为二次曲面:

f ( x, y ) b0 b1 x b2 y b3 x 2 b4 xy b5 y 2
所谓趋势面法,是通过选择一ห้องสมุดไป่ตู้二元函数来逼近采样数据 的整体变化趋势。该二元函数的一般形式为:
f ( x, y )
r s p r s 0
可用于模拟地形起伏、褶曲煤层等。 该二元函数必须满足观测值与拟合值之差的平方和最小
b
相关文档
最新文档