大学物理波动3
大学物理振动的基本概念与波动定律

大学物理振动的基本概念与波动定律振动与波动是大学物理中重要的概念和定律,它们在自然界和工程领域中都有广泛的应用。
本文将从振动的基本概念入手,介绍振动的特点和相应的数学表达方式,然后探讨波动的基本特性和波动定律。
一、振动的基本概念振动是物体周期性的来回运动,其特点包括周期性、频率、振幅和相位等。
振动可以分为简谐振动和非简谐振动两种形式。
1. 简谐振动简谐振动是指物体受到一个恢复力作用,且恢复力与位移成正比的振动。
其运动满足胡克定律,即恢复力与位移的方向相反、大小与位移成正比。
简谐振动的数学描述为:x = A sin(ωt + φ),其中,A为振幅,ω为角频率,t为时间,φ为初相位。
2. 非简谐振动非简谐振动是指受到恢复力作用的振动,但恢复力与位移的关系不满足简谐振动的条件。
非简谐振动的运动规律通常无法用简洁的数学公式描述,需要通过实验或数值模拟等手段进行研究。
二、振动的特点和数学表达方式振动具有周期性和频率的特点,可以用物体的运动方程、受力分析和力的势能等方式进行数学表达。
1. 运动方程振动的运动方程描述了物体的位置随时间的变化规律。
在简谐振动中,位置随时间的变化可以通过正弦函数来表示,即x = A sin(ωt + φ)。
该方程揭示了振动位置与时间的关系。
2. 受力分析振动的实现需要有恢复力的作用,恢复力可以来自弹性力、重力或其他约束力。
通过对物体所受到的力进行分析,可以帮助我们理解振动的原因和性质。
3. 势能与能量转换振动过程中,物体在振动周期内会由动能转为势能,再由势能转回动能。
这种能量转换与物体的振动特性密切相关,通过势能和能量的变化可以更深入地理解振动的机制。
三、波动的基本特性和波动定律波动是一种能量传播的方式,其特点包括波长、频率、波速和干涉等。
波动可以分为机械波和电磁波两种形式。
1. 机械波机械波是需要介质作为媒介传播的波动,典型的机械波包括水波、声波等。
机械波传播的速度与介质的性质有关。
大学物理_波动方程

《大学物理》 4、波动方程的几点讨论:
I、波沿x轴负向传播时,波动方程为:
yAco2s(Tt x)
y
II、波动方程中,x取固定值则得
到振动方程。
0
t
y0Aco2s(Tt x0)
y
u
III、波动方程中,t取固定值则
得到波形方程。
yAco2s(T t0x)
0
x
《大学物理》
例2 频率为12.5kHz的平面余弦纵波沿细长的金属棒传播,棒的杨氏模量为
0.1 10 3 cos( 25 10 3 t ) m 2
可见此点的振动相位比原点落后,相位差为
2
, 或 落 后 1 T , 即 2 10 5 s 。 4
( 4 ) 该 两 点 间 的 距 离 x 10 cm 0.10m
1 ,相应的相位差为 4
2
(5 ) t= 0 .0 0 2 1 s 时 的 波 形 为
1 0
2
根据已知条件,初相为:
x
2
y 1 co (t sx )[ /2 ]
《大学物理》
(2)按题设条件,t=1s时的波形方程为:
y1cos(1[x)/2]
y
u
sinx
1
(3)按题设条件,x=0.5m处的质点02 Nhomakorabeax
振动方程为:
y1cos(t[0.5)/2] cost()
《大学物理》
例题4 在x=0处有一个波源,振动初相为0,向x轴正向发出谐 波,波长为4m,振幅为0.01m,频率为50赫兹.现在x=10m处有 一个反射装置,将波反射.试求,反射波的波动方程.
解 棒中的波速
u Y 1.9 1011 N m2 5.0 103 m/s
大学物理第六章 波动光学(3)

178第6章 波动光学(Ⅲ)——光的偏振一.基本要求1.理解光的偏振的概念,光的五种偏振态的获得和检测方法; 2.掌握马吕斯定律及其应用;3.掌握反射光和折射光的偏振,掌握布儒斯特定律及其应用; 4.了解光的双折射现象;5.了解偏振光的应用。
二.内容提要和学习指导(一)光的五种偏振状态:自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振光。
(二)线偏振光的获得和检验 1.线偏振光的获得:①利用晶体的选择性吸收,可以制造偏振片。
偏振片可用作起偏器,也可用作检偏器。
②利用反射和折射偏振。
布儒斯特定律:自然光在两种介质的界面发生反射和折射时,一般情况下,反射光和折射光都是部分偏振光,在反射光中,垂直入射面的光振动较强,在折射光中,平行入射面的光振动较强。
当自然光以布儒斯特角121tan b i n -=入射(或/2i γπ'+=,或反射光线垂直于折射光线)时,反射光是线偏振光,其光振动垂直于入射面,此时折射光仍然是部分偏振光。
③利用晶体的双折射。
一束光射入各向异性介质时,折射光分成两束。
其中一束光遵守折射定律,称为寻常光(o 光)。
另一束光不遵守折射定律,称为非常光(e 光)。
o 光和e 光均是线偏振光。
o 光的振动方向垂直于o 光的主平面,e 光的振动方向在e 光的主平面内。
光线沿光轴方向入射时,o 光和e 光的传播速度相同。
在晶体内,o 光的子波波面为球面波,e 光的子波波面为旋转椭球面,利用惠更斯原理作图,可确定o 光和e 光的传播方向。
利用晶体的双折射现象,可以制造偏振棱镜和波片。
2.线偏振光的检验:①利用偏振片:由马吕斯定律可得,线偏振光经过检偏器后,出射光强I 与入射光强0I 的关系为:α20cos I I =,其中α是入射线偏振光偏振方向和偏振片通光方向的夹角。
②利用反射和折射偏振。
③利用偏振棱镜。
(三)圆偏振光或椭圆偏振光的获得和检验:线偏振光经过四分之一波片后出射的为椭圆偏振光,当平面偏振光的振动方向与四分之一波片的光轴方向成450角时,出射的为圆偏振光。
大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)contents•波动光学基本概念与原理•干涉理论与应用目录•衍射理论与应用•偏振光理论与应用•现代光学技术发展动态简介波动光学基本概念与原理01光波是一种电磁波,具有横波性质,其振动方向与传播方向垂直。
描述光波的物理量包括振幅、频率、波长、波速等,其中波长和频率决定了光的颜色。
光波的传播遵循波动方程,可以通过解波动方程得到光波在不同介质中的传播规律。
光波性质及描述方法干涉现象是指两列或多列光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。
产生干涉的条件包括:两列光波的频率相同、振动方向相同、相位差恒定。
常见的干涉现象有双缝干涉、薄膜干涉等,可以通过干涉条纹的形状和间距等信息来推断光源和介质的性质。
干涉现象及其条件衍射现象及其分类衍射现象是指光波在传播过程中遇到障碍物或小孔时,偏离直线传播的现象。
衍射现象可以分为菲涅尔衍射和夫琅禾费衍射两种类型,其中菲涅尔衍射适用于障碍物尺寸与波长相当或更小的情况,而夫琅禾费衍射适用于障碍物尺寸远大于波长的情况。
常见的衍射现象有单缝衍射、圆孔衍射等,可以通过衍射图案的形状和强度分布等信息来研究光波的传播规律和介质的性质。
偏振现象与双折射偏振现象是指光波在传播过程中,振动方向受到限制的现象。
根据振动方向的不同,光波可以分为横波和纵波两种类型,其中只有横波才能发生偏振现象。
双折射现象是指某些晶体在特定方向上对光波产生不同的折射率,使得入射光波被分解成两束振动方向相互垂直的偏振光的现象。
这种现象在光学器件如偏振片、偏振棱镜等中有重要应用。
通过研究偏振现象和双折射现象,可以深入了解光与物质相互作用的基本规律,以及开发新型光学器件和技术的可能性。
干涉理论与应用02杨氏双缝干涉实验原理及结果分析实验原理杨氏双缝干涉实验是基于光的波动性,通过双缝产生的相干光波在空间叠加形成明暗相间的干涉条纹。
结果分析实验结果表明,光波通过双缝后会在屏幕上产生明暗相间的干涉条纹,条纹间距与光波长、双缝间距及屏幕到双缝的距离有关。
《大学物理》波动练习题

《大学物理》波动练习题一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u xω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波形曲线与振动曲线有什么不同行? 试说明之. 答:波形曲线代表某一时间波的形状,它是质点的位移关于其空间位置的函数;振动曲线代表某一个质点的振动过程,它是质点的位移关于时间的函数。
5、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
6. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
7. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有π的相位差。
大学物理第十七章波动光学(三)光程 光程差

nd d (n 1)d
n (2)附加光程差δ/:
半波损失:
相干光在两个表面反射时 物理性质不同:
三、等光程性
A
o
B A
B
F
焦平面
F'
透镜改变光线的传播方向,但不增加附加光程差
谢谢欣赏!
s1
r1
n1
p
20
10
2
r2
2
r11n2 s2r2
当20 10时
折合到真空中:
2
n2r2
n1r1
光程差: n2r2 n1r
光程差与位 相差的关系:
2
常见情况:
(1)真空中加入厚 d 的介质、增加 (n-1)d 光程
=4
r
n
n
定义光程:n r
物理意义:把光在介质中通过的路程按相 位变化相同折合到真空中的路程,折合的好 处是可以统一用光在真空中的波长λ来计算 光的相位变化.
从时间上看: 介质中: t / r u 真空中: t nr t / c
多种介质 光程 niri
i
二、光程差
高等教育大学教学课件 大学物理
同学们好!
§17-3 光程 光程差
一、光程
相位差在分析光的干涉时十分重要, 为便于计算光通过不同媒质时的相位差, 引入“光程”的概念。
光振动的相位沿传播方向逐点落后。光传 播一个波长的距离,相位变化2。
• 介质中
b
a
r
n
2
λ n─ 光在媒质中的波长
λn
a
·
·b
r
• 真空中,若引起相同的位
大学物理第四版课后习题及答案波动

第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ;1求波得振幅、波速、频率及波长;2求绳上质点振动时得最大速度;3分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷;画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同;14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ分析1已知波动方程又称波函数求波动的特征量波速u 、频率ν、振幅A 及彼长 等,通常采用比较法;将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播;比较法思路清晰、求解简便,是一种常用的解题方法;2讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别;例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度也称相位的传播速度、波形的传播速度或能量的传播速度,其大小由介质的性质决定;介质不变,彼速保持恒定;3将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图;而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图;解1将已知波动方程表示为()()[]115.25.2cos )20.0(--⋅-=s m x t s m y π 与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得0,5.2,20.001=⋅==-ϕs m u m A则 m v u Hz v 0.2,25.12====λπω2绳上质点的振动速度()()()[]1115.25.2sin 5.0---⋅-⋅-==s m x t s s m dt dy v ππ 则1max 57.1-⋅=s m v3 t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(--=ππ()[]x m m y 125cos )20.0(--=ππ波形图如图14-1a 所示;x =1.0m 处质点的运动方程为()t s m y 15.2cos )20.0(--=π 振动图线如图14-1b 所示;波形图与振动图虽在图形上相似,但却有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的时间变化的情况;14-2 波源作简谐运动,其运动方程为t s m y )240cos()100.4(13--⨯=π,它所形成得波形以30m/s 的速度沿一直线传播;1求波的周期及波长;2写出波的方程;14-2 t s m y )240cos()100.4(13--⨯=π分析 已知彼源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()0cos ϕω+=t A y 进行比较,求出振幅地角频率ω及初相0ϕ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y 中相应的三个物理量是相同的;再利用题中已知的波速U 及公式T /22ππνω==和uT =λ即可求解;解1由已知的运动方程可知,质点振动的角频率1240-=s πω;根据分析中所述,波的周期就是振动的周期,故有s T 31033.8/2-⨯==ωπ波长为m uT 25.0==λ2将已知的波源运动方程与简谐运动方程的一般形式比较后可得0240100.4013==⨯=--ϕπω,,s m A故以波源为原点,沿X 轴正向传播的波的波动方程为()[]])8()240cos[()100.4(cos 1130x m t s m u x t A y ----⨯=+-=ππϕω14-3 以知以波动方程为])2()10sin[()05.0(11x m t s m y ---=π;1求波长、频率、波速和周期;2说明x=0时方程的意义,并作图表示;14-3])2()10sin[()05.0(11x m t s m y ---=π分析采用比较法;将题给的波动方程改写成波动方程的余弦函数形式,比较可得角频率;、波速U,从而求出波长、频率等;当x 确定时波动方程即为质点的运动方程)(t y y =; 解1将题给的波动方程改写为]2/)5/)(10sin[()05.0(11πππ-⋅-=--s m x t s m y 与()[]0cos ϕω+-=u x t A y 比较后可得波速 角频率110-=s πω,故有m uT s T Hz 14.32.0/10.52/======λνπων,,2由分析知x=0时,方程表示位于坐标原点的质点的运动方程图13—4;]2/)10cos[()05.0(1ππ-=-t s m y14-4 波源作简谐振动,周期为,若该振动以100m/s 的速度传播,设t=0时,波源处的质点经平衡位置向正方向运动,求:1距离波源15.0m 和5.0m 两处质点的运动方程和初相;2距离波源16.0m 和17.0m 两处质点的相位差;14-4分析1根据题意先设法写出波动方程,然后代人确定点处的坐标,即得到质点的运动方程;并可求得振动的初相;2波的传播也可以看成是相位的传播;由波长A 的物理含意,可知波线上任两点间的相位差为λπϕ/2x ∆=∆;解1由题给条件 T = s,u =100 m ·s -l,可得m uT s T 2100/21====-λππω;当t =0时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为)或2/3(2/0ππϕ-=;若以波源为坐标原点,则波动方程为]2/)100/)(100cos[(11ππ-⋅-=--s m x t s A y距波源为 x 1=和 x 2=处质点的运动方程分别为]5.15)100cos[(11ππ-=-t s A y]5.5)100cos[(12ππ-=-t s A y它们的初相分别为πϕπϕ5.55.152010-=-=和若波源初相取2/30πϕ=,则初相πλπϕϕϕ=-=-=∆/)(21221x x ,;2距波源 16.0 m 和 17.0 m 两点间的相位差πλπϕϕϕ=-=-=∆/)(22121x x14-5 波源作简谐振动,周期为×10-2s,以它经平衡位置向正方向运动时为时间起点,若此振动以u=400m/s 的速度沿直线传播;求:1距离波源8.0m 处质点P 的运动方程和初相;2距离波源9.0m 和10.0m 处两点的相位差;14-5解分析同上题;在确知角频率1200/2-==s T ππω、波速1400-⋅=s m u 和初相)或2/(2/30ππϕ-=的条件下,波动方程 ]2/3)400/)(200cos[(11ππ+⋅-=--s m x t s A y位于 x P = m 处,质点 P 的运动方程为]2/5)(200cos[(1ππ-=-t s A y p该质点振动的初相2/50πϕ-=P ;而距波源 m 和 m 两点的相位差为2//)(2/)(21212ππλπϕ=-=-=∆uT x x x x如果波源初相取2/0πϕ-=,则波动方程为]2/9)(200cos[(1ππ-=-t s A y质点P 振动的初相也变为2/90πϕ-=P ,但波线上任两点间的相位差并不改变;14-6 有一平面简谐波在介质中传播,波速u=100m/s,波线上右侧距波源O 坐标原点为75.0m 处的一点P 的运动方程为]2/)2cos[()30.0(1ππ+=-t s m y p ;求1波向x 轴正方向传播时的波动方程;2波向x 轴负方向传播时的波动方程;14-6]2/)2cos[()30.0(1ππ+=-t s m y p分析在已知波线上某点运动方程的条件下,建立波动方程时常采用下面两种方法:1先写出以波源O 为原点的波动方程的一般形式,然后利用已知点P 的运动方程来确定该波动方程中各量,从而建立所求波动方程;2建立以点P 为原点的波动方程,由它来确定波源点O 的运动方程,从而可得出以波源点O 为原点的波动方程;解11设以波源为原点O,沿X 轴正向传播的波动方程为()[]0cos ϕω+-=u x t A y将 u =100 m ·s -‘代人,且取x 二75 m 得点 P 的运动方程为()[]075.0cos ϕω+-=s t A y p与题意中点 P 的运动方程比较可得 A =、12-=s πω、πϕ20=;则所求波动方程为)]100/)(2cos[()30.0(11--⋅-=s m x t s m y p π2当沿X 轴负向传播时,波动方程为()[]0cos ϕω++=u x t A y将 x =75 m 、1100-=ms u 代人后,与题给点 P 的运动方程比较得A = 、12-=s πω、πϕ-=0,则所求波动方程为])100/)(2cos[()30.0(11ππ-⋅+=--s m x t s m y解21如图14一6a 所示,取点P 为坐标原点O ’,沿O ’x 轴向右的方向为正方向;根据分析,当波沿该正方向传播时,由点P 的运动方程,可得出以O ’即点P 为原点的波动方程为]5.0)100/)(2cos[()30.0(11ππ+⋅-=--s m x t s m y将 x=-75 m 代入上式,可得点 O 的运动方程为t s m y O )2cos()30.0(1-=π由此可写出以点O 为坐标原点的波动方程为)]100/)(2cos[()30.0(11--⋅-=s m x t s m y π2当波沿河X 轴负方向传播时;如图14-6b 所示,仍先写出以O ’即点P 为原点的波动方程]5.0)100/)(2cos[()30.0(11ππ+⋅+=--s m x t s m y将 x=-75 m 代人上式,可得点 O 的运动方程为])2cos[()30.0(1ππ-=-t s m y O则以点O 为原点的波动方程为])100/)(2cos[()30.0(11ππ-⋅+=--s m x t s m y讨论对于平面简谐波来说,如果已知波线上一点的运动方程,求另外一点的运动方程,也可用下述方法来处理:波的传播是振动状态的传播,波线上各点包括原点都是重复波源质点的振动状态,只是初相位不同而已;在已知某点初相平0的前提下,根据两点间的相位差λπϕϕϕ/2'00x ∆=-=∆,即可确定未知点的初相中小14-7 图14-7为平面简谐波在t=0时的波形图,设此简谐波的频率为250Hz,且此时图中质点P 的运动方向向上;求:1该波的波动方程;2在距原点O 为7.5m 处质点的运动方程与t=0时该点的振动速度;14-7分析1从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径;具体步骤为:1.从波形图得出波长'λ、振幅A 和波速λν=u ;2.根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转关量法确定其初相0ϕ;2在波动方程确定后,即可得到波线上距原点O 为X 处的运动方程y =yt,及该质点的振动速度v =dy /d t;解1从图 15- 8中得知,波的振幅 A = 0.10 m,波长m 0.20=λ,则波速13100.5-⋅⨯==s m u λν;根据t =0时点P 向上运动,可知彼沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动;利用旋转矢量法可得其初相3/0πϕ=;故波动方程为()[]]3/)5000/)(500cos[()10.0(cos 110ππϕω+⋅+==++=--s m x t s m u x t A y2距原点 O 为x=7.5 m 处质点的运动方程为]12/13)500cos[()10.0(1ππ+=-t s m yt=0时该点的振动速度为1106.4012/13sin )50()/(--=⋅=⋅-==s m s m dt dy v t ππ14-8 平面简谐波以波速u=0.5m/s 沿Ox 轴负方向传播,在t=2s 时的波形图如图14-8a 所示;求原点的运动方程;14-8分析上题已经指出,从波形图中可知振幅A 、波长λ和频率ν;由于图14-8a 是t =2s 时刻的波形曲线,因此确定 t = 0时原点处质点的初相就成为本题求解的难点;求t =0时的初相有多种方法;下面介绍波形平移法、波的传播可以形象地描述为波形的传播;由于波是沿 Ox 轴负向传播的,所以可将 t =2 s 时的波形沿Ox 轴正向平移m s s m uT x 0.12)50.0(1=⨯⋅==∆-,即得到t=0时的波形图14-8b,再根据此时点O 的状态,用旋转关量法确定其初相位;解由图 15- 9a 得知彼长m 0.2=λ,振幅 A= 0.5 m;角频率15.0/2-==s u πλπω;按分析中所述,从图15—9b 可知t=0时,原点处的质点位于平衡位置;并由旋转矢量图14-8C 得到2/0πϕ=,则所求运动方程为]5.0)5.0cos[()50.0(1ππ+=-t s m y14-9 一平面简谐波,波长为12m,沿Ox 轴负方向传播,图14-9a 所示为x=1.0m 处质点的振动曲线,求此波的波动方程;14-9分析该题可利用振动曲线来获取波动的特征量,从而建立波动方程;求解的关键是如何根据图14-9a 写出它所对应的运动方程;较简便的方法是旋转矢量法参见题13-10; 解 由图14-9b 可知质点振动的振幅A =0.40 m,t =0时位于 x =1.0m 的质点在A /2处并向Oy 轴正向移动;据此作出相应的旋转矢量图14-9b,从图中可知30πϕ-=';又由图 14-9a 可知,t =5 s 时,质点第一次回到平衡位置,由图14-9b 可看出65πω=t ,因而得角频率16-=s πω;由上述特征量可写出x =处质点的运动方程为]3)6cos[()40.0(1ππ+=-t s m y 采用题14-6中的方法,将波速10.12-⋅===s m T u πλωλ代人波动方程的一般形式])(cos[0ϕω++=u x t A y 中,并与上述x =1.0m 处的运动方程作比较,可得20πϕ-=,则波动方程为()⎪⎭⎫ ⎝⎛-⋅+=--20.1)6(cos )40.0(11ππs m x t s m y14-10 图14-10中I 是t=0时的波形图,II 是t=时的波形图,已知T>,写出波动方程的表达式;14-10分析 已知波动方程的形式为])(2cos[0ϕλπ+-=x T t A y从如图15—11所示的t =0时的波形曲线Ⅰ,可知彼的振幅A 和波长λ,利用旋转矢量法可确定原点处质点的初相0ϕ;因此,确定波的周期就成为了解题的关键;从题给条件来看,周期T 只能从两个不同时刻的波形曲线之间的联系来得到;为此,可以从下面两个不同的角度来分析;l 由曲线Ⅰ可知,在 tzo 时,原点处的质点处在平衡位置且向 Oy 轴负向运动,而曲线Ⅱ则表明,经过0;1s 后,该质点已运动到 Oy 轴上的一A 处;因此,可列方程s T kT 1.04=+,在一般情形下,k= 0, 1,2,…这就是说,质点在 0;1 s 内,可以经历 k 个周期振动后再回到A 处,故有)25.0()1.0(+=k s T ;2从波形的移动来分析;因波沿Ox 轴正方向传播,波形曲线Ⅱ可视为曲线Ⅰ向右手移了T t t u x ∆=∆=∆λ;由图可知,4λλ+=∆k x ,故有T t k ∆=+λλλ4,同样也得)25.0()1.0(+=k s T ;应当注意,k 的取值由题给条件 T >所决定;解 从图中可知波长m 0.2=λ,振幅A =0.10 m;由波形曲线Ⅰ得知在t=0时,原点处质点位于平衡位置且向 Oy 轴负向运动,利用旋转矢量法可得2/0πϕ=;根据上面的分析,周期为⋅⋅⋅=+=,2,1,0,)25.0()1.0(k k s T由题意知 T >,故上式成立的条件为,可得 T =;这样,波动方程可写成()()ππ5.00.24.02cos )10.0(+-=m x s t m y14-11 平面简谐波的波动方程为])2()4cos[()08.0(11x m t s m y ---=ππ;求1t=时波源及距波源0.10m 两处的相位;2离波源0.80m 处及0.30m 两处的相位;14-11()[]x m t s m y 112)4(cos )08.0(---=ππ解1将t =和x=0代人题给波动方程,可得波源处的相位πϕ4.81=将t =和x = m 代人题给波动方程,得 m 处的相位为πϕ2.82=从波动方程可知波长;这样, m 与 m 两点间的相位差πλπλ=∆⋅=∆x 214-12 为了保持波源的振动不变,需要消耗的功率;若波源发出的是球面波设介质不吸收波的能量;求距离波源5.0m 和10.0m 处的能流密度;14-12分析波的传播伴随着能量的传播;由于波源在单位时间内提供的能量恒定,且介质不吸收能量,敌对于球面波而言,单位时间内通过任意半径的球面的能量即平均能流相同,都等于波源消耗的功率户;而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度 P I =;解由分析可知,半径户处的能疏密度为 24r P I π=当 r 1=5;0 m 、r 2= m 时,分别有222111027.14--⋅⨯==m W r P I π232221018.34--⋅⨯==m W r P I π14-13 有一波在介质中传播,其波速u=×103m/s,振幅A=×10-4m,频率ν=×103Hz;若介质的密度为ρ=×102kg/m 3,求:1该波的能流密度;21min 内垂直通过×10-4m 2的总能量;14-1313100.1-⋅⨯=s m uHz v m A 34100.1,100.1⨯=⨯=-32100.8-⋅⨯=m kg ρ24100.4m -⨯解1由能流密度I 的表达式得25222221058.1221-⋅⨯===m W v uA uA I ρπωρ 2在时间间隔s t 60=∆内垂直通过面积 S 的能量为J t IS t P W 31079.3⨯=∆⋅=∆⋅=14-14 如图14-14所示,两振动方向相同的平面简谐波波源分别位于A 、B 两点;设它们的相位相同,且频率均为ν=30Hz,波速u=0.50m/s,求在点P 处两列波的相位差;14-14 v=30Hz150.0-⋅=s m u分析在均匀介质中,两列波相遇时的相位差ϕ∆,一般由两部分组成,即它们的初相差B A ϕϕ-和由它们的波程差而引起的相位差λπr ∆2;本题因B =ϕϕA ,故它们的相位差只取决于波程差;解在图14-14的APB ∆中,由余弦定理可得m AB AP AB AP BP 94.230cos 222=︒⋅-+=两列波在点P 处的波程差为BP AP r -=∆,则相位差为ππλπϕ2.722=∆=∆⋅=∆u r v r14-15 两波在同一细绳上传播,它们的方程分别为])4[()cos()06.0(111t s x m m y ---=ππ和])4[()cos()06.0(112t s x m m y --+=ππ;1证明这细绳是作驻波式振动,并求节点和波腹的位置;2波腹处的振幅有多大 在x=1.2m 处,振幅多大14-15分析只需证明这两列波会成后具有驻波方程 的形式即可;由驻波方程可确定波腹、波节的位置和任意位置处的振幅;解l 将已知两波动方程分别改写为可见它们的振幅 A 二0;06 m,周期 T 二0;5 s 频率;二2 Hi,波长八二2 m;在波线上任取一点P,它距原点为P;则该点的合运动方程为k 式与驻波方程具有相同形式,因此,这就是驻波的运动方程由得波节位置的坐标为由得波腹位置的坐标为门驻波振幅,在波腹处A ’二ZA 二0;12 m ;在x 二0;12 m 处,振幅为()()[]t s x m m y 1114cos )06.0(---=ππ()()[]t s x m m y 1124cos )06.0(--+=ππ ()()vt x A y πλπ2cos 2cos 2=()m x s t m y 25.2cos )06.0(1-=π()m x s t m y 25.02cos )06.0(2+=πt s x m ts x m y y y P P P P )4cos(2cos )12.0()4cos()cos()12.0(1121--⎪⎭⎫ ⎝⎛==+=πλπππ02cos 2=⎪⎭⎫ ⎝⎛λπP x A ⋅⋅⋅±±=+=+=,2,1,0,)5.0(4)12(k m k k x P λm A x A P 12.022cos 2==⎪⎭⎫ ⎝⎛λπ ⋅⋅⋅±±===,2,1,0,2k km k x P λ12.02,2cos 2=='⎪⎭⎫ ⎝⎛='A A x A A P λπ ()m m x A A P 097.012.0cos 12.02cos 2==⎪⎭⎫ ⎝⎛='πλπ14-16 一弦上的驻波方程式为t s x m m y )550cos()6.1cos()100.3(112---⨯=ππ;1若将此驻波看成是由传播方向相反,振幅及波速均相同的两列相干波叠加而成的,求它们的振幅及波速;2求相邻波节之间的距离;3求t=×10-3s 时位于x=0.625m 处质点的振动速度;14-16分析1采用比较法;将本题所给的驻波方程,与驻波方程的一般形式相比较即可求得振幅、波速等;2由波节位置的表达式可得相邻波节的距离;3质点的振动速度可按速度定义V一如Nz 求得;解1将已知驻波方程 y =3; 0 X 10-2 m cos; 6; ml -coos550;s 一小与驻波方程的一般形式 y = ZAcos2;x /八;2;yi 作比较,可得两列波的振幅 A = 1; 5 X 10-‘ m,波长八二 1; 25 m,频率 v 二 275 Hi,则波速 u 一如 2343;8 in ·SI2相邻波节间的距离为3在 t 二 3; 0 X 10-3 s 时,位于 x = 0; 625 m 处质点的振动速度为()()t s x m m y 112550cos 6.1cos )100.3(---⨯=ππs t 3100.3-⨯=dt dy v =()()t s x m m y 112550cos 6.1cos )100.3(---⨯=ππ ()()vt x A y πλπ2cos 2cos 2=m A 2105.1-⨯=18.343-⋅==s m v u λ625.024)12(4]1)1(2[1==+-++=-=∆+λλλk k x x x k ks t 3100.3-⨯=()()()11112.46550sin 6.1cos 5.16----⋅-=⋅-==s m t s x m s m dt dy v πππ14-17 一平面简谐波的频率为500Hz,在空气中ρ=1.3kg/m 3以u=340m/s 的速度传播,到达人耳时,振幅约为A=×10-6m;试求波在耳中的平均能量密度和声强;14-17解波在耳中的平均能量密度声强就是声波的能疏密度,即这个声强略大于繁忙街道上的噪声,使人耳已感到不适应;一般正常谈话的声强约为 1; 0 X 10-6 W ·m -2左右26222221042.6221--⋅⨯===m J v A A ρπωρϖ 231018.2--⋅⨯==m W u I ϖ26100.1--⋅⨯m W14-18 面积为1.0m 2的窗户开向街道,街中噪声在窗户的声强级为80dB;问有多少声功率传入窗内14-18分析首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系;声强是声波的能流密度I,而声强级L 是描述介质中不同声波强弱的物理量;它们之间的关系为 L 一体I /IO,其中 IO 二 1; 0 X 10-’2 W ·0-‘为规定声强;L 的单位是贝尔B,但常用的单位是分贝dB,且IB =10 dB;声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P=IS;解根据分析,由L =igI / IO 可得声强为则传入窗户的声功率为)0lg(I I L =010I I L =2120100.1--⋅⨯=m W IW S I IS P L 40100.110-⨯===14-19 若在同一介质中传播的、频率分别为1200Hz 和400Hz 的两声波有相同的振幅;求:1它们的强度之比;2两声波的声强级差;14-19解1因声强I =puA ‘;‘/2,则两声波声强之比2因声强级L 一回对几,则两声波声强级差为222ωρuA I =9222121==ωωI I ()0lg I I L =()()()dB B I I I I I I L 54.9954.0lg lg lg 210201===-=∆14-20 一警车以25m/s 的速度在静止的空气中行驶,假设车上警笛的频率为800Hz;求:1静止站在路边的人听到警车驶近和离去时的警笛声波频率;2如果警车追赶一辆速度为15m/s 的客车,则客车上的人听到的警笛声波的频率是多少设空气中的声速u=330m/s14-20分析由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果;在处理这类问题时,不仅要分清观察者相对介质空气是静止还是运动,同时也要分清声源的运动状态;解1根据多普勒频率公式,当声源警车以速度 vs =25 m ·s -‘运动时,静止于路边的观察者所接收到的频率为警车驶近观察者时,式中Vs 前取“-”号,故有警车驶离观察者时,式中Vs 前取“+”号,故有2声源警车与客车上的观察者作同向运动时,观察者收到的频率为SS v u u v v s m v ='⋅=-125 Hz v u u v v S6.8651=-=' Hz v u u vv S 7.7432=+=' Hz v u v u v v S2.82603=--='14-21 如图14-21所示;一振动频率为ν=510Hz 的振源在S 点以速度v 向墙壁接近,观察者在点P 处测得拍音频率ν′=3Hz,求振源移动得速度;声速为330m/s14-21分析位于点P 的观察者测得的拍音是振源S 直接传送和经墙壁反射后传递的两列波相遇叠加而形成的;由于振源运动,接收频率;l 、12均与振源速度;有关;根据多普勒效应频率公式和拍频的定义,可解得振源的速度;解根据多普勒效应,位于点P 的人直接接收到声源的频率; l 和经墙反射后收到的频率 分别为由拍额的定义有将数据代入上式并整理,可解得vu u v v v u u v v -=+=21, ⎪⎭⎫ ⎝⎛+--=-='v u v u uv v v v 1121 10.1-⋅≈s m v14-22 目前普及型晶体管收音机的中波灵敏度指平均电场强度E 约为×10-3V/m;设收音机能清楚的收听到×103km 远处某电台的广播,该台的发射是各向同性的以球面形式发射,并且电磁波在传播时没有损耗,问该台的发射功率至少有多大14-22HE r A AS P 0024μεπ==⋅=292001065.2--⋅⨯===m W E H E S μεW S r P 42103.34⨯=⋅=π14-23 一气体激光器发射的光强可达×1018W/m 2,计算其对应的电场强度和磁场强度的振幅; 14-23()1101001075.42-⋅⨯==m V I E m εμ18001026.1-⋅⨯==m A E H m m εμ。
大学物理实验中的波动与振动分析

大学物理实验中的波动与振动分析波动与振动是大学物理课程中的重要内容之一。
通过物理实验的手段,可以更好地理解和研究波动与振动的特性和规律,从而提升对物理学的理解和应用能力。
本文将对大学物理实验中的波动与振动进行分析。
一、实验背景和目的波动与振动是物理学的基本概念,广泛应用于多个领域。
通过进行波动与振动的实验,可以更好地理解其特性和规律,为理论的学习打下坚实的基础。
本实验旨在通过实验手段,探索波动与振动的相关原理,深入了解其性质和特征。
二、实验器材和步骤1. 实验器材:- 弹簧:用于研究弹性振动的特性,可以选择不同大小和材质的弹簧。
- 振动装置:用于产生振动,例如弹簧振子、简谐振子等。
- 高频发生器:产生高频信号,用于产生波动。
- 波动绳:用于研究波动传播的特性。
- 频率计:用于测量振动或波动的频率。
- 振动传感器:用于测量或检测振动的特征参数。
- 示波器:用于显示振动或波动的图像。
- 实验台和支架:用于固定实验器材。
2. 实验步骤:a. 振动实验:1) 根据实验要求选择合适的振动装置。
2) 将振动装置固定在实验台上。
3) 通过高频发生器产生振动信号,并调节频率。
4) 使用振动传感器测量振动的频率和振幅。
5) 使用示波器观察振动的图像,并记录关键数据和观察现象。
b. 波动实验:1) 将波动绳固定在实验台上,并保持一定的张力。
2) 通过高频发生器产生波动信号,并调节频率。
3) 使用示波器观察波动的传播和幅度变化。
4) 使用频率计测量波动的频率。
5) 记录关键数据和观察现象。
三、实验结果与分析1. 振动实验:- 通过调节高频发生器的频率,可以观察到振动信号的频率变化,并通过示波器显示出振动的图像。
- 随着频率的增加,振动的幅度可能发生变化。
- 使用振动传感器进行测量,可以得到振动的频率和振幅。
2. 波动实验:- 通过高频发生器产生波动信号,并使用波动绳进行传播实验。
- 使用示波器观察波动的传播和幅度变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反射点相位突变,相当于/2的波程差,
常称反射波有“ 半波损失 ”。
固定端—— 波节 形成驻波时 自由端—— 波腹
(3)忽略透射波,则入射波和反射波的波形如下:
波疏媒质
波密媒质 波节
驻波 相位突变 波密媒质
2
入射波波形延拓, “砍”掉半个波 x 形后平移至分界 面处再翻折即得 到反射波波形
(1)波疏媒质与波密媒质
u
反 射 点
u
z u—— 特性阻抗
波速 密度
z大—— 波密媒质 z小—— 波疏媒质
(2)反射点 对⊥入射,可以证明(过程不要求): ①波密波疏,反射点无相位突变,形成驻波 时该处为波腹;
② 波疏 波密,反射点相位突变 ,形成驻波 时该处为波节。
有时说成 “界面”更 合适
两相邻波腹(节)间距为 /2.
(3)相位特点:
同一段同相;相邻段反相。相位不传播。
课后由驻波表达式给予证明。
(4)能量特点: 形成驻波的两列行波的能流密度大小相等, 传播反向,叠加后,能量总的说来并不传播。 4、驻波的边界条件
让波在两种媒质的界面反射 (忽略透射),由入射波和反射 波叠加。
解: 第一次共鸣:O为波腹, O1为波节; 第二次共鸣:O为波腹, O2为第二个波节。 ∵两相邻波节间距为/2,
O1O2 1.5 m 2
u 224 1.5 336(m s )
1
O1
O
O2
§8-6不要求
练习:学习指导“振动和波” 一、13、21 二、41、42、43 三、50、62
). y A cos(
)
在BO间任选一点P(x), 则反射波的波动方程为:
L x 2L y2 A cos[ (t ) ] u 2 u 2x 4L y2 A cos( t )
2π x cos ωt (驻波表达式) λ
2π y 2 A cos x cos ωt λ
y
0 0 0 0
2A
x x x
t=0 t =T/8 t =T/4
3T t 8
x
2A
t =T/2
振动范围 波 腹
λ 4
0
x
x 波 节
0
-2 A
λ 4
2π y 2 A cos x cosωt λ
图(1)
L
自由
图(2)
对图(2)
每种可能的稳定振动方式称作系统的一个 简正模式(normal mode). 基频 二次 谐频 三次 谐频
(2)空气柱振动 音叉频率与管内空气柱的固有频率相同时发 生共鸣(形成声驻波)。
音叉
空气柱
敞开端 封闭端
封闭端——波节 共鸣时 敞开端——波腹
笛中驻波的简正模式
三、驻波 1、驻波的形成 同一直线上振幅相同、传播反向的两列相干波 叠加成为一种特殊的振动状态,称为驻波。
弦 线 驻 波
入射波和 反射波叠 加的结果
2、驻波的描述 设两列行波分别为:
2π y1 A cos(ωt x) λ 2π y2 A cos(ωt x) λ
叠加后:y y1 y2 2 A cos
波疏媒质
波腹
入射波波形延拓, 再翻折即得到反 x 射波波形
驻波
相位不变
5 、驻波的简正模式 (1)弦线 振动
固定 弦线 L
/2
固定
固定
(本征频率) 只有本征频率才可以在弦上形成驻波。 n=1——基频 n2——谐频
(u F ρl , F — 张力, ρl — 质量线密度)
λ 弦长L应满足: L n 2 ( n 1,2 ,3 ) u u νn n 称为弦的固有频率 λ 2L
末端封闭
末端开放
例4、设沿弦线传播的一入射波的表达式为 2x y1 A cos( t ). 波在x=L处(B点) 遇到波密介质发生反射(如图),设波 在传播和反射过程中振幅不变,则反 射波的表达式为y2= ————. y
O
B
x
L
y P(x)
O
x
L
B L-x
2x
解: ∵遇波密介质反射,反 射点相位突变 , x ∴反射后,B点的振动 方程为:
简谐振动 绝对值为振幅
时间项和空间项分离,不满足y(x+x, t+t) =y(x,t) (x=ut ), 波形不传播,故称“驻 波”。
驻波是分段的振动。
3、驻波的特点 (1)频率特点: 各质点同频率。 (2)振幅特点: 2π λ 波节点 (Nodes): 静止 2 A cos λ x 0 x 奇数 4 波腹点 (Anti-nodes): 2π λ 2 A cos x 2 A x 偶数 振幅最大 λ 4
写成-亦可
若反射点为自由端, 则无相位突变,这 一项就没有。
例5、图中oo′是内径均匀的玻璃管.A是能在管内 滑动的底板,在管的一端o附近放一频率为224Hz 的持续振动的音叉,使底板A从o逐渐向o′移动.当 底板移到o1时管中气柱首次发生共鸣.当移到o2时 再次发生共鸣, o1与o2间的距离为75.0cm.则声速 为_________.