作为应用PTP1B抑制剂Carboxymethylpyrogallol 衍生品

合集下载

紫杉醇(PTX)在食管癌同期放化疗中的研究进展

紫杉醇(PTX)在食管癌同期放化疗中的研究进展

紫杉醇(PTX)在食管癌同期放化疗中的研究进展邓家营【摘要】紫杉醇(paclitaxel,PTX)是食管癌化疗中最有活性的药物之一,因其独特的作用机制和良好的耐受性,被广泛与顺铂(cisplatin,DDP)、5氟尿嘧啶(fluorouracil,5 Fu)等联合应用.PTX还有一定的放射增敏作用,作为放射增敏剂之一常被用于同期放化疗.在临床上,PTX类药物有不同的制剂类型和用药方案,本文就其在食管癌放化疗中的研究进展,在不同方案中的作用以及应用中存在的问题作一综述.【期刊名称】《复旦学报(医学版)》【年(卷),期】2014(041)005【总页数】5页(P697-700,705)【关键词】食管肿瘤;同期放化疗;紫杉醇(PTX)【作者】邓家营【作者单位】复旦大学附属肿瘤医院放疗科上海200032;复旦大学上海医学院肿瘤学系上海200032【正文语种】中文【中图分类】R735.1食管癌是我国常见的恶性肿瘤之一,也是世界范围内常见的癌症死亡原因。

因其早期症状不明显,30%~40%的食管癌确诊时已属无法手术切除的局部晚期。

食管癌单纯放疗效果不佳,5年生存率约为20%,局部未控和复发可达60%~80%。

单纯的化疗又很少获得病理完全缓解,且缓解期较短。

所以临床上更多地应用同期放化疗来治疗局部区域性食管癌非手术的患者。

顺铂(cisplatin,DDP)联合5-氟尿嘧啶(5-fluorouracil,5-Fu)是经典化疗方案,但是该方案患者耐受性差且疗效不理想。

探索更加高效、低毒并有放射增敏作用的新化疗药物是进一步提高食管癌同期放化疗疗效的重要途径之一。

紫杉醇(paclitaxel,PTX)是一种二萜类生物碱,主要从红豆杉树皮中分离提取。

作为抗肿瘤药,PTX具有独特的作用机制,一方面它可与β-微管蛋白结合并促进其聚合,诱导有丝分裂阻滞于G2/M期,从而使细胞出现分裂性死亡;另一方面,它还可以影响信号通路诱发细胞凋亡。

2022恶性胸膜间皮瘤内科治疗进展(全文)

2022恶性胸膜间皮瘤内科治疗进展(全文)

2022恶性胸膜间皮瘤内科治疗进展(全文)摘要恶性胸膜间皮瘤(MPM)是起源于胸膜组织的一类侵袭性恶性肿瘤,在人群中发生率不高,但预后极差,中位生存期仅12个月左右。

培美曲塞联合铂类化疗是目前指南共同推荐的一线方案,增加贝伐珠单抗的使用将进一步延长生存时间;但发生耐药后,尚没有能够带来明确生存获益的抗肿瘤治疗方案。

目前包括NCCN指南在内的国际国内指南目前无推荐的标准的MPM二线方案,临床上常应用的方案为长春瑞滨、吉西他滨等单药化疗,但中位无进展生存期(PFS))又3个月左右。

免疫检查点抑制剂(ICI)已被证实在多种恶性肿瘤中具有显著的肿瘤生长抑制作用,其疗效与PD-L1表达具有一定相关性。

在不可切除的MPM中,PD-1/PD-L1抑制剂治疗在一线和二线及以上治疗中均开展了一系列临床研究,部分结果也获得了国际指南的弓I用和推荐/但总体疗效改善有限。

本文对国内外MPM治疗领域的最新临床研究现状进行总结,尝试寻找未来改善治疗疗效的方向和前景。

恶性胸膜间皮瘤(malignantpleuralmesothelioma,MPM)是起源于胸膜组织的一类侵袭性恶性肿瘤,病因可能与石棉接触相关,是机体通过多种信号通路对石棉纤维等产生的慢性炎症反应及局部免疫抑制所导致的恶性病变[1,21MPM 的病理类型包括上皮样(约占60%)和非上皮样(约占40%),非上皮样又包括梭形细胞样、肉瘤样、多形性、纤维样、双向型和其他非特异性[3]。

MPM发生率不高,但预后极差,中位生存期仅12个月左右[4,5。

针对不可切除的MPM,抗叶酸药物(雷替曲塞、培美曲塞)联合铂类最早被证实可改善患者的生存,培美曲塞联合铂类化疗也是目前指南共同推荐的一线方案[6,7,8,9。

,增加贝伐珠单抗的使用将进一步延长生存[10。

一旦耐药,尚无抗肿瘤治疗被证实能够带来明确的生存获益,因此目前包括NCCN指南在内的国际国内指南目前无推荐的标准的MPM二线方案,临床上常应用的方案为长春瑞滨、吉西他滨等单药化疗/旦中位无进展生存期(progression-freesurvival,PFS)仅为3个月左右[9。

免疫检查点抑制剂全球研发线汇总

免疫检查点抑制剂全球研发线汇总

免疫检查点抑制剂全球研发线汇总免疫检查点控制共刺激和共抑制信号的平衡,而共刺激和共抑制信号在维持自身耐受和调节T细胞应答的幅值与持续时间方面具有重要作用。

两个主要的免疫检查点分子——细胞毒性T淋巴细胞蛋白4(CTLA4)和程序性细胞死亡的蛋白1(PD1),是具有细胞毒性的T细胞激活的负调节因子。

portant; box-sizing: border-box !important;">portant; box-sizing: border-box !important; font-size: 18px;">目前的治疗药物portant;">目前全球三只免疫检查点抑制剂已获批准上市:易普利姆玛(Yervoy;百时美施贵宝)、nivolumab(Opdivo;百时美施贵宝/小野药品)和pembrolizumab(Keytruda;默沙东),适应症皆为恶性黑色素瘤。

单克隆CTLA4-特异性抗体易普利姆玛于2011年获得美国食品药品管理局(FDA)上市批准,对于不能手术切除或转移性恶性黑色素瘤具有良好的治疗效果。

从1861例患者临床试验汇总的数据分析表明,3年和7年总生存率分别为22%和17%。

然而,在其获得批准的临床研究中,有效率较低(11%),3/4级不良事件发生率较高(46%,免疫相关为15%)。

portant;">PD1特异性单克隆抗体nivolumab成为了第一个获批的新型免疫检查点抑制剂,2014年7月在日本获批用于治疗恶性黑色素瘤,主要是基于Ⅱ期临床试验数据优先审查的基础上。

已公布的Ⅲ期临床试验数据显示,nivolumab治疗转移性黑色素瘤的有效率为32%,其中95%患者对药物治疗具有持续反应。

nivolumab相关3/4级不良事件较低(9%)。

在2014年9月,nivolumab向FDA提交了生物制品许可申请(BLA),用于治疗既往接受过治疗的晚期恶性黑色素瘤患者。

PD1抑制剂

PD1抑制剂

pd-1抑制剂程序性细胞死亡蛋白-1(programmed death-1,PD-1)及其配体(PD-L1)抑制剂是免疫哨点单抗药物,其应答之广度、深度、和持久性均十分罕见,是近年来肿瘤免疫疗法研究的热点。

已上市的尼伏单抗(nivolumab)和潘利珠单抗(pembrolizumab)属于PD-1抑制剂,主要用于黑素瘤和非小细胞肺癌的治疗,对肾细胞癌、膀胱癌、霍奇金淋巴瘤等的疗效还在大规模临床试验中。

PD-L1抑制剂阿替珠单抗(atezolizumab)、度伐单抗(durvalumab)和阿维单抗(avelumab)已被批准用于治疗尿道上皮癌,还有其他几种药物尚处于早期临床试验阶段。

目录.11 、抗肿瘤机制.22、已上市的PD-1/PD-L1抑制剂.▪ 2.1尼伏单抗.▪ 2.2潘利珠单抗.▪ 2.3 阿替珠单抗.▪ 2.4度伐单抗.▪ 2.5阿维单抗.33、几个值得关注的问题1 、抗肿瘤机制PD-1主要在激活的T细胞和B细胞中表达,功能是抑制T、B细胞的激活,这是免疫系统的一种正常的自稳机制,因为过度的T/B细胞激活会引起自身免疫病,所以PD-1是我们人体的一道护身符。

但是,肿瘤微环境会诱导浸润的T细胞高表达PD-1分子,肿瘤细胞会高表达PD-1的配体PD-L1和PD-L2,导致肿瘤微环境中PD-1通路持续激活,T细胞功能被抑制,无法杀伤肿瘤细胞。

PD-1的抗体可以阻断这一通路,部分恢复T细胞的功能,使这些细胞能够继续杀伤肿瘤细胞。

[1]PD-L1在多种肿瘤细胞中均有上调表达,它与T细胞上的PD-1结合,抑制T细胞增殖和活化,使T细胞处于失活状态,最终诱导免疫逃逸。

两种抑制剂均可阻断PD-1和PD-L1的结合,上调T细胞的生长和增殖,增强T细胞对肿瘤细胞的识别,激活其攻击和杀伤功能,通过调动人体自身的免疫功能实现抗肿瘤作用。

[2]2、已上市的PD-1/PD-L1抑制剂2.1尼伏单抗尼伏单抗(nivolumab)是一种结合于程序性死亡受体-1(PD-1)的单克隆抗体,通过阻断PD-1及其配体PD-L1和PD-L2间相互作用,从而阻断PD-1通路介导的免疫抑制反应,包括抗肿瘤免疫反应。

酒石酸长春瑞滨结构式

酒石酸长春瑞滨结构式

酒石酸长春瑞滨结构式全文共四篇示例,供读者参考第一篇示例:酒石酸长春瑞滨是一种抗癌药物,其结构式如下所示:C27H29N3O6酒石酸长春瑞滨是一种新型的小分子化合物,具有抗肿瘤作用。

它是一种紫松果碱衍生物,是一种抗肿瘤药物的一种,具有抗肿瘤细胞作用,能够在体内选择性的抑制白血病和肿瘤细胞的生长。

酒石酸长春瑞滨还具有抗病毒、抗真菌、抗寄生虫和抗炎的作用。

酒石酸长春瑞滨是一种新型的分子靶向治疗药物,它是一种含有二氮杂环-皮啶基的新型抗癌药,具有很强的抑制作用。

酒石酸长春瑞滨能够选择性的抑制癌细胞中的特定酶,从而干扰癌细胞的正常生长和增殖,达到抗癌的目的。

其抑制机制是通过干扰肿瘤细胞的DNA复制和核酸合成过程,从而导致癌细胞死亡。

酒石酸长春瑞滨在临床上被广泛应用于多种癌症的治疗,包括乳腺癌、结肠癌、前列腺癌等多种恶性肿瘤。

其疗效显著,可以显著改善患者的生存质量,并延长患者的生存时间。

酒石酸长春瑞滨在一些顽固性或难治性癌症的治疗中也发挥了重要作用。

酒石酸长春瑞滨是一种非常有效的抗癌药物,但也存在一些副作用,包括恶心、呕吐、腹泻、脱发等。

在使用酒石酸长春瑞滨时,医生需要根据患者的具体情况和癌症类型进行个性化的治疗方案,以避免或减轻副作用的发生。

酒石酸长春瑞滨是一种非常重要的抗癌药物,其独特的分子结构和作用机制使其在抗癌治疗中发挥着重要作用。

随着科学技术的不断进步和发展,相信酒石酸长春瑞滨在未来将会有更广泛的应用和更好的疗效,为肿瘤患者带来更多的希望和福音。

第二篇示例:酒石酸长春瑞滨(Oxaliplatin)是一种常用的化疗药物,属于铂类药物,在临床上被广泛用于治疗结直肠癌。

其分子式为C8H14N2O4Pt,化学名为[(1R,2R)-1,2-cyclohexanediamine](ethanedioato-O,O')platinum。

酒石酸长春瑞滨是一种白色至类白色结晶固体,其结构式如下:长春瑞滨的分子结构主要由长春二胺(DACH)和乙二酸(Oxalate)基团组成。

蛋白酶抑制剂leupeptin增强抗肿瘤药物对肿瘤细胞的增殖抑制作用

蛋白酶抑制剂leupeptin增强抗肿瘤药物对肿瘤细胞的增殖抑制作用

蛋白酶抑制剂leupeptin增强抗肿瘤药物对肿瘤细胞的增殖抑制作用王莹;吴淑英;甄永苏【摘要】Objective To observe the modulating effect of leupeptin, a protease inhibitor, on the anti - proliferation efficacy of anti-cancer drugs including taxol (TAX) , gemcitabine ( GEM) , and pingyangmycin (PYM) in cancer cells. Methods Mammary carcinoma MCF -7 cells and pulmonary carcinoma PG cells were exposed to various concentrations of leupeptin alone or in combination with taxol ( TAX) , gemcitabine ( EM) , and pingyangmycin ( PYM ) , respectively. After 48 hours exposure, cell proliferation was determined by MTT assay. Flow cytometry was used to analyze cell cycle distribution. Results At the concentration of 50祄oI/L or higher, leupeptin enhanced the inhibitory effect of those three anticancer drugs on the proliferation of both cell line. More marked enhancement was found in the combination of leupeptin and TAX. MCF - 7 cell cycle distributions were changed at the low dosage GEM or TAX combination with leupeptin. Conclusion Leupeptin could enhance the inhibition effect of anticancer drugs, in particular, taxol, on cancer cells. The efficacy may be varied in different cell lines and drugs.%目的研究蛋白酶抑制剂(protease inhibitor) leupeptin对化疗药物紫杉醇(taxol,TAX)、吉西他滨(gemcitabine,GEM)以及平阳霉素(pingyangmycin,PYM)在体外抑制肿瘤细胞增殖作用的影响.方法选取一定浓度梯度的酶抑制剂leupeptin单独或联合TAX、GEM和PYM与肿瘤细胞孵育,48h后采用MTT法测定肿瘤细胞生长的变化并与相应浓度的TAX、GEM和PYM单药组相比较.采用流式细胞术测定MCF-7细胞周期分布.结果 leupeptin在浓度高于50μmol/L时可增强化疗药物对肺癌PG细胞和乳腺癌MCF-7细胞增殖的抑制作用.leupeptin对TAX的增效作用尤为显著.leupeptin与低浓度的GEM和TAX联合应用可改变MCF-7的细胞周期分布.结论 leupeptin可增强化疗药物对肿瘤细胞增殖的抑制作用,但其作用程度与肿瘤细胞株的种类、化疗药物的种类及leupeptin的浓度均相关.【期刊名称】《医学研究杂志》【年(卷),期】2012(041)010【总页数】5页(P56-60)【关键词】Leupeptin;MCF-7细胞;PG细胞;增殖抑制【作者】王莹;吴淑英;甄永苏【作者单位】100050 中国医学科学院/北京协和医学院医药生物技术研究所;100050 中国医学科学院/北京协和医学院医药生物技术研究所;100050 中国医学科学院/北京协和医学院医药生物技术研究所【正文语种】中文化疗增敏剂是指在所用浓度或剂量下没有抗肿瘤作用或抗肿瘤作用很小,但能影响已知有抗肿瘤作用药物的细胞毒作用,从而可增强抗肿瘤药物对肿瘤细胞的杀伤作用或降低其对正常组织细胞毒性的一类药物。

世界在研的几种新药详解

世界在研的几种新药详解

世界在研的几种新药详解1. AGI-1067AGI-1067是选择性阻断动脉粥样硬化炎症过程的新型口服药物。

AGI-1067阻断了血管内膜内皮细胞的信号传导,继而抑制了VCAM-1和其他炎症因子的生成。

VCAM-1能使炎症细胞募集到内皮细胞表面,触发慢性炎症反应过程,最终导致动脉粥样硬化形成。

AGI-1067 是具有抗氧化作用的降血脂药物普罗布考的单丁二酸酯。

普罗布考Probucol能降低冠状血管成形术后的再狭窄,后因能引起心电图Q-T 间期延长等一系列不良反应,以及口服生物利用度的有限性和多变性而撤出美国市场。

研究人员对普罗布考的结构进行修饰,开发出具有抗氧化作用和降低LDL 胆固醇水平双重作用机制的化合物AGI-1067。

该化合物与普罗布考Probucol相比,水溶性和细胞穿透性更好,降脂作用和抗氧活性显著。

此外,它还能抑制单细胞化学引诱剂蛋白-1(monocyte chemoattractant protein-1,MCP-1)和血管细胞粘附分子-1(vascular cell adhesion molecule-1,VCAM-1)的表达,美国AntheroGenics 公司目前正在进行Ⅲ期临床研究,考察其对患有冠状动脉疾病(CAD)的病人动脉粥样硬化的治疗情况。

AGI-1067 是新血管保护剂家族中旨在降低血管壁炎症的首个药物。

本品CAS:216167-82-7分子式:C35H52O5S2阿斯利康公司已经与AtheroGenics公司(那斯达克上市公司名称代号是AGIX)达成许可协议,在全球开发和销售其抗炎心血管药物AGI-1067。

2. ALFIMEPRASEAlfimeprase是Fibrolase的突变体,是一种蛇毒纤溶酶,有纤溶活性而无出血性.Alfimeprase是专治急性外周动脉堵塞的试验性药物,能直接降解形成血栓的血纤维蛋白。

生产该药物的原材料取自美国南方铜头蝮蛇的毒液,它在溶解血栓后会迅速失活,从而降低内出血的风险。

天然药物化学成分

天然药物化学成分

[1]van Huijsduijnen R H,Bombm AV,Swinnen D,eta1. Selecting protein tyrosine phosphatases as drug targets . Drug Disov Today ,2002 ,7 ( 19 ) :1013 ~1019 [2]尹锋,胡立宏,楼凤昌. 罗勒化学成分的研究. 中国天然药物,2004,2(1):20-24 [3]马明,王素娟,李帅等.盾叶木中具蛋白酪氨酸磷酸酶1B抑制活性的三萜类成分.中草药,2006, 37(8):1128-1131 [4]Long Cui,minkyun Na,Hyuncheol Oh et al. Protein tyrosine phosphatase 1B inhibitors from Morus root bark .Bioorg.Med.Chem.Lett,2006,16(5):1426-1429. [5]夏 玮,张文清,罗国安. 桑叶多糖 SJB的结构分析和蛋白酪氨酸磷酸酯酶 PTPIB抑制活性. 高等学校化学 学报,2008,29(11):2205-2208 [6]Chen Rongmin ,Li Hong Hu ,Tian Ying An et al. Natural PTP1B Inhibitors from broussonetia papyrifera .Bioorg.Med.Chem.Lett,2002,12(23):3387-3390 [7]MlnK yun Na Long Cui, Byung Sun Min et al. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana.Bioorg.Med.Chem.Lett,2006,16(12):3273-3276 [8]Shui-Chun Mao ,Yue-Wei Guo ,Xu Shen et al. Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia .Bioorlg.Med.Chem.Lett,2006,16:2947-2950 [9] MinKyun Na, Won Keun Oh, Young Ho Kim et al. Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum .Bioorg.Med.Chem.Lett,2006,16(11):3061-3064 [10] Tian Ying AN, Li Hong HU, Rong Min CHEN etal. Anti-diabetes Agents---I: Tetralone Derivative from Juglans regia.Chinese Chemical Letters,2003,14(5):489-490 [11] Won Keun Oh, Chul Ho Lee, Myung Sun Lee et al. Antidiabetic effects of extracts from Psidium guajava .J.EtlmoPhannacology,2005,96:411-415 [12] Yong Wu, Jing-ping Ou-yang, Ke Wu et al. Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP1B.Acta Phannacologica Sinica,2005,26(3):345-352. [13]欧阳静萍,王 念,张德玲等.黄芪多糖抑制2型糖尿病大鼠肝脏 PTP1B的表达改善胰岛素抵抗的机制. 中国动脉硬化杂志 ,2009,17(7):569-570 [14]黄孝春, 刘海利, 郭跃伟. 南海蓖麻海绵 Biemna fortis Topsent 化学成分及其生物活性.中国天然药物, 2008,6(5):348-353 [15]石雪萍,姚惠源,张卫明. 苦瓜皂甙的分离以及 PTP1B抑制活性. 陕西师范大学学报( 自然科学版) , 2008,36(4):63-71 [16]Han YM, Oh H, Na M, et al. PTP1B Inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza *J+. Biol Pharm Bull, 2005, 28: 1795−1797. [17]胡辛欣,李雁芳,张英涛. 栗色鼠尾草中抑制蛋白酪氨酸磷酸酶1B的活性成分. 中草药,2009,40 (12):1869-1872
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-O -Carboxymethylpyrogallol derivatives as PTP1B inhibitorswith antihyperglycemic activityBharat Raj Bhattarai,a Suja Shrestha,a Seung Wook Ham,b Kwang Rok Kim,cHyae Gyeong Cheon,c Keun-Hyeung Lee a and Hyeongjin Cho a,*aDepartment of Chemistry and Institute of Molecular Cell Biology,Inha University,Incheon 402-751,Republic of KoreabDepartment of Chemistry,Chung-Ang University,Seoul 156-756,Republic of KoreacCenter for Metabolic Syndrome Therapeutics,Drug Discovery Division,Korea Reasearch Institute of Chemical Technology,P.O.Box 107,Jang-Dong 100,Yuseong-Gu,Daejeon,305-343,Republic of KoreaReceived 23May 2007;revised 3August 2007;accepted 6August 2007Available online 15August 2007Abstract—2-O -Carboxymethylpyrogallol derivatives (4–17)were synthesized,with their in vitro inhibitory activities against PTP1B and in vivo antihyperglycemic effects pound 14,the most potent among the series,showed a K i value of 1.1l M against PTP1B,7-fold lower than that against TC-PTP.When compound 14was fed to a high-fat diet-induced diabetic mouse mod-el,significant improvements were observed in both the fasting glucose level and glucose tolerance.Ó2007Elsevier Ltd.All rights reserved.Type 2diabetes mellitus (T2DM)is a serious health threat in modern society.1Characterized by hyperglyce-mia,T2DM is the cause of many complications,includ-ing cardiovascular disease,blindness,renal failure,and peripheral nerve damage.2Increasing concern about T2DM as health risk factor has led to an intensive research for the development of an efficient treatment.3Insulin resistance is an important factor in the patho-genesis of T2DM and,therefore,insulin sensitizers,such as TZD class molecules,have been used for the treat-ment of this disease.4The recent identification of protein tyrosine phosphatase (PTP)1B as an enzyme responsi-ble for the dephosphorylation of insulin receptors has raised the possibility that small molecule inhibitors of PTP1B could act as insulin sensitizers and,thus,as anti-diabetic drugs.5This conception was validated in mouse models;increased insulin sensitivity was observed when the PTP1B gene was disrupted or when its expression was suppressed by PTP1B antisense nucleotides.6The development of PTP1B inhibitors exhibiting favor-able pharmacological properties has been a challenge,with only one compound,Ertiprotafib,having pro-gressed to phase 2clinical trials,before it was stopped due to insufficient efficacy and dose limiting side effects.7As for the antidiabetic effect of Ertiprotafib,multiple points of action have been proposed;PPAR a ,c and IKK-b were reported as possible targets.80960-894X/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.bmcl.2007.08.019Keywords :2-O -Carboxymethylpyrogallol;PTP1B inhibitor;Diabetes;Glucose tolerance;Hyperglycemia;Protein tyrosine phosphatase.*Corresponding author.Tel.:+82328607683;fax:+82328675604;e-mail:hcho@inha.ac.krBioorganic &Medicinal Chemistry Letters 17(2007)5357–5360Selective inhibition of PTP1B among >100human PTP family enzymes,especially the differentiation of PTP1B and TC-PTP,have been major concerns in the design of small molecule PTP1B inhibitors.The homology of amino acid residues between PTP1B and TC-PTP reaches 94%at the active site,and achieving PTP1B selectivity has been a challenge.9However,recent studies have raised the possibility that the discrimination of the two enzymes may not be crucial.9b,1a The insulin sensi-tivity exhibited by heterozygous PTP1B +/Àmice sug-gests that partial inhibition of PTP1B might afford a therapeutic effect.6a The healthy survival of TC-PTP +/Àmice indicates that partial inhibition of TC-PTP might be tolerable.10Furthermore,TC-PTP is known to be in-volved in the regulation of insulin signaling.11Taken to-gether,a rather lenient therapeutic window,coupledwith dose control,might be the strategy required for drug development targeting PTP1B.1aAnother concern in the design of PTP1B inhibitors is the cell permeability of the compounds.Negative charges inherent in simple phosphotyrosine mimetics are unfa-vorable factors for the translocation of the compounds across the plasma membrane of the cell.Recently,3a ,containing (2-hydroxyphenoxy)acetic acid as the core structure,was reported to have a high level of cell per-meability,and the equilibrium between the acid (3a )and the lactone form (3b )has been suggested as a possi-ble explanation for the improved membrane penetration (Fig.1).12Previous studies on the design of PTP1B inhibitors in our laboratory have indicated that a bulky substituent (such as –OR 1in Table 1)in the ortho -posi-tion of the phosphate mimetic group may contribute to the inhibitor–enzyme complex formation.15Based on these premises,2-O -carboxymethylpyrogallol deriva-tives,with a benzyl or a substituted benzyl group at O-1,were synthesized,and their in vitro PTP1B inhibi-tory activities and in vivo antidiabetic effects examined.The syntheses of compounds 4–17are summarized in Scheme 1.For the synthesis of 14,2,6-dimethoxyphenol (4a )was brominated,and then treated with ethyl bro-moacetate to introduce a carboxymethyl functionality to the central hydroxyl group.The palladium-catalyzed coupling reaction of 6b with 3,5-di(trifluorometh-yl)phenylboronic acid produced 14a .Removal of the methyl protecting groups from 14a ,followed by con-trolled alkylation of one of the hydroxyl groups,by reaction with 4-(trifluoromethyl)benzyl bromide,affor-ded compound 14.17Other compounds were synthesized using similar strategies to that shown in Scheme 1.The 2-O -carboxymethylpyrogallol derivatives were eval-uated for their inhibitory activities against PTP1B,with p -nitrophenyl phosphate (p NPP)used as the substrate.The enzyme and compounds were preincubated forTable pounds used in this study4-17OOR 1OHR 2OH OCompound R 1R 24PhCH 2H 54-CF 3PhCH 2H 6PhCH 2Br 74-CF 3PhCH 2Br 8HPh 9PhCH 2Ph 104-CF 3PhCH 2Ph11PhCH 23-CF 3Ph 124-CF 3PhCH 23-CF 3Ph 13PhCH 23,5-(CF 3)2Ph 144-CF 3PhCH 23,5-(CF 3)2Ph 15PhCH 24-CF 3Ph 164-CF 3PhCH 24-CF 3Ph 173,5-(CH 3O)2PhCH 2Ph5358 B.R.Bhattarai et al./Bioorg.Med.Chem.Lett.17(2007)5357–536010min prior to the initiation of the enzyme reaction by the addition of the substrate.As shown in Table 2,low micromolar IC 50values were observed for compounds 11–pound 14was found to be the most potent of the derivatives,with a K i value of 1.1l M,which was low compared to both 3(K i =9.0l M)and Ertipro-tafib (K i =1.5l M).12,15Table 2also shows the selectiv-ity profiles of compounds 11–16against several phosphatases.These compounds demonstrated 5-to 13-fold greater PTP1B selectivity against pound 14showed a 7-fold greater selectivity for PTP1B versus TC-PTP.The antihyperglycemic effect of 14was examined in a high-fat diet (HFD)-induced diabetic mouse model.18After 8wks on HFD,the mice (C57BL/6JCr Slc,male)were fed HFD or HFD +14for a further 4weeks.The compound 14was administered as mixtures with the food (1.0g of 14per kg of diet).The daily uptake of 14was approximated as 3mg/day/mouse,which is equivalent to 85mg/day/kg of mouse weight.At the end of the 4weeks of drug-feeding period,the fasting glucose level of the drug-fed group was significantly low-er than the HFD control group (Fig.2,0min).After the injection of glucose,the drug-fed group exhibited a sig-nificantly faster decrease in the blood glucose concentra-tion compared to the HFD control group (Fig.2).In contrast to the antihyperglycemic effect,no difference was observed in body weights between the HFD and HFD +14groups.Table 2.Inhibition of PTPases by compounds 1–17aCompoundIC 50b [K i ,l M](l M)PTP1BTC-PTPSHP-1catLAR-D1YOPYPTP-11,Ertiprotafib 1.4(±0.1)[1.5c ]213500(±100)[102c ]312[9.0d ][182d ]4>10005>10006300(±14)773(±5)8>1000993(±5)1017(±1)11 2.2(±0.2)120(±20)38(±2)>20033(±4)52(±4)12 5.0(±0.4)65(±3)13(±1)>20021(±1)17(±2)13 5.7(±0.4)37(±2)9.0(±0.3)>20015(±1)20(±1)14 2.0(±0.1)[1.1e ]22(±1)[8.2e ] 4.0(±0.2)116(±8) 6.0(±0.5)9.0(±0.4)1513(±1)96(±4)25(±1)>20034(±2)17(±2)16 5.4(±0.3)44(±3)12(±1)>20013(±1)23(±2)1740(±3)aThe enzyme reaction was initiated by the addition of p NPP to the enzyme in assay buffer,preincubated for 10min with inhibitors dissolved in DMSO.The final assay mixture contained:2mM p NPP,40nM PTP1B (or 5l g/mL for SHP-1cat,33U (manufacturer’s definition)/mL for LAR-D1and TC-PTP,50U (manufacturer’s definition)/mL for YOP,and 15nM for YPTP-1),50mM Hepes,and 5mM EDTA,at pH 7,plus 10%enzyme dilution buffer (25mM Hepes,5mM EDTA,1mM DTT,and 1mg/mL bovine serum albumin,at pH 7.3).After incubation at 37°C for 3min,0.5M NaOH (0.95mL)was added,and the A 405measured to determine the amount of p -nitrophenol released.The IC 50values of the inhibitors were determined by measuring the PTPase activity with a range of different inhibitor concentrations.The PTPs used in this study were obtained as described previously,except the native form of PTP1B was used.14bValues are means (±standard deviations)of 2–3experiments.The kinetic data were analyzed using the GraFit 5.0program (Erithacus Software).cReproduced from our previous report.15dReproduced from a previous report.12eThe K i value for 14was determined using the relationships:K i app =([S]+K m )/(K m /K i +[S]/a K i )and t s /t o =1/([I]/K i app +1).16Figure 2.Intraperitoneal glucose tolerance test.Five-wk-old mice (C57BL/6J Cr Slc,male),acclimatized for 1wk,were fed HFD for 8wks,and then divided into two groups (7mice/group).The two groups were fed HFD (d )or HFD +14(h )for 4weeks.The lean control group (j )was fed LFD all throughout the entire 12wk period.The mice were then fasted for 6h,starting from the beginning of the light cycle.Just before the intraperitoneal injection of glucose (1g/kg body weight),blood was withdrawn from the tip of the tail,and the baseline glucose level measured.After the injection of glucose,tail blood was collected at 20,40,60,90,and 120min later,with the blood glucose concentration determined using an Accu-Chek ÒActive diagnostic kit (Roche,Germany).All values are mean values ±SEM;n =7/group.Statistical comparisons between HFD and HFD +14groups were performed using a 1-way ANOVA,where,*p <0.01and **p <0.001.B.R.Bhattarai et al./Bioorg.Med.Chem.Lett.17(2007)5357–53605359In summary,a series of2-O-carboxymethylpyrogallol derivatives were synthesized in an attempt to improve the inhibitory potency of(2-hydroxyphenoxy)acetic acid derivatives against PTP1B.Among the compounds,14 exhibited a K i value of1.1l M against PTP1B and dis-played in vivo efficacy,which significantly lowered the fasting glucose level and improved the glucose tolerance in an obesity-induced diabetic mouse model.AcknowledgmentsThis work was supported by a Grant(C00344)from the basic research program of the Korean Research Foun-dation. B.R.Bhattarai was a recipient of a BK21 fellowship.Supplementary data Supplementary data associated with this article can be found,in the online version,at doi:10.1016/ j.bmcl.2007.08.019.References and notes1.(a)Dube´,N.;Tremblay,M.L.Biochim.Biophys.Acta2005,1754,108;(b)Zimmet,P.;Alberti,K.G.M.M.;Shaw,J.Nature2001,414,782.2.Brownlee,M.Nature2001,414,813.3.Stumvoll,M.;Goldstein,B.J.;Van Haeften,ncet2005,365,1333.4.Scheen,A.J.;Lefebvre,P.J.Diabetes Care1999,22,1568.5.Ahmad,F.;Li,P.-M.;Meyerovitch,J.;Goldstein,B.J.J.Biol.Chem.1995,270,20503.6.(a)Elchebly,M.;Payette,P.;Michaliszyn,E.;Cromlish,W.;Collins,S.;Loy,A.L.;Normandin,D.;Cheng,A.;Himms-Hagen,J.;Chan, C.-C.;Ramachandran, C.;Gresser,M.J.;Tremblay,M.L.;Kennedy,B.P.Science 1999,283,1544;(b)Klaman,L.D.;Boss,O.;Peroni,O.D.;Kim,J.K.;Martino,J.L.;Zabolotny,J.M.;Moghal,N.;Lubkin,M.;Kim,Y.-B.;Sharpe, A.H.;Stricker-Krongrad,A.;Shulman,G.I.;Neel,B.G.;Kahn,B.B.Mol.Cell.Biol.2000,20,5479;(c)Zinker, B. A.;Rondinone,C.M.;Trevillyan,J.M.;Gum,R.J.;Clampit, J.E.;Waring,J.F.;Xie,N.;Wilcox,D.;Jacobson,P.;Frost,L.;Kroeger,P.E.;Reilly,R.M.;Koterski,S.;Opgenorth,T.J.;Ulrich,R.G.;Crosby,S.;Butler,M.;Murray,S.F.;McKay,R.A.;Bhanot,S.;Monia,B.P.;Jirousek,M.R.Proc.Natl.Acad.Sci.U.S.A.2002,99, 11357.7.Zhang,Z.-Y.;Lee,S.-Y.Expert Opin.Investig.Drugs2003,12,223.8.(a)Erbe,D.V.;Wang,S.;Zhang,Y.L.;Harding,K.;Kung,L.;Tam,M.;Stolz,L.;Xing,Y.;Furey,S.;Qadri,A.;Klaman,L.D.;Tobin,J.F.Mol.Pharma-col.2005,67,69;(b)Shrestha,S.;Bhattarai, B.R.;Cho,H.;Choi,J.-K.;Cho,H.Bioorg.Med.Chem.Lett.2007,17,2728.9.(a)Anderson,J.N.;Jansen,P.G.;Echwald,S.M.;Mortensen,O.H.;Fukuda,T.;Vecchio,R.D.;Tonks,N.K.;Møller,N.P.H.FASEB J.2004,18,8;(b)Montalibet, J.;Kennedy,B.P.Drug Discovery Today Ther.Strateg.2005,2,129.10.You-Ten,K.E.;Muise,E.S.;Itie´,A.;Michaliszyn,E.;Wagner,J.;Jothy,S.;Lapp,W.S.;Tremblay,M.L.J.Exp.Med.1997,186,683.11.(a)Galic,S.;Klingler-Hoffmann,M.;Fodero-Tavoletti,M.T.;Puryer,M.A.;Meng,T.-C.;Tonks,N.K.;Tiganis, T.Mol.Cell Biol.2003,23,2096;(b)Galic,S.;Hauser,C.;Kahn, B.B.;Haj, F.G.;Neel,B.G.;Tonks,N.K.;Tiganis,T.Mol.Cell Biol.2005,25,819.12.Xin,Z.;Liu,G.;Abad-Zapatero,C.;Pei,Z.;Szczepan-kiewicz, B.G.;Li,X.;Zhang,T.;Hutchins, C.W.;Hajduk,P.J.;Ballaron,S.J.;Stashko,M.A.;Lubben,T.H.;Trevillyan,J.M.;Jirousek,M.R.Bioorg.Med.Chem.Lett.2003,13,3947.13.Iversen,L.F.;Andersen,H.S.;Branner,S.;Mortensen,S.B.;Peters,G.H.;Norris,K.;Olsen,O.H.;Jeppesen,C.B.;Lundt,B.F.;Ripka,W.;Møller,K.B.;Møller,N.P.H.J.Biol.Chem.2000,275,10300.14.Shim,Y.S.;Kim,K.C.;Lee,K.A.;Shrestha,S.;Lee,K.-H.;Kim,C.K.;Cho,H.Bioorg.Med.Chem.2005, 13,1325.15.Shrestha,S.;Bhattarai,B.R.;Chang,K.J.;Lee,K.-H.;Cho,H.Bioorg.Med.Chem.Lett.2007,17,2760.16.Johnson,T.O.;Ermolieff,J.;Jirousek,M.R.Nat.Rev.Drug Disc.2002,1,696.pound14:mp177–179°C;1H NMR(acetone-d6,200MHz),d8.23(s,2H),8.00(s,1H),7.81–7.78(m,4H),7.18(d,J=2.2Hz,1H),7.00(d,J=2.2Hz,1H),5.44(s,2H),4.85(s,2H);13C NMR(acetone-d6,100MHz):d 175.32(CO2H),153.24,152.45,144.20,142.87,137.80, 135.67,132.91,132.26,129.05,128.86,128.33,126.44, 126.36,121.89,110.00,105.35,70.84(OCH2),70.63 (OCH2).18.Winzell,M.S.;Ahren,B.Diabetes2004,53,S215.5360 B.R.Bhattarai et al./Bioorg.Med.Chem.Lett.17(2007)5357–5360。

相关文档
最新文档