2019年高考物理一轮复习第九章磁场专题强化十一带电粒子在叠加场和组合场中的运动学案
高考物理一轮复习讲义带电粒子在复合场中的运动

课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
精选-高考物理一轮复习第九章磁场专题强化十一带电粒子在叠加场和组合场中的运动学案

专题强化十一带电粒子在叠加场和组合场中的运动专题解读1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题压轴题的信心.3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律).命题点一带电粒子在叠加场中的运动1.带电体在叠加场中无约束情况下的运动(1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)静电力、洛伦兹力并存(不计重力的微观粒子)①若静电力和洛伦兹力平衡,则带电体做匀速直线运动.②若静电力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)静电力、洛伦兹力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与静电力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.2.带电体在叠加场中有约束情况下的运动带电体在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解.例1 在如图1所示的竖直平面内,水平轨道CD和倾斜轨道GH与半径r=944m的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角θ=37°.过G点、垂直于水平面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B=1.25T;过D点、垂直于水平面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E=1×104N/C.小物体P1质量m=2×10-3 kg、带电荷量q=+8×10-6 C,受到水平向右的推力F=9.98×10-3 N的作用,沿CD向右做匀速直线运动,到达D点后撤去推力.当P1到达倾斜轨道底端G点时,不带电的小物体P2在GH顶端由静止释放,经过时间t=0.1 s与P1相遇.P1和P2与轨道CD、GH间的动摩擦因数均为μ=0.5,g取10 m/s2,sin37°=0.6,cos37°=0.8,物体电荷量保持不变,不计空气阻力.求:图1(1)小物体P1在水平轨道CD上运动速度v的大小;(2)倾斜轨道GH的长度s.①沿CD向右匀速直线运动;②经过时间t=0.1s与P1相遇.答案(1)4m/s(2)0.56m解析(1)设小物体P1在匀强磁场中运动的速度为v,受到向上的洛伦兹力为F1,受到的摩擦力为F f,则F1=qvB①F f=μ(mg-F1)②由题意知,水平方向合力为零,F-F f=0③联立①②③式,代入数据解得v=4m/s④(2)设P1在G点的速度大小为v G,由于洛伦兹力不做功,根据动能定理有qEr sinθ-mgr(1-cosθ)=12mv G2-12mv2⑤P1在GH上运动,受到重力、电场力和摩擦力的作用,设加速度为a1,根据牛顿第二定律有qE cos θ-mg sin θ-μ(mg cos θ+qE sin θ)=ma 1⑥P 1与P 2在GH 上相遇时,设P 1在GH 上运动的距离为s 1,则s 1=v G t +12a 1t 2⑦设P 2质量为m 2,在GH 上运动的加速度为a 2,则 m 2g sin θ-μm 2g cos θ=m 2a 2⑧P 1与P 2在GH 上相遇时,设P 2在GH 上运动的距离s 2,则s 2=12a 2t 2⑨s =s 1+s 2⑩联立⑤~⑩式,代入数据得s =0.56m.1.(2016·天津·11)如图2所示,空间中存在着水平向右的匀强电场,电场强度大小E =53N/C ,同时存在着垂直纸面向里的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =0.5 T .有一带正电的小球,质量m =1×10-6 kg ,电荷量q =2×10-6 C ,正以速度v 在图示的竖直面内做匀速直线运动,当经过P 点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g =10 m/s 2,求:图2(1)小球做匀速直线运动的速度v 的大小和方向;(2)从撤掉磁场到小球再次穿过P 点所在的这条电场线经历的时间t .答案 (1)20m/s 方向与电场方向成60°角斜向上(2)3.5s解析 (1)小球做匀速直线运动时受力如图甲,其所受的三个力在同一平面内,合力为零,有qvB =q2E2+m2g2①甲代入数据解得v =20m/s ②速度v 的方向与电场E 的方向之间的夹角满足tan θ=qE mg③ 代入数据解得tan θ= 3θ=60°④(2)解法一 撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,如图乙所示,设其加速度为a ,有乙a =q2E2+m2g2m⑤ 设撤去磁场后小球在初速度方向上的分位移为x ,有x =vt ⑥设小球在重力与电场力的合力方向上的分位移为y ,有y =12at 2⑦ tan θ=y x⑧ 联立④⑤⑥⑦⑧式,代入数据解得 t =23s ≈3.5s ⑨解法二 撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P 点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为 v y =v sin θ⑤若使小球再次穿过P 点所在的电场线,仅需小球的竖直方向上分位移为零,则有v y t -12gt 2=0⑥ 联立⑤⑥式,代入数据解得t =23s ≈3.5s.2.如图3所示,在竖直平面内,水平x 轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x 轴上方的匀强磁场磁感应强度大小为B 1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x 轴的匀强电场,电场强度大小为E 1,已知一质量为m 的带电小球从y 轴上的A (0,L )位置斜向下与y 轴负半轴成60°角射入第一象限,恰能做匀速直线运动.图3(1)判定带电小球的电性,并求出所带电荷量q 及入射的速度大小;(2)为使得带电小球在x 轴下方的磁场中能做匀速圆周运动,需要在x 轴下方空间加一匀强电场,试求所加匀强电场的方向和电场强度的大小;(3)在满足第(2)问的基础上,若在x 轴上安装有一绝缘弹性薄板,并且调节x 轴下方的磁场强弱,使带电小球恰好与绝缘弹性板碰撞两次从x 轴上的某一位置返回到x 轴的上方(带电小球与弹性板碰撞时,既无电荷转移,也无能量损失,并且入射方向和反射方向与弹性板的夹角相同),然后恰能做匀速直线运动至y 轴上的A (0,L )位置,则:弹性板至少多长?带电小球从A 位置出发到返回至A 位置过程所经历的时间为多少?答案 (1)负电 q =3mg 3E1v =2E1B1(2)竖直向下 3E 1(3)233L 53πB1L 3E1+2B1L E1解析 (1)小球在第一象限中的受力分析如图所示,所以带电小球带负电.mg =qE 1tan60°,q =3mg 3E1.又qE 1=qvB 1cos60°,得v =2E1B1(2)小球若在x 轴下方的磁场中做匀速圆周运动,必须使得电场力与重力二力平衡,即应施加一竖直向下的匀强电场,且电场强度大小满足qE =mg ,即E =3E 1.(3)要想让小球恰好与弹性板发生两次碰撞,并且碰撞后返回x 轴上方空间匀速运动到A 点,。
2019年度高考物理一轮复习 第九章 磁场 专题强化十 带电粒子在复合场中运动的实例分析学案

专题强化十带电粒子在复合场中运动的实例分析专题解读 1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题压轴题的信心.3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律).一、带电粒子在复合场中的运动1.复合场与组合场(1)复合场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电场、磁场分时间段或分区域交替出现.2.带电粒子在复合场中的运动分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.二、电场与磁场的组合应用实例装置原理图规律质谱仪带电粒子由静止被加速电场加速qU=12 mv2,在磁场中做匀速圆周运动qvB=mv2r,则比荷qm=2UB2r2回旋加速器交变电流的周期和带电粒子做圆周运动的周期相同,带电粒子在圆周运动过程中每次经过D形盒缝隙都会被加速.由qvB=mv2r得E km=q2B2r22m三、电场与磁场的叠加应用实例装置原理图规律速度选择器若qv0B=Eq,即v0=EB,带电粒子做匀速运动电磁流量计UDq=qvB,所以v=UDB,所以Q=vS=UDBπ(D2)2=πUD4B霍尔元件当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现电势差命题点一质谱仪的原理和分析1.作用测量带电粒子质量和分离同位素的仪器.2.原理(如图1所示)图1(1)加速电场:qU =12mv 2;(2)偏转磁场:qvB =mv 2r,l =2r ;由以上两式可得r =1B 2mUq,m =qr 2B 22U ,q m =2U B 2r2.例1 一台质谱仪的工作原理如图2所示.大量的带电荷量为+q ,质量为2m 的离子飘入电压为U 0的加速电场,其初速度几乎为0,经加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上.图中虚线为经过狭缝左、右边界M 、N 时离子的运动轨迹.不考虑离子间的相互作用.图2(1)求离子打在底片上的位置到N 点的最小距离x ;(2)在图中用斜线标出磁场中离子经过的区域,并求该区域最窄处的宽度d . 答案 (1)4BmU 0q-L (2)见解析图2BmU 0q -4mU 0qB 2-L24解析 (1)设离子在磁场中的运动半径为r 1, 在电场中加速时,有qU 0=12×2mv 2又qvB =2m v 2r 1解得r 1=2BmU 0q根据几何关系x =2r 1-L , 解得x =4BmU 0q-L . (2)如图所示,最窄处位于过两虚线交点的垂线上d =r 1-r 21-L22解得d =2BmU 0q -4mU 0qB 2-L24变式1 (2016·全国卷Ⅰ·15)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图3所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )图3A.11B.12C.121D.144 答案 D解析 由qU =12mv 2得带电粒子进入磁场的速度为v =2qUm,结合带电粒子在磁场中运动的轨迹半径R =mv Bq,综合得到R =1B 2mUq,由题意可知,该离子与质子在磁场中具有相同的轨道半径和电荷量,故m 0m p=144,故选D.命题点二 回旋加速器的原理和分析1.构造:如图4所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.图42.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次.3.粒子获得的最大动能:由qv m B =mv 2m R 、E km =12mv 2m 得E km =q 2B 2R 22m,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关.4.粒子在磁场中运动的总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n=E km qU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U. 例2 (多选)劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图5所示.置于真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生质子的质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( )图5A.质子被加速后的最大速度不可能超过2πRfB.质子离开回旋加速器时的最大动能与加速电压U 成正比C.质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1D.不改变磁感应强度B 和交流电频率f ,经该回旋加速器加速的各种粒子的最大动能不变 答案 AC解析 质子被加速后的最大速度受到D 形盒半径R 的制约,因v m =2πR T=2πRf ,故A 正确;质子离开回旋加速器的最大动能E km =12mv 2m =12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据qvB =mv 2r ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因经回旋加速器加速的粒子最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,故D 错误.变式2 如图6甲所示是用来加速带电粒子的回旋加速器的示意图,其核心部分是两个D 形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,两盒分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如图乙所示.忽略带电粒子在电场中的加速时间,则下列判断中正确的是( )图6A.在E k -t 图象中应有t 4-t 3<t 3-t 2<t 2-t 1B.加速电压越大,粒子最后获得的动能就越大C.粒子加速次数越多,粒子最大动能一定越大D.要想粒子获得的最大动能增大,可增加D 形盒的面积 答案 D解析 带电粒子在匀强磁场中做匀速圆周运动的周期与速度大小无关,因此,在E k -t 图中应有,t 4-t 3=t 3-t 2=t 2-t 1,A 错误;粒子获得的最大动能与加速电压无关,加速电压越小,粒子加速次数越多,由qvB =mv 2r 得r =mv qB =2mE k qB 可知E k =q 2B 2r 22m,即粒子获得的最大动能决定于D 形盒的半径,当轨道半径r 与D 形盒半径R相等时就不能继续加速,故B 、C 错误,D 正确.变式3 回旋加速器的工作原理如图7甲所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量为+q ,加在狭缝间的交变电压如图乙所示,电压值的大小为U 0,周期T =2πm qB .一束该粒子在t =0~T 2时间内从A 处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求:图7(1)出射粒子的动能E k ;(2)粒子从飘入狭缝至动能达到E k 所需的总时间t 0.答案 (1)q 2B 2R 22m (2)πBR 2+2BRd 2U 0-πmqB解析 (1)粒子运动半径为R 时,有qvB =m v 2R,又E k =12mv 2,解得E k =q 2B 2R 22m.(2)设粒子被加速n 次达到动能E k ,则E k =nqU 0.粒子在狭缝间做匀加速运动,设n 次经过狭缝的总时间为Δt ,加速度a =qU 0md, 粒子做匀加速直线运动,有nd =12a ·Δt 2,由t 0=(n -1)·T2+Δt ,解得t 0=πBR 2+2BRd 2U 0-πmqB.命题点三 电场与磁场叠加的应用实例分析共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,qvB =qE . 1.速度选择器图8(1)平行板中电场强度E 和磁感应强度B 互相垂直.(如图8)(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =E B. (3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量. (4)速度选择器具有单向性.例3 如图9所示是一速度选择器,当粒子速度满足v 0=E B时,粒子沿图中虚线水平射出;若某一粒子以速度v 射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是( )图9A.粒子射入的速度一定是v >E BB.粒子射入的速度可能是v <E BC.粒子射出时的速度一定大于射入速度D.粒子射出时的速度一定小于射入速度 答案 B 2.磁流体发电机图10(1)原理:如图10所示,等离子气体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在A 、B 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)电源电动势U :设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子气体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q U l=qvB ,即U =Blv . (4)电源内阻:r =ρl S. (5)回路电流:I =Ur +R.例4 (多选)磁流体发电是一项新兴技术,图11是它的示意图,平行金属板A 、C 间有一很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电离子)喷入磁场,两极板间便产生电压,现将A 、C 两极板与电阻R 相连,两极板间距离为d ,正对面积为S ,等离子体的电阻率为ρ,磁感应强度为B ,等离子体以速度v 沿垂直磁场方向射入A 、C 两板之间,则稳定时下列说法中正确的是( )图11A.极板A 是电源的正极B.电源的电动势为BdvC.极板A 、C 间电压大小为BdvSRRS +ρdD.回路中电流为Bdv R答案 BC解析 等离子体喷入磁场,带正电的离子因受到向下的洛伦兹力而向下偏转,带负电的离子向上偏转,即极板C 是电源的正极,A 错;当带电离子以速度v 做直线运动时,qvB =q Ed ,所以电源电动势为Bdv ,B 对;极板A 、C 间电压U =IR ,而I =Bdv R +ρd S=BdvS RS +ρd ,则U =BdvSRRS +ρd ,所以C 对,D 错.3.电磁流量计(1)流量(Q )的定义:单位时间流过导管某一截面的导电液体的体积. (2)公式:Q =Sv ;S 为导管的横截面积,v 是导电液体的流速.(3)导电液体的流速(v )的计算如图12所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向右流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下发生偏转,使a 、b 间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差(U )达到最大,由q U d =qvB ,可得v =U Bd.图12(4)流量的表达式:Q =Sv =πd 24·U Bd =πdU4B .(5)电势高低的判断:根据左手定则可得φa >φb .例5 (多选)为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图13所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a =1 m 、b =0.2 m 、c =0.2 m ,左、右两端开口,在垂直于前、后面的方向加磁感应强度为B =1.25 T 的匀强磁场,在上、下两个面的内侧固定有金属板M 、N 作为电极,污水充满装置以某一速度从左向右匀速流经该装置时,用电压表测得两个电极间的电压U =1 V.且污水流过该装置时受到阻力作用,阻力F f =kLv ,其中比例系数k =15 N·s/m 2,L 为污水沿流速方向的长度,v 为污水的流速.下列说法中正确的是( )图13A.金属板M 电势不一定高于金属板N 的电势,因为污水中负离子较多B.污水中离子浓度的高低对电压表的示数也有一定影响C.污水的流量(单位时间内流出的污水体积)Q =0.16 m 3/sD.为使污水匀速通过该装置,左、右两侧管口应施加的压强差为Δp =1 500 Pa 答案 CD解析 根据左手定则,知负离子所受的洛伦兹力方向向下,则负离子向下偏转,N 板带负电,M 板带正电,则N 板的电势比M 板电势低,故A 错误;最终离子在电场力和洛伦兹力作用下平衡,有qvB =q Uc ,解得U =vBc ,与离子浓度无关,故B 错误;污水的流速v =U Bc ,则流量Q =vbc =Ub B =1×0.21.25m 3/s =0.16 m 3/s ,故C 正确;污水的流速v =U Bc =11.25×0.2m/s =4 m/s; 污水流过该装置时受到的阻力F f =kLv =kav =15×1×4 N=60 N ,为使污水匀速通过该装置,左、右两侧管口应施加的压力差是60 N ,则压强差为Δp =F S =600.2×0.2Pa =1 500Pa ,故D 正确.4.霍尔效应的原理和分析(1)定义:高为h 、宽为d 的导体(自由电荷是电子或正电荷)置于匀强磁场B 中,当电流通过导体时,在导体的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.图14(2)电势高低的判断:如图14,导体中的电流I 向右时,根据左手定则可得,若自由电荷是电子,则下表面A ′的电势高.若自由电荷是正电荷,则下表面A ′的电势低.(3)霍尔电压的计算:导体中的自由电荷(电子)在洛伦兹力作用下偏转,A 、A ′间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,A 、A ′间的电势差(U )就保持稳定,由qvB =q Uh ,I =nqvS ,S =hd ;联立得U =BI nqd=k BI d,k =1nq称为霍尔系数.例6 中国科学家发现了量子反常霍尔效应,杨振宁称这一发现是诺贝尔奖级的成果.如图15所示,厚度为h 、宽度为d 的金属导体,当磁场方向与电流方向垂直时,在导体上、下表面会产生电势差,这种现象称为霍尔效应.下列说法正确的是( )图15A.上表面的电势高于下表面的电势B.仅增大h 时,上、下表面的电势差增大C.仅增大d 时,上、下表面的电势差减小D.仅增大电流I 时,上、下表面的电势差减小 答案 C解析 因电流方向向右,则金属导体中的自由电子是向左运动的,根据左手定则可知上表面带负电,则上表面的电势低于下表面的电势,A 错误;当电子达到平衡时,电场力等于洛伦兹力,即q Uh=qvB ,又I =nqvhd (n 为导体单位体积内的自由电子数),得U =IBnqd,则仅增大h 时,上、下表面的电势差不变;仅增大d 时,上、下表面的电势差减小;仅增大I 时,上、下表面的电势差增大,故C 正确,B 、D 错误.1.在如图1所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( )A.一定带正电B.速度v =E BC.若速度v >E B,粒子一定不能从板间射出 D.若此粒子从右端沿虚线方向进入,仍做直线运动 答案 B解析 粒子带正电和负电均可,选项A 错误;由洛伦兹力等于电场力,qvB =qE ,解得速度v =E B,选项B 正确;若速度v >E B,粒子可能从板间射出,选项C 错误;若此粒子从右端沿虚线方向进入,所受电场力和洛伦兹力方向相同,不能做直线运动,选项D 错误.2.(多选)如图2所示,a 、b 是一对平行金属板,分别接到直流电源的两极上,使a 、b 两板间产生匀强电场E ,右边有一块挡板,正中间开有一小孔d ,在较大空间范围内存在着匀强磁场,磁感应强度大小为B ,方向垂直纸面向里.从两板左侧中点c 处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d 孔射出后分成三束,则下列判断正确的是( )图2A.这三束正离子的速度一定不相同B.这三束正离子的比荷一定不相同C.a 、b 两板间的匀强电场方向一定由a 指向bD.若这三束离子改为带负电而其他条件不变,则仍能从d 孔射出 答案 BCD解析 因为三束正离子在两极板间都是沿直线运动的,电场力等于洛伦兹力,可以判断三束正离子的速度一定相同,且电场方向一定由a 指向b ,A 错误,C 正确;在右侧磁场中三束正离子运动轨迹半径不同,可知这三束正离子的比荷一定不相同,B 项正确;若将这三束离子改为带负电,而其他条件不变的情况下分析受力可知,三束离子在两板间仍做匀速直线运动,仍能从d 孔射出,D 项正确.3.(2018·山东济宁模拟)为监测某化工厂的含有离子的污水排放情况,技术人员在排污管中安装了监测装置,该装置的核心部分是一个用绝缘材料制成的空腔,其宽和高分别为b 和c ,左、右两端开口与排污管相连,如图3所示.在垂直于上、下底面方向加磁感应强度大小为B 的匀强磁场,在空腔前、后两个侧面上各有长为a 的相互平行且正对的电极M 和N ,M 、N 与内阻为R 的电流表相连.污水从左向右流经该装置时,电流表将显示出污水排放情况.下列说法中错误的是( )A.M 板比N 板电势低B.污水中离子浓度越高,则电流表的示数越小C.污水流量越大,则电流表的示数越大D.若只增大所加磁场的磁感应强度,则电流表的示数也增大 答案 B解析 污水从左向右流动时,正、负离子在洛伦兹力作用下分别向N 板和M 板偏转,故N 板带正电,M 板带负电,A 正确.稳定时带电离子在两板间受力平衡,qvB =q U b ,此时U =Bbv =BbQ bc =BQc,式中Q 是流量,可见当污水流量越大、磁感应强度越强时,M 、N 间的电压越大,电流表的示数越大,而与污水中离子浓度无关,B 错误,C 、D 正确.4.(多选)如图4是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是( )图4A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直于纸面向外C.能通过狭缝P 的带电粒子的速率等于EBD.粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小 答案 ABC解析 质谱仪是分析同位素的重要工具,A 正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B 正确.由qE =qvB 可得v =E B,C 正确.粒子在平板S 下方的匀强磁场中做匀速圆周运动,由qvB =mv 2R 得R =mv qB 0,所以q m =vB 0R,D 错误.5.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a 和b 以及磁极N 和S 构成,磁极间的磁场是均匀的.使用时,两电极a 、b 均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图5所示.由于血液中的正负离子随血液一起在磁场中运动,电极a 、b 之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm ,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a 、b 的正负为( )图5A.1.3 m/s ,a 正、b 负B.2.7 m/s ,a 正、b 负C.1.3 m/s ,a 负、b 正D.2.7 m/s ,a 负、b 正 答案 A6.利用霍尔效应制作的元件,广泛应用于测量和自动控制等领域.如图6是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,通入图示方向的电流I ,C 、D 两侧就会形成电势差U CD ,下列说法中正确的是( )图6A.电势差U CD 仅与材料有关B.仅增大磁感应强度时,C 、D 两面的电势差变大C.若霍尔元件中定向移动的是自由电子,则电势差U CD >0D.在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平方向 答案 B解析 设霍尔元件的厚度为d ,长为a ,宽为b ,稳定时有Bqv =qU CDb,又因为I =nqSv ,其中n 为单位体积内自由电荷的个数,q 为自由电荷所带的电荷量,S =bd ,联立解得:U CD =1nq·BId,可知选项A 错误;若仅增大磁感应强度B ,则C 、D 两面的电势差增大,选项B 正确;若霍尔元件中定向移动的是自由电子,由左手定则可知,电子将向C 侧偏转,则电势差U CD <0,选项C 错误;地球赤道上方的地磁场方向为水平方向,元件的工作面要与磁场方向垂直,故元件的工作面应保持竖直方向,选项D 错误.7.(多选)(2018·四川成都调研)如图7,为探讨霍尔效应,取一块长度为a 、宽度为b 、厚度为d 的金属导体,给金属导体加与前后侧面垂直的匀强磁场B ,且通以图示方向的电流I 时,用电压表测得导体上、下表面M 、N 间电压为U .已知自由电子的电荷量为e .下列说法中正确的是( )图7A.M 板比N 板电势高B.导体单位体积内自由电子数越多,电压表的示数越大C.导体中自由电子定向移动的速度为v =U BdD.导体单位体积内的自由电子数为BI eUb答案 CD解析 电流方向向右,电子定向移动方向向左,根据左手定则判断可知,电子所受的洛伦兹力方向向上,则M 板积累了电子,M 、N 之间产生向上的电场,所以M 板比N 板电势低,选项A 错误.电子定向移动相当于长度为d 的导体垂直切割磁感线产生感应电动势,电压表的读数U 等于感应电动势E ,则有U =E =Bdv ,可见,电压表的示数与导体单位体积内自由电子数无关,选项B 错误;由U =E =Bdv 得,自由电子定向移动的速度为v =U Bd ,选项C 正确;电流的微观表达式是I =nevS ,则导体单位体积内的自由电子数n =I evS ,S =db ,v =UBd,代入得n =BIeUb,选项D 正确.8.(多选)(2014·新课标全国Ⅱ·20)图8为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场.硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直磁场方向进入磁场时,下列说法正确的是( )图8A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小 答案 AC解析 根据左手定则,电子、正电子进入磁场后所受洛伦兹力的方向相反,故两者的偏转方向不同,选项A正确;根据qvB =mv 2r ,得r =mvqB,若电子与正电子在磁场中的运动速度不相等,则轨迹半径不相同,选项B 错误;对于质子、正电子,它们在磁场中运动时不能确定mv 的大小,故选项C 正确;粒子的mv 越大,轨道半径越大,而mv =2mE k ,粒子的动能大,其mv 不一定大,选项D 错误.9.如图9所示是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是( )图9A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能 答案 A解析 根据qvB =m v 2R ,得v =qBR m .两粒子的比荷q m 相等,所以最大速度相等.故A 正确.最大动能E k =12mv 2=q 2B 2R22m,两粒子的比荷q m 相等,但质量不相等,所以最大动能不相等.故B 错.带电粒子在磁场中运动的周期T =2πmqB,两粒子的比荷qm相等,所以周期相等.做圆周运动的频率相等,因为所接高频电源的频率等于粒子做圆周运动的频率,故两次所接高频电源的频率相同,故C 错误.由E k =q 2B 2R 22m可知,粒子的最大动能与加速电压的频率无关,故仅增大高频电源的频率不能增大粒子的最大动能.故D 错.10.速度相同的一束粒子(不计重力)由左端射入质谱仪后的运动轨迹如图10所示,则下列相关说法中正确的是( )图10A.该束粒子带负电B.速度选择器的P 1极板带负电C.能通过狭缝S 0的粒子的速度等于EB 1D.粒子打在胶片上的位置越靠近狭缝S 0,则粒子的比荷越小 答案 C解析 根据该束粒子进入匀强磁场B 2时向下偏转,由左手定则判断出该束粒子带正电,选项A 错误;粒子在速度选择器中做匀速直线运动,受到电场力和洛伦兹力作用,由左手定则知洛伦兹力方向竖直向上,则电场力方向竖直向下,因粒子带正电,故电场强度方向向下,速度选择器的P 1极板带正电,选项B 错误;粒子能通过狭缝,电场力与洛伦兹力平衡,有qvB 1=qE ,得v =E B 1,选项C 正确;粒子进入匀强磁场B 2中受到洛伦兹力做匀速圆周运动,根据洛伦兹力提供向心力,由牛顿第二定律有qvB 2=m v 2r ,得r =mvB 2q,可见v 、B 2一定时,半径r 越小,则qm越大,选项D 错误.。
高考物理一轮复习 第九章 磁场 专题突破 带电粒子在组合场、叠加场、交变场中的运动教学案

专题突破 带电粒子在组合场、叠加场、交变场中的运动带电粒子在组合场中的运动1.组合场中的两种典型偏转2.质谱仪(1)构造:如图1所示,由粒子源、加速电场、偏转磁场和照相底片等构成。
图1(2)原理:粒子由静止被加速电场加速,有qU =12mv 2。
粒子在磁场中做匀速圆周运动,有qvB =m v 2r。
由以上两式可得r =1B2mUq ,m =qr 2B 22U ,q m =2U B 2r2。
3.回旋加速器(1)构造:如图2所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中。
图2(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关。
考向1 组合场规律在现代科技中的应用教材引领1.[人教版选修3-1·P 100·例题]一个质量为m 、电荷量为q 的粒子,从容器A 下方的小孔S 1飘入电势差为U 的加速电场,其初速度几乎为0,然后经过S 3沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片D 上(图3)。
图3(1)求粒子进入磁场时的速率;(2)求粒子在磁场中运动的轨道半径。
解析 (1)粒子进入磁场时的速度v 等于它在电场中被加速而得到的速度。
由动能定理,粒子得到的动能12mv 2等于它在S 1、S 2之间的加速电场中运动时电场对它做的功qU ,即12mv 2=qU由此解得v =2qU m。
(2)粒子在磁场中只受洛伦兹力的作用,做匀速圆周运动,其向心力由洛伦兹力提供,设圆半径为r 即qvB =m v 2r由此解得r =mvqB把第(1) 问中求得的v 代入,得出粒子在磁场中做匀速圆周运动的轨道半径 r =1B 2mUq如果容器 A 中粒子的电荷量相同而质量不同,它们进入匀强磁场后将沿着不同的半径做圆周运动,因而被分开,并打到照相底片的不同地方。
(全国通用)2019版高考物理一轮复习 第九章 磁场 微专题70 带电粒子在叠加场中的运动备考精炼

(全国通用)2019版高考物理一轮复习第九章磁场微专题70 带电粒子在叠加场中的运动备考精炼[方法点拨] (1)先确定各场的方向、强弱等,后正确分析带电体受力情况、运动情况,寻找临界点、衔接点;(2)若带电粒子在叠加场中做匀速直线运动,则重力、电场力与磁场力的合力为零;(3)若带电粒子在叠加场中做匀速圆周运动,则重力与电场力等大、反向.1.(多选)(2017·北京海淀区模拟)将一块长方体形状的半导体材料样品的表面垂直磁场方向置于磁场中,当此半导体材料中通有与磁场方向垂直的电流时,在半导体材料与电流和磁场方向垂直的两个侧面会出现一定的电压,这种现象称为霍尔效应,产生的电压称为霍尔电压,相应的将具有这样性质的半导体材料样品就称为霍尔元件.如图1所示,利用电磁铁产生磁场,毫安表检测输入霍尔元件的电流,毫伏表检测霍尔元件输出的霍尔电压.已知图中的霍尔元件是P型半导体,与金属导体不同,它内部形成电流的“载流子”是空穴(空穴可视为能自由移动带正电的粒子).图中的1、2、3、4是霍尔元件上的四个接线端.当开关S1、S2闭合后,电流表A和电表B、C都有明显示数,下列说法中正确的是( )图1A.电表B为毫伏表,电表C为毫安表B.接线端2的电势高于接线端4的电势C.若调整电路,使通过电磁铁和霍尔元件的电流与原电流方向相反,但大小不变,则毫伏表的示数将保持不变D.若适当减小R1、增大R2,则毫伏表示数一定增大2.(多选)如图2所示,空间存在水平向左的匀强电场E和垂直纸面向外的匀强磁场B,在竖直平面内从a点沿ab、ac方向抛出两带电小球,不考虑两带电小球间的相互作用,两小球电荷量始终不变.关于小球的运动,下列说法正确的是( )图2A.沿ab、ac方向抛出的带电小球都可能做直线运动B.若沿ab方向做直线运动,则小球带正电,且一定是匀速运动C.若沿ac方向做直线运动,则小球带负电,可能做匀加速运动D.两小球在运动过程中机械能均保持不变3.(多选)(2018·四川成都第七中学月考)太阳风含有大量高速运动的质子和电子,可用于发电.如图3所示,太阳风进入两平行极板之间的区域,速度为v,方向与极板平行,该区域中有磁感应强度大小为B的匀强磁场,方向垂直纸面,两极板间的距离为L,则( )图3A.在开关K未闭合的情况下,两极板间稳定的电势差为BLvB.闭合开关K后,若回路中有稳定的电流I,则极板间电场恒定C.闭合开关K后,若回路中有稳定的电流I,则电阻消耗的热功率为2BILvD.闭合开关K后,若回路中有稳定的电流I,则电路消耗的能量等于洛伦兹力所做的功4.(多选)(2017·河北衡水金卷)如图4所示,一对间距可变的平行金属板C、D水平放置,两板间有垂直于纸面向里的匀强磁场B.两板通过滑动变阻器与铅蓄电池相连,这种铅蓄电池能快速转换到“逆变”状态,即外界电压过低时能向外界提供一定的供电电压,当外界电压超过某一限定值时可转换为充电状态,闭合开关S后,有一束不计重力的带正电粒子从左侧以一定的速度v0射入两板间恰能做直线运动,现对入射粒子或对装置进行调整,则下列有关描述正确的是( )图4A.若仅将带正电的粒子换成带负电的粒子,也能直线通过B.若只增大两板间距到一定程度时可使铅蓄电池处于充电状态C.若将滑动变阻器触头P向a端滑动,可提高C板的电势D.若只减小入射粒子的速度,可使铅蓄电池处于充电状态5.(2018·湖北黄冈模拟)如图5所示,在平面直角坐标系xOy的第二象限内存在电场强度大小为E0、方向水平向右的匀强电场,x轴下方是竖直向上的匀强电场和垂直纸面向外的匀强磁场的复合场区域.一带电小球从x轴上的A点以一定初速度v0垂直x轴向上射出,小球恰好以速度v0从y轴上的C点垂直y轴进入第一象限,然后从x轴上的D点进入x轴下方的复合场区域,小球在复合场区域内做圆周运动,最后恰好击中原点O,已知重力加速度为g .求:图5(1)带电小球的比荷qm;(2)x 轴下方匀强电场的电场强度大小E 和匀强磁场的磁感应强度大小B ; (3)小球从A 点运动到O 点经历的时间t .6.(2017·广东佛山高三教学质检一)在水平面上,平放一半径为R 的光滑半圆管道,管道处在方向竖直、磁感应强度为B 的匀强磁场中,另有一个质量为m 、带电荷量为+q 的小球. (1)当小球从管口沿切线方向以某速度射入,运动过程中恰不受管道侧壁的作用力,求此速度v 0;(2)现把管道固定在竖直面内,且两管口等高,磁场仍保持和管道平面垂直,如图6所示,空间再加一个水平向右、场强E =mg q的匀强电场(未画出),若小球仍以v 0的初速度沿切线方向从左边管口射入,求小球:图6①运动到最低点的过程中动能的增量;②在管道运动全程中获得的最大速度.答案精析1.BC2.AB [若沿ab 方向抛出的小球带正电,沿ac 方向抛出的小球带负电,则都可能做直线运动,如图所示,A 项正确.根据上述分析可知,若小球沿ab 方向做直线运动,重力和电场力不变,由图中可以看出应保证重力和电场力的合力与洛伦兹力大小相等且方向相反;若速度改变,则洛伦兹力改变,小球所受的合外力大小不为零且方向与速度方向不共线,所以小球将不做直线运动,B 项正确.根据上述分析可知小球若沿ac 方向做直线运动,则小球带负电,重力和电场力不变,由图中可以看出应保证重力和电场力的合力与洛伦兹力大小相等且方向相反;若速度改变,则洛伦兹力改变,小球所受的合外力大小不为零且方向与速度方向不共线,所以小球将不做直线运动,C 项错误.两小球在运动过程中洛伦兹力不做功,只有重力和电场力做功.电场力做功,电势能改变,则机械能也改变,D 项错误.]3.AB [太阳风进入两极板之间的匀强磁场中,稳定后,带电粒子受到洛伦兹力和电场力作用,且qUL=qvB ,解得U =BLv ,选项A 正确;闭合开关后,若回路中有稳定的电流,则两极板之间的电压恒定,电场恒定,选项B 正确;回路中电流I =U R =BLvR,电阻消耗的热功率P =UI =BLIv ,选项C 错误;由于洛伦兹力永远不做功,所以选项D 错误.]4.AB [带正电的粒子恰好做直线运动,其电场力和洛伦兹力相平衡,由E dq =qv 0B 可知v 0=EBd,若换成带负电的粒子,电场力和洛伦兹力都反向,仍平衡,能直线通过,故选项A 正确;若增大两板间距,带正电粒子射入后受洛伦兹力偏转堆积在极板上,将提高两板间电压,若此电压超过蓄电池的逆变电压就会使之处于“逆变”状态而被充电,故选项B 正确;由于电容器C 、D 两板是彼此绝缘的,调节滑动触头P 不起任何作用,故选项C 错误;若减小入射粒子的速度,直线通过的粒子所受洛伦兹力减小,有部分粒子会落在下极板上,因此上极板上堆积的电荷会减小,对应的电势也会降低,达不到逆变电压,故选项D 错误.] 5.(1)g E 0(2)E 02E 0v 0 (3)⎝⎛⎭⎪⎫2+3π4v 0g解析 (1)小球运动轨迹如图所示,在第二象限内小球受重力和电场力作用做曲线运动,由运动的合成与分解知,竖直方向:v 0=gt 1,OC =12gt 12水平方向:v 0=at 1,OA =12at 12,a =qE 0m联立得q m =gE 0.(2)由(1)中知OC =OA =v 022g ,t 1=v 0g,设小球在D 点时速度为v ,小球从C 点到D 点做平抛运动,有OC =12gt 22,OD =v 0t 2,tan θ=gt 2v 0,v cos θ=v 0 联立得OD =v 02g ,t 2=v 0g,θ=45°,v =2v 0因小球在复合场中做圆周运动,所以电场力与重力平衡,洛伦兹力提供向心力,即mg =qE ,得E =E 0而Bqv =m v 2R ,得B =mvqR由轨迹图知2R sin θ=OD 联立得B =2E 0v 0(3)小球做圆周运动所用时间为t 3=270°360°×2πm Bq =3πv 04g所以小球从A 点运动到O 点经历的时间t =t 1+t 2+t 3=⎝⎛⎭⎪⎫2+3π4v 0g .6.(1)qBRm(2)①2mgR ②q 2B 2R 2m 2+(2+22)gR 解析 (1)小球在水平面上只受到洛伦兹力作用,故qv 0B =m v 20R解得v 0=qBR m(2)①小球在管道运动时,洛伦兹力始终不做功. 对小球运动到最低点的过程,由动能定理:mgR +qER =ΔE k .由题知,E =mgq,则ΔE k =2mgR②方法一:当小球到达管道中方位角为θ的位置(如图所示)时,应用动能定理,有mgR sin θ+qE (R +R cos θ)=12mv 2-12mv 02即v 2=q 2B 2R 2m2+2gR +2gR (sin θ+cos θ)对函数y =sin θ+cos θ求极值,可得θ=45°时,y max = 2 所以v m =q 2B 2R 2m 2+(2+22)gR 方法二:如图所示,根据场的叠加原理,小球所受的等效重力为:mg ′=(mg )2+(qE )2=2mgtan φ=mg qE=1,即φ=45°小球在等效重力场的“最低点”时,即当小球到达管道中方位角为θ=φ=45°时,速度最大 由动能定理:mgR sin θ+qE (R +R cos θ)=12mv m 2-12mv 02解得:v m =q 2B 2R 2m 2+(2+22)gR .。
江苏专用2019高考物理一轮复习第九章磁场课时70带电粒子在叠加场中的运动加练半小时.docx

70 带电粒子在叠加场中的运动[方法点拨] (1)先确定各场的方向、强弱等,后正确分析带电体受力情况、运动情况,寻找临界点、衔接点;(2)若带电粒子在叠加场中做匀速直线运动,则重力、电场力与磁场力的合力为零;(3)若带电粒子在叠加场中做匀速圆周运动,则重力与电场力等大、反向.1.如图1所示圆形区域内,有垂直于纸面方向的匀强磁场.一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O射入匀强磁场,又都从该磁场中射出.这些粒子在磁场中的运动时间有的较长,有的较短.若带电粒子在磁场中只受磁场力的作用,则在磁场中运动的带电粒子( )图1A.速率越大的运动时间越长B.运动时间越长的周期越大C.速率越小的速度方向变化的角度越小D.运动时间越长的半径越小图中的1、2、3、4是霍尔元件上的四个接线端.当开关S1、S2闭合后,电流表A和电表B、C都有明显示数,下列说法中正确的是( )图1A.电表B为毫伏表,电表C为毫安表B.接线端2的电势高于接线端4的电势C.若调整电路,使通过电磁铁和霍尔元件的电流与原电流方向相反,但大小不变,则毫伏表的示数将保持不变D.若适当减小R1、增大R2,则毫伏表示数一定增大2.(多选)如图2所示,空间存在水平向左的匀强电场E和垂直纸面向外的匀强磁场B,在竖直平面内从a点沿ab、ac方向抛出两带电小球,不考虑两带电小球间的相互作用,两小球电荷量始终不变.关于小球的运动,下列说法正确的是( )图2A.沿ab、ac方向抛出的带电小球都可能做直线运动B.若沿ab方向做直线运动,则小球带正电,且一定是匀速运动C.若沿ac方向做直线运动,则小球带负电,可能做匀加速运动D.两小球在运动过程中机械能均保持不变3.(多选)(2018·四川成都第七中学月考)太阳风含有大量高速运动的质子和电子,可用于发电.如图3所示,太阳风进入两平行极板之间的区域,速度为v,方向与极板平行,该区域中有磁感应强度大小为B的匀强磁场,方向垂直纸面,两极板间的距离为L,则( )图3A.在开关K未闭合的情况下,两极板间稳定的电势差为BLvB.闭合开关K后,若回路中有稳定的电流I,则极板间电场恒定C.闭合开关K后,若回路中有稳定的电流I,则电阻消耗的热功率为2BILvD.闭合开关K后,若回路中有稳定的电流I,则电路消耗的能量等于洛伦兹力所做的功4.(多选)(2017·河北衡水金卷)如图4所示,一对间距可变的平行金属板C、D水平放置,两板间有垂直于纸面向里的匀强磁场B.两板通过滑动变阻器与铅蓄电池相连,这种铅蓄电池能快速转换到“逆变”状态,即外界电压过低时能向外界提供一定的供电电压,当外界电压超过某一限定值时可转换为充电状态,闭合开关S后,有一束不计重力的带正电粒子从左侧以一定的速度v0射入两板间恰能做直线运动,现对入射粒子或对装置进行调整,则下列有关描述正确的是( )图4A.若仅将带正电的粒子换成带负电的粒子,也能直线通过B.若只增大两板间距到一定程度时可使铅蓄电池处于充电状态C.若将滑动变阻器触头P向a端滑动,可提高C板的电势D .若只减小入射粒子的速度,可使铅蓄电池处于充电状态5.(2018·湖北黄冈模拟)如图5所示,在平面直角坐标系xOy 的第二象限内存在电场强度大小为E 0、方向水平向右的匀强电场,x 轴下方是竖直向上的匀强电场和垂直纸面向外的匀强磁场的复合场区域.一带电小球从x 轴上的A 点以一定初速度v 0垂直x 轴向上射出,小球恰好以速度v 0从y 轴上的C 点垂直y 轴进入第一象限,然后从x 轴上的D 点进入x 轴下方的复合场区域,小球在复合场区域内做圆周运动,最后恰好击中原点O ,已知重力加速度为g .求:图5(1)带电小球的比荷qm;(2)x 轴下方匀强电场的电场强度大小E 和匀强磁场的磁感应强度大小B ; (3)小球从A 点运动到O 点经历的时间t .6.(2017·广东佛山高三教学质检一)在水平面上,平放一半径为R 的光滑半圆管道,管道处在方向竖直、磁感应强度为B 的匀强磁场中,另有一个质量为m 、带电荷量为+q 的小球. (1)当小球从管口沿切线方向以某速度射入,运动过程中恰不受管道侧壁的作用力,求此速度v 0;(2)现把管道固定在竖直面内,且两管口等高,磁场仍保持和管道平面垂直,如图6所示,空间再加一个水平向右、场强E =mgq 的匀强电场(未画出),若小球仍以v 0的初速度沿切线方向从左边管口射入,求小球:图6①运动到最低点的过程中动能的增量; ②在管道运动全程中获得的最大速度.答案精析1.BC2.AB [若沿ab 方向抛出的小球带正电,沿ac 方向抛出的小球带负电,则都可能做直线运动,如图所示,A 项正确.根据上述分析可知,若小球沿ab 方向做直线运动,重力和电场力不变,由图中可以看出应保证重力和电场力的合力与洛伦兹力大小相等且方向相反;若速度改变,则洛伦兹力改变,小球所受的合外力大小不为零且方向与速度方向不共线,所以小球将不做直线运动,B 项正确.根据上述分析可知小球若沿ac 方向做直线运动,则小球带负电,重力和电场力不变,由图中可以看出应保证重力和电场力的合力与洛伦兹力大小相等且方向相反;若速度改变,则洛伦兹力改变,小球所受的合外力大小不为零且方向与速度方向不共线,所以小球将不做直线运动,C 项错误.两小球在运动过程中洛伦兹力不做功,只有重力和电场力做功.电场力做功,电势能改变,则机械能也改变,D 项错误.]3.AB [太阳风进入两极板之间的匀强磁场中,稳定后,带电粒子受到洛伦兹力和电场力作用,且qUL =qvB ,解得U =BLv ,选项A 正确;闭合开关后,若回路中有稳定的电流,则两极板之间的电压恒定,电场恒定,选项B 正确;回路中电流I =U R =BLvR ,电阻消耗的热功率P=UI =BLIv ,选项C 错误;由于洛伦兹力永远不做功,所以选项D 错误.]4.AB [带正电的粒子恰好做直线运动,其电场力和洛伦兹力相平衡,由Ed q =qv 0B 可知v 0=EBd,若换成带负电的粒子,电场力和洛伦兹力都反向,仍平衡,能直线通过,故选项A 正确;若增大两板间距,带正电粒子射入后受洛伦兹力偏转堆积在极板上,将提高两板间电压,若此电压超过蓄电池的逆变电压就会使之处于“逆变”状态而被充电,故选项B 正确;由于电容器C 、D 两板是彼此绝缘的,调节滑动触头P 不起任何作用,故选项C 错误;若减小入射粒子的速度,直线通过的粒子所受洛伦兹力减小,有部分粒子会落在下极板上,因此上极板上堆积的电荷会减小,对应的电势也会降低,达不到逆变电压,故选项D 错误.] 5.(1)g E0 (2)E 0 2E0v0 (3)⎝ ⎛⎭⎪⎫2+3π4v0g解析 (1)小球运动轨迹如图所示,在第二象限内小球受重力和电场力作用做曲线运动,由运动的合成与分解知,竖直方向:v 0=gt 1,OC =12gt 12水平方向:v 0=at 1,OA =12at 12,a =qE0m联立得q m =gE0.(2)由(1)中知OC =OA =v022g ,t 1=v0g ,设小球在D 点时速度为v ,小球从C 点到D 点做平抛运动,有OC =12gt 22,OD =v 0t 2,tan θ=gt2v0,v cos θ=v 0联立得OD =v02g ,t 2=v0g,θ=45°,v =2v 0因小球在复合场中做圆周运动,所以电场力与重力平衡,洛伦兹力提供向心力,即mg =qE ,得E =E 0而Bqv =m v2R ,得B =mvqR由轨迹图知2R sin θ=OD 联立得B =2E0v0(3)小球做圆周运动所用时间为t 3=270°360°×2πm Bq =3πv04g所以小球从A 点运动到O 点经历的时间t =t 1+t 2+t 3=⎝⎛⎭⎪⎫2+3π4v0g .6.(1)qBRm(2)①2mgR ②q2B2R2m22+22gR解析 (1)小球在水平面上只受到洛伦兹力作用,故qv 0B =m v20R解得v 0=qBRm(2)①小球在管道运动时,洛伦兹力始终不做功. 对小球运动到最低点的过程,由动能定理:mgR +qER =ΔE k .由题知,E =mg q,则ΔE k =2mgR②方法一:当小球到达管道中方位角为θ的位置(如图所示)时,应用动能定理,有mgR sin θ+qE (R +R cos θ)=12mv 2-12mv 02即v 2=q2B2R2m2+2gR +2gR (sin θ+cos θ)对函数y =sin θ+cos θ求极值,可得θ=45°时,y max = 2 所以v m =q2B2R2m22+22gR方法二:如图所示,根据场的叠加原理,小球所受的等效重力为:mg ′=mg 2qE 2=2mgtan φ=mgqE=1,即φ=45°小球在等效重力场的“最低点”时,即当小球到达管道中方位角为θ=φ=45°时,速度最大 由动能定理:mgR sin θ+qE (R +R cos θ)=12mv m 2-12mv 02解得:v m = q2B2R2m22+22gR.。
(最新)2019年高考物理一轮复习 第九章 磁场 专题强化十 带电粒子在复合场中运动的实例分析学案

专题强化十 带电粒子在复合场中运动的实例分析专题解读1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题压轴题的信心.3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律).命题点一 质谱仪的原理和分析 1.作用测量带电粒子质量和分离同位素的仪器. 2.原理(如图1所示)图1①加速电场:qU =12mv 2;②偏转磁场:qvB =mv 2r,l =2r ;由以上两式可得r =1B 2mUq,m =qr 2B 22U ,q m =2U B 2r2.例1 现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图2所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )图2A .11B .12C .121D .144①同一加速电场;②同一出口离开磁场.答案 D解析 由qU =12mv 2得带电粒子进入磁场的速度为v =2qUm,结合带电粒子在磁场中运动的轨迹半径R =mv Bq,综合得到R =1B 2mUq,由题意可知,该离子与质子在磁场中具有相同的轨道半径和电荷量,故m 0m p=144,故选D.1.1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图3所示,则下列相关说法中正确的是( )图3A .该束带电粒子带负电B .速度选择器的P 1极板带负电C .在B 2磁场中运动半径越大的粒子,比荷q m越小 D .在B 2磁场中运动半径越大的粒子,质量越大 答案 C解析 带电粒子在磁场中向下偏转,磁场的方向垂直纸面向外,根据左手定则知,该粒子带正电,故选项A 错误.在平行金属板间,根据左手定则知,带电粒子所受的洛伦兹力方向竖直向上,则电场力的方向竖直向下,知电场强度的方向竖直向下,所以速度选择器的P 1极板带正电,故选项B 错误.进入B 2磁场中的粒子速度是一定的,根据qvB =mv 2r 得,r =mv qB ,知r 越大,比荷qm越小,而质量m 不一定大,故选项C 正确,D 错误.2.一台质谱仪的工作原理如图4所示,电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最后打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发现MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调节加速电压后,原本打在MQ 区域的离子即可在QN 区域检测到.图4(1)求原本打在MN 中点P 点的离子质量m ;(2)为使原本打在P 点的离子能打在QN 区域,求加速电压U 的调节范围. 答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09解析 (1)离子在电场中加速qU 0=12mv 2,在磁场中做匀速圆周运动qvB =m v 2r ,解得r 0=1B 2mU 0q ,代入r 0=34L ,解得m =9qB 2L232U 0.(2)由(1)知,U =16U 0r 29L 2,离子打在Q 点r =56L ,U =100U 081,离子打在N 点r =L ,U =16U 09,则电压的范围为100U 081≤U ≤16U 09.命题点二 回旋加速器的原理和分析 1.加速条件:T 电场=T 回旋=2πmqB;2.磁场约束偏转:qvB =mv 2r ⇒v =qBrm.3.带电粒子的最大速度v max =qBr Dm,r D 为D 形盒的半径.粒子的最大速度v max 与加速电压U 无关. 4.回旋加速器的解题思路(1)带电粒子在缝隙的电场中加速、交变电流的周期与磁场周期相等,每经过磁场一次,粒子加速一次. (2)带电粒子在磁场中偏转、半径不断增大,周期不变,最大动能与D 形盒的半径有关.例2 (多选)劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图5所示.置于真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生质子的质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( )图5A .质子被加速后的最大速度不可能超过2πRfB .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变①D 形金属盒半径为R ;②狭缝很小.答案 AC解析 质子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πRT=2πRf ,故A 正确;质子离开回旋加速器的最大动能E km =12mv 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq=12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误.3.(多选)如图6甲所示是回旋加速器的示意图,其核心部分是两个D 形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断中正确的是( )图6A .在E k -t 图中应有t 4-t 3=t 3-t 2=t 2-t 1B .高频电源的变化周期应该等于t n -t n -1C .粒子加速次数越多,粒子最大动能一定越大D .当B 一定时,要想粒子获得的最大动能越大,则要求D 形盒的面积也越大 答案 AD解析 由T =2πmqB可知,粒子回旋周期不变,则有t 4-t 3=t 3-t 2=t 2-t 1,选项A 正确;交流电源的周期必须和粒子在磁场中运动的周期一致,故高频电源的变化周期应该等于2(t n -t n -1),选项B 错误;由R =mv qB可知,粒子的最大动能为E km =B 2q 2R 22m,故粒子最后获得的最大动能与加速次数无关,与D 形盒内磁感应强度和D 形盒的半径有关,可知选项C 错误,D 正确.4.回旋加速器的工作原理如图7甲所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量为+q ,加在狭缝间的交变电压如图乙所示,电压值的大小为U 0.周期T =2πm qB .一束该粒子在t =0~T2时间内从A 处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求:图7(1)出射粒子的动能E k ;(2)粒子从飘入狭缝至动能达到E k 所需的总时间t 0.答案 (1)q 2B 2R 22m (2)πBR 2+2BRd 2U 0-πmqB解析 (1)粒子运动半径为R 时,有qvB =m v 2R,又E k =12mv 2,解得E k =q 2B 2R 22m.(2)设粒子被加速n 次达到动能E k ,则E k =nqU 0.粒子在狭缝间做匀加速运动,设n 次经过狭缝的总时间为Δt ,加速度a =qU 0md, 粒子做匀加速直线运动,有nd =12a ·Δt 2,由t 0=(n -1)·T2+Δt ,解得t 0=πBR 2+2BRd 2U 0-πmqB .命题点三 霍尔效应的原理和分析1.定义:高为h ,宽为d 的金属导体(自由电荷是电子)置于匀强磁场B 中,当电流通过金属导体时,在金属导体的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.2.电势高低的判断:如图8,金属导体中的电流I 向右时,根据左手定则可得,下表面A ′的电势高.图83.霍尔电压的计算:导体中的自由电荷(电子)在洛伦兹力作用下偏转,A 、A ′间出现电势差,当自由电荷所受静电力和洛伦兹力平衡时,A 、A ′间的电势差(U )就保持稳定,由qvB =q Uh ,I =nqvS ,S =hd ;联立得U =BI nqd=k BI d,k =1nq称为霍尔系数.例3 (多选)如图9所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =kI H Bd,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )图9A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比①U H =kBI Hd;②电阻R 远大于R L . 答案 CD解析 当霍尔元件通有电流I H 时,根据左手定则,电子将向霍尔元件的后表面运动,故霍尔元件的前表面电势较高.若将电源的正负极对调,则磁感应强度B 的方向换向,I H 方向变化,根据左手定则,电子仍向霍尔元件的后表面运动,故仍是霍尔元件的前表面电势较高,选项A 、B 错误.因R 与R L 并联,根据并联分流,得I H =R L R L +R I ,故I H 与I 成正比,选项C 正确.由于B 与I 成正比,设B =aI ,则I L =R R +R LI ,P L =I 2L R L ,故U H=kI H B d =ak (R +R L )R 2dP L ,知U H ∝P L ,选项D 正确.5.(多选)如图10,为探讨霍尔效应,取一块长度为a 、宽度为b 、厚度为d 的金属导体,给金属导体加与前后侧面垂直的匀强磁场B ,且通以图示方向的电流I 时,用电压表测得导体上、下表面M 、N 间电压为U .已知自由电子的电荷量为e .下列说法中正确的是( )图10A .M 板比N 板电势高B .导体单位体积内自由电子数越多,电压表的示数越大C .导体中自由电子定向移动的速度为v =U BdD .导体单位体积内的自由电子数为BI eUb答案 CD解析 电流方向向右,电子定向移动方向向左,根据左手定则判断可知,电子所受的洛伦兹力方向竖直向上,则M 板积累了电子,M 、N 之间产生向上的电场,所以M 板比N 板电势低,选项A 错误.电子定向移动相当于长度为d 的导体切割磁感线产生感应电动势,电压表的读数U 等于感应电动势E ,则有U =E =Bdv ,可见,电压表的示数与导体单位体积内自由电子数无关,选项B 错误;由U =E =Bdv 得,自由电子定向移动的速度为v =U Bd ,选项C 正确;电流的微观表达式是I =nevS ,则导体单位体积内的自由电子数n =I evS ,S =db ,v =U Bd,代入得n =BIeUb,选项D 正确. 6.利用霍尔效应制作的元件,广泛应用于测量和自动控制等领域.如图11是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,通入图示方向的电流I ,C 、D 两侧就会形成电势差U CD ,下列说法中正确的是( )图11A .电势差U CD 仅与材料有关B .仅增大磁感应强度时,C 、D 两面的电势差变大 C .若霍尔元件中定向移动的是自由电子,则电势差U CD >0D .在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平方向 答案 B解析 设霍尔元件的厚度为d, 长为a ,宽为b ,稳定时有Bqv =qU CDb,又因为I =nqSv ,其中n 为单位体积内自由电荷的个数,q 为自由电荷所带的电荷量,S =bd ,联立解得:U CD =1nq ·BId,可知选项A 错误;若仅增大磁感应强度B ,则C 、D 两面的电势差增大,选项B 正确;若霍尔元件中定向移动的是自由电子,由左手定则可知,电子将向C 侧偏转,则电势差U CD <0,选项C 错误;地球赤道上方的地磁场方向为水平方向,元件的工作面要与磁场方向垂直,故元件的工作面应保持竖直方向,选项D 错误. 命题点四 速度选择器、磁流体发电机和电磁流量计 1.速度选择器图12(1)平行板中电场强度E 和磁感应强度B 互相垂直.(如图12)(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =E B. (3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量. (4)速度选择器具有单向性. 2.磁流体发电机(如图13)图13(1)原理:等离子气体喷入磁场,正负离子在洛伦兹力的作用下发生偏转而聚集在A 、B 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)电源电动势U :设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子气体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .当正、负离子所受静电力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q U l=qvB ,即U =Blv . (4)电源内阻:r =ρl S. (5)回路电流:I =Ur +R.3.电磁流量计(1)流量(Q )的定义:单位时间流过导管某一截面的导电液体的体积. (2)公式:Q =Sv ;S 为导管的截面积,v 是导电液体的流速.(3)导电液体的流速(v )的计算如图14所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向右流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下发生偏转,使a 、b 间出现电势差,当自由电荷所受静电力和洛伦兹力平衡时,a 、b 间的电势差(U )达到最大,由q U d =qvB ,可得v =U Bd.图14(4)流量的表达式:Q =Sv =πd 24·U Bd =πdU4B .(5)电势高低的判断:根据左手定则可得φa >φb .例4 (多选)如图15所示,a 、b 是一对平行金属板,分别接到直流电源的两极上,右边有一块挡板,正中间开有一小孔d ,在较大空间范围内存在着匀强磁场,磁感应强度大小为B ,方向垂直纸面向里,在a 、b 两板间还存在着匀强电场E .从两板左侧中点c 处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d 孔射出后分成三束,则下列判断正确的是( )图15A .这三束正离子的速度一定不相同B .这三束正离子的比荷一定不相同C .a 、b 两板间的匀强电场方向一定由a 指向bD .若这三束离子改为带负电而其他条件不变则仍能从d 孔射出①沿直线运动;②分成三束.答案 BCD解析 因为三束正离子在两极板间都是沿直线运动的,电场力等于洛伦兹力,可以判断三束正离子的速度一定相同,且电场方向一定由a 指向b ,A 错误,C 正确;在右侧磁场中三束正离子转动半径不同,可知这三束正离子的比荷一定不相同,B 项正确;若将这三束离子改为带负电,而其他条件不变的情况下分析受力可知,三束离子在两板间仍做匀速直线运动,仍能从d 孔射出,D 项正确.7.(多选)磁流体发电是一项新兴技术,它可把气体的内能直接转化为电能,图16是它的示意图,平行金属板A 、C 间有一很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电离子)喷入磁场,两极板间便产生电压,现将A 、C 两极板与电阻R 相连,两极板间距离为d ,正对面积为S ,等离子体的电阻率为ρ,磁感应强度为B ,等离子体以速度v 沿垂直磁场方向射入A 、C 两板之间,则稳定时下列说法中正确的是( )图16A .极板A 是电源的正极B .电源的电动势为BdvC .极板A 、C 间电压大小为BdvSRRS +ρdD .回路中电流为Bdv R答案 BC解析 等离子体喷入磁场,带正电的离子因受到竖直向下的洛伦兹力而向下偏转,带负电的离子向上偏转,即极板C 是电源的正极,A 错;当带电离子以速度v 做直线运动时,qvB =q E d,所以电源电动势为Bdv ,B 对;极板A 、C 间电压U =IR ,而I =BdvR +ρd S=BdvS RS +ρd ,则U =BdvSRRS +ρd ,所以C 对,D 错.8.(多选)为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图17所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a =1m 、b =0.2m 、c =0.2m ,左、右两端开口,在垂直于前、后面的方向加磁感应强度为B =1.25T 的匀强磁场,在上、下两个面的内侧固定有金属板M 、N 作为电极,污水充满装置以某一速度从左向右匀速流经该装置时,用电压表测得两个电极间的电压U =1V .且污水流过该装置时受到阻力作用,阻力F f =kLv ,其中比例系数k =15N·s/m 2,L 为污水沿流速方向的长度,v 为污水的流速.下列说法中正确的是( )图17A .金属板M 电势不一定高于金属板N 的电势,因为污水中负离子较多B .污水中离子浓度的高低对电压表的示数也有一定影响C .污水的流量(单位时间内流出的污水体积)Q =0.16m 3/sD .为使污水匀速通过该装置,左、右两侧管口应施加的压强差为Δp =1500Pa 答案 CD解析 根据左手定则,知负离子所受的洛伦兹力方向向下,则负离子向下偏转,N 板带负电,M 板带正电,则N 板的电势比M 板电势低,故A 错误;最终离子在电场力和洛伦兹力作用下平衡,有qvB =q Uc,解得U =vBc ,与离子浓度无关,故B 错误;污水的流速v =U Bc ,则流量Q =vbc =Ub B =1×0.21.25m 3/s =0.16 m 3/s ,故C 正确;污水的流速v =U Bc =11.25×0.2m/s =4 m/s; 污水流过该装置时受到的阻力F f =kLv =kav =15×1×4N =60N ,为使污水匀速通过该装置,左、右两侧管口应施加的压力差是60N ,则压强差为Δp =F S =600.2×0.2Pa =1500Pa ,故D 正确.题组1 质谱仪的原理和分析1.(多选)如图1是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是( )图1A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直于纸面向外C .能通过狭缝P 的带电粒子的速率等于E BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小 答案 ABC解析 质谱仪是分析同位素的重要工具,A 正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B 正确.由qE =qvB 可得v =E B,C 正确.粒子在平板S 下方的匀强磁场中做匀速圆周运动的半径R =mv qB 0,所以q m =vB 0R,D 错误. 2.(多选)如图2所示为一种质谱仪的示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场,在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )图2A .极板M 比极板N 的电势高B .加速电场的电压U =ERC .直径PQ =2B qmERD .若一群粒子从静止开始经过题述过程都落在胶片上的同一点,则该群粒子具有相同的比荷 答案 AD解析 粒子在静电分析器内沿电场线方向偏转,说明粒子带正电荷,极板M 比极板N 的电势高,选项A 正确;由Uq =12mv 2和Eq =mv 2R 可得U =ER 2,选项B 错误;直径PQ =2r =2mvBq =2ERmB 2q,可见只有比荷相同的粒子才能打在胶片上的同一点,选项C 错误,D 正确.题组2 回旋加速器的原理和分析3.(多选)回旋加速器在科学研究中得到了广泛应用,其原理如图3所示.D 1和D 2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在电压为U 、周期为T 的交流电源上.位于D 1的圆心处的质子源A 能不断产生质子(初速度可以忽略),它们在两盒之间被电场加速.当质子被加速到最大动能E k 后,再将它们引出.忽略质子在电场中的运动时间,则下列说法中正确的是( )图3A .若只增大交变电压U ,则质子的最大动能E k 会变大B .若只增大交变电压U ,则质子在回旋加速器中运行的时间会变短C .若只将交变电压的周期变为2T ,仍可用此装置加速质子D .质子第n 次被加速前、后的轨道半径之比为n -1∶n 答案 BD解析 由r =mvqB可知,质子经加速后的最大速度与回旋加速器的最大半径有关,而与交变电压U 无关,故A 错误;增大交变电压,质子加速次数减小,所以质子在回旋加速器中的运行时间变短,B 正确;为了使质子能在回旋加速器中加速,质子的运动周期应与交变电压的周期相同,C 错误;由nqU =12mv 2n 以及r n =mv nqB 可得质子第n 次被加速前、后的轨道半径之比为n -1∶n ,D 正确.4.如图4所示是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He).下列说法中正确的是( )图4A .它们的最大速度相同B .它们的最大动能相同C .两次所接高频电源的频率不相同D .仅增大高频电源的频率可增大粒子的最大动能 答案 A解析 根据qvB =m v 2R ,得v =qBR m .两粒子的比荷q m 相等,所以最大速度相等.故A 正确.最大动能E k =12mv 2=q 2B 2R22m,两粒子的比荷q m 相等,但质量不相等,所以最大动能不相等.故B 错.带电粒子在磁场中运动的周期T =2πmqB,两粒子的比荷qm相等,所以周期相等.做圆周运动的频率相等,因为所接高频电源的频率等于粒子做圆周运动的频率,故两次所接高频电源的频率相同,故C 错误.由E k =q 2B 2R 22m可知,粒子的最大动能与加速电压的频率无关,故仅增大高频电源的频率不能增大粒子的最大动能.故D 错.题组3 霍尔效应的原理和分析5.(多选)导体导电是导体中自由电荷定向移动的结果,这些可以定向移动的电荷又叫载流子,例如金属导体中的载流子就是电子.现代广泛应用的半导体材料分为两大类:一类是N 型半导体,其载流子是电子,另一类是P 型半导体,其载流子称为“空穴”,相当于带正电的粒子.如果把某种导电材料制成长方体放在匀强磁场中,磁场方向如图5所示,且与长方体的前后侧面垂直,当长方体中通有向右的电流I 时,测得长方体的上、下表面的电势分别为φ上和φ下,则( )图5A .长方体如果是N 型半导体,必有φ上>φ下B .长方体如果是P 型半导体,必有φ上>φ下C .长方体如果是P 型半导体,必有φ上<φ下D .长方体如果是金属导体,必有φ上<φ下答案 AC解析 如果是N 型半导体,载流子是负电荷,根据左手定则,负电荷向下偏,则下表面带负电,则φ上>φ下,故A 正确;如果是P 型半导体,载流子是正电荷,根据左手定则,正电荷向下偏,则下表面带正电,则φ上<φ下,故B 错误,C 正确;如果是金属导体,则移动的是自由电子,根据左手定则,负电荷向下偏,则下表面带负电,则φ上>φ下,故D 错误.6.如图6所示,宽度为d 、厚度为h 的导体放在垂直于它的磁感应强度为B 的匀强磁场中,当电流通过该导体时,在导体的上、下表面之间会产生电势差,这种现象称为霍尔效应.实验表明当磁场不太强时,电势差U 、电流I 和磁感应强度B 的关系为U =K IBd,式中的比例系数K 称为霍尔系数.设载流子的电荷量为q ,下列说法正确的是( )图6A .载流子所受静电力的大小F =q U dB .导体上表面的电势一定大于下表面的电势C .霍尔系数为K =1nq,其中n 为导体单位长度上的电荷数D .载流子所受洛伦兹力的大小F 洛=BInhd,其中n 为导体单位体积内的电荷数 答案 D解析 静电力的大小应为F =q U h,A 错误;载流子的电性是不确定的,因此B 错误;霍尔系数K =1nq,其中n为导体单位体积内的电荷数,C 错误;载流子所受洛伦兹力的大小F 洛=qvB ,其中v =I nqdh ,可得F 洛=BI ndh,D 正确.7.如图7所示,一段长方体形导电材料,左右两端面的边长都为a 和b ,内有带电荷量为q 的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B .当通以从左到右的稳恒电流I 时,测得导电材料上、下表面之间的电压为U ,且上表面的电势比下表面的低,由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )图7A.IB|q |aU ,负 B.IB |q |aU ,正 C.IB|q |bU,负 D.IB|q |bU,正答案 C解析 当粒子带负电时,粒子定向向左运动才能形成向右的电流,由左手定则判断粒子受洛伦兹力的方向向上,上表面电势较低,符合题意. 由粒子做匀速运动知|q |vB =|q |E =|q |U a因I =n |q |vS =n |q |vab 解得n =IB|q |bU,选项C 正确.题组4 速度选择器、磁流体发电机和电磁流量计8.在如图8所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( )图8A .一定带正电B .速度v =E BC .若速度v >E B,粒子一定不能从板间射出 D .若此粒子从右端沿虚线方向进入,仍做直线运动 答案 B解析 粒子带正电和负电均可,选项A 错误;由洛伦兹力等于电场力,qvB =qE ,解得速度v =E B,选项B 正确;若速度v >E B,粒子可能从板间射出,选项C 错误;若此粒子从右端沿虚线方向进入,所受电场力和洛伦兹力方向相同,不能做直线运动,选项D 错误.9.为监测某化工厂的含有离子的污水排放情况,技术人员在排污管中安装了监测装置,该装置的核心部分是一个用绝缘材料制成的空腔,其宽和高分别为b 和c ,左、右两端开口与排污管相连,如图9所示.在垂直于上、下底面方向加磁感应强度大小为B 的匀强磁场,在空腔前、后两个侧面上各有长为a 的相互平行且正对的电极M 和N ,M 、N 与内阻为R 的电流表相连.污水从左向右流经该装置时,电流表将显示出污水排放情况.下列说法中错误的是( )图9A .M 板比N 板电势低。
2019届高考物理一轮复习第九章磁场第4节带电粒子在叠

带电粒子在叠加场中的运动
1 课堂提能·考点全通 2 课后演练·逐级过关
课 堂 提能·考点 全通
易点速过,难点精研,时间用到增分点上
突破点(一) 带电粒子在叠加场中运动的实例分析 (师生共研原理图
规律 若 qv0B=Eq,即 v0=EB,粒 子做匀速直线运动 等离子体射入,受洛伦兹力偏 转,使两极板带正、负电,两 极电压为 U 时稳定,qUd = qv0B,U=v0Bd
由于 v′= rr0v,由 E=Bv 可得,区域Ⅱ的电场与原电场的电场强
度之比为 rr0,故 D 正确。答案:AD
突破点(二) 带电粒子在叠加场中的运动 (多维探究类)
1.三种场的比较
力的特点
功和能的特点
重力 大小:G=mg
重力做功与路径无关
场 方向:竖直向下
重力做功改变物体的重力势能
大小:F=qE
[答案] AD
[方法规律] 解决电磁场科技问题的一般过程:
[集训冲关]
1.医生做某些特殊手术时,利用电磁血流计来监测
通过动脉的血流速度。电磁血流计由一对电极 a
和 b 以及一对磁极 N 和 S 构成,磁极间的磁场是
均匀的。使用时,两电极 a、b 均与血管壁接触,
两触点的连线、磁场方向和血流速度方向两两垂直,如图所示。由
装置 电磁流量计
霍尔元件
原理图
规律 UDq=qvB,所以 v=DUB 所以 Q=vS=π4DBU 当磁场方向与电流方向 垂直时,导体在与磁场、 电流方向都垂直的方向 上出现电势差
[典例] [多选](2018·江苏苏锡常镇四市调研)自行车速度计利用
霍尔效应传感器获知自行车的运动速率。如图甲所示,自行车前轮上
安装一块磁铁,轮子每转一圈,这块磁铁就靠近传感器一次,传感器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题强化十一带电粒子在叠加场和组合场中的运动
专题解读1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题压轴题的信心.
3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律).
命题点一带电粒子在叠加场中的运动
1.带电体在叠加场中无约束情况下的运动
(1)洛伦兹力、重力并存
①若重力和洛伦兹力平衡,则带电体做匀速直线运动.
②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.
(2)静电力、洛伦兹力并存(不计重力的微观粒子)
①若静电力和洛伦兹力平衡,则带电体做匀速直线运动.
②若静电力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.
(3)静电力、洛伦兹力、重力并存
①若三力平衡,一定做匀速直线运动.
②若重力与静电力平衡,一定做匀速圆周运动.
③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.
2.带电体在叠加场中有约束情况下的运动
带电体在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动
和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解.
例1在如图1所示的竖直平面内,水平轨道CD和倾斜轨道GH与半径r=9
44
m的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角θ=37°.过G点、垂直于水平面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B=1.25T;过D点、垂直于水平面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E=1×104N/C.小物体P1质量m=2×10-3 kg、带电荷量q=+8×10-6 C,受到水平向右的推力F=9.98×10-3 N的作用,沿CD向右做匀速直线运动,到达D点后撤去推力.当P1到达倾斜轨道底端G点时,不带电的小物体P2在GH顶端由静止释放,经过时间t=0.1 s与P1相遇.P1和P2与轨道CD、GH间的动摩擦因数均为μ=0.5,g取10 m/s2,sin37°=0.6,cos37°=0.8,物体电荷量保持不变,不计空气阻力.求:
图1
(1)小物体P1在水平轨道CD上运动速度v的大小;
(2)倾斜轨道GH的长度s.
①沿CD向右匀速直线运动;②经过时间t=0.1s与P1相遇.
答案(1)4m/s(2)0.56m
解析(1)设小物体P1在匀强磁场中运动的速度为v,受到向上的洛伦兹力为F1,受到的摩擦力为F f,则
F1=qvB①
F f=μ(mg-F1)②
由题意知,水平方向合力为零,F-F f=0③
联立①②③式,代入数据解得v=4m/s④
(2)设P1在G点的速度大小为v G,由于洛伦兹力不做功,根据动能定理有
qEr sinθ-mgr(1-cosθ)=1
2
mv G2-
1
2
mv2⑤
P1在GH上运动,受到重力、电场力和摩擦力的作用,设加速度为a1,根据牛顿第二定律有。