五上-行程问题中的追及问题(含环形跑道)PPT课件

合集下载

五年级奥数-一行程问题追击问题(课堂PPT)

五年级奥数-一行程问题追击问题(课堂PPT)
13
2,甲乙丙三人从A到B,甲乙一起从A出发, 甲每小时走6千米,乙每小时走4千米。4小时 后丙骑自行车从A出发,用2小时就追上乙, 再用几小时就能追上甲?
14
3,甲乙丙三人行走的速度分别为60米,80米 ,100米。甲乙两人在B同时同向出发,丙从A 同时同向出发去追甲乙,丙追上甲以后又过了 10分钟才追上乙。求AB两地的路程。
15
例5 、 甲、乙、丙三人步行的
速度分别是每分钟100米、90 米、75米。甲在公路上A处, 乙、丙在公路上B处,三人同
时出发,甲与乙、丙相向而行。 甲和乙相遇3分钟后,甲和丙 又相遇了。求A、B之间的距 离。
16
分析:
甲和乙相遇后,再过3分钟甲又能和丙相遇, 说明甲和乙相遇时,乙比丙多行: (100+75)×3=525米。 而乙每分钟比丙多行: 90-75=15米, 多行525米需要用: 525÷15=35分钟。 35分钟甲和乙相遇,说明A、B两地之间的距 离是: (100+90)×35=6650米。
(3)、甲乙两人以每分钟60米的速度同时同地步行出 发,走15分钟后甲返回原地取东西,而乙继续前进。甲 取东西用去5分钟的时间,然后改骑自行车以每分钟360 米的速度追乙,甲汽
地,要行360千米。开始按计划 以每小时45千米的速度行驶,途 中因汽车故障修车2小时。因为 要按时到达乙地,修好车后必须 每小时多行30千米。汽车是在离 甲地多远处修车的?
11
甲乙丙三人都从A地到B地,早晨六点,甲乙 两人一起从A出发,甲每小时走5千米,乙每 小时走4千米。丙早上八点才从A出发,傍晚 六点,甲和丙同时到达B,问丙什么时候追上 乙的?
12
1,客车,货车,小轿车都从A到B。货车和客 车一起从A出发,货车每小时行50千米,客车 每小时60千米。2小时后小轿车才从A出发。 12小时后小轿车追上了客车,问小轿车在出发 后几小时追上货车?

追及问题 ppt课件

追及问题 ppt课件

答:经过13.5小时快车可追上慢车。
2、一架飞机执行空投物质任务,原计划每分钟 飞行9千米,为了争取时间,现在将速度提高到 每分钟12千米,结果比计划早到30分钟。则机 场与空投地点相隔多少千米?
机场
飞机
空投地点 解: 路程差:12×30=360(千米)
9×t
12×30 速度差: 12-9=3(千米/分钟) 追及时间:360÷3=120(小时)
速度和: 300 ÷ 30 =10 (米/秒) 结论: 快者速度 =(10+2)/2 = 6米/秒
慢者速度= 10 – 6 = 4米/秒
答:速度分别为6米/秒和4米/秒。
三、时针、分针追及问题
1、钟面上360度,共60格,每个格 子是360度÷60=6 度;
2、分针的速度是每分钟1格,即 分针每分钟走6度;
距离: 120×9=1080(米)
飞机
12×t
答:机场与空投地点相隔1080千米。
二、环形跑道追及问题
1、环形跑道周长400米,甲乙两名运动员同 时顺时针自同一起点出发,甲速度是400米/分, 乙速度是375米/分。问多少分钟甲乙再次相遇?
解: 路程差: 400米 速度差: 400-375=25(米/分)
一、直线追及问题:
1、甲、乙两站相距162千米。一列慢车从甲站开出, 每小时行36千米;同时一列快车从乙站开出,每小 时行48千米。两列火车同向而行,快车在慢车后。 那么经过几小时快车可追上慢车?
解:
路程差: 162千米
速度差: 48-36=12(千米/小时)
追及时间: 162÷12=13.5(小时)
5点20时路程差:150度-110度=40(度)
答:5点20时,钟表盘面上时针与分针夹角40度。

追及问题PPT课件

追及问题PPT课件


=88×4

=352(千米)

答:甲乙两站的距离是352千米。
速度差 路程差
16-5=11(千米) 11×2=22(千米)
答:东西两镇相距22千米?
例3.甲乙两人相距4千米,乙在前,甲在 后,两人同时出发,2小时后甲追上乙, 乙每小时行6千米,甲的速度是多少千米?
• 【数量关系】
• 追及时间=追及路程÷(快速-慢速) • 追及路程=(快速-慢速)×追及时间
• 解 小明第一次追上小亮时比小亮多跑一圈, 即200米,此时小亮跑了(500-200)米,要 知小亮的速度,须知追及时间,即小明跑500 米所用的时间。又知小明跑200米用40秒,则 跑500米用[40×(500÷200)]秒,所以小 亮的速度是

(500-200)÷[40×(500÷200)]
• 例3 我人民解放军追击一股逃窜的敌人,敌 人在下午16点开始从甲地以每小时10千米的 速度逃跑,解放军在晚上22点接到命令,以 每小时30千米的速度开始从乙地追击。已知 甲乙两地相距60千米,问解放军几个小时可 以追上敌人?
• (2)好马几天追上劣马? 900÷(120-75)= 20(天)
• 列成综合算式 75×12÷(120-75)=900÷45= 20(天)

答:好马20天能追上劣马。
• 例2 小明和小亮在200米环形跑道上跑步, 小明跑一圈用40秒,他们从同一地点同时出 发,同向而跑。小明第一次追上小亮时跑了 500米,求小亮的速度是每秒多少米。
• 解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后 于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
• 这个时间为
16×2÷(48-40)=4(小时)

五年级奥数上第4讲环形路线

五年级奥数上第4讲环形路线

课堂检测
(4)有一个周长是80米的圆形水池,甲沿着水池散步,速度为1米每秒,乙沿着水池跑步,速 度为2.2米每秒,并且与甲的方向相反,如果他俩从同一地点同时出发,那么当乙第8次遇到甲时 还要跑多少米才能回到出发点?
(5)甲、乙两人分别从一圆形场地的直径两端点A、B开始,同时匀速反向绕此圆形路线运动。 当甲走了160米后,他们第一次相遇。在乙走过A后20米的D处又第二次相遇,求此圆形场地的周 长?
A
B
练习四:
有一个环形跑道,甲、乙两人分别从A、B两地出发,相向而行,乙的速度快于甲, 第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的地点,已知 A、B长是跑道总长的四分之一,请问跑道周长为多少米?
A C
B
D
挑战极限
例题五:
小鹿和小山羊在某个环形跑道上练习跑步项目,小鹿比小山羊稍快,如果从同一起 点出发背向而行,1小时后正好第5次相遇,如果从同一起点出发,同向而行,那么 经过1小时才第1次追上,请问小鹿和小山羊跑一圈各需要多长时间? 【分析】题目中并没有告诉环形跑道的周长是多少,想一想跑道的周长是一个确定 的数吗?如果不是,那么周长的取值不同,对于结果有没有影响?
练习二:
一环形跑道,周长为400米,甲、乙两名运动员,同时顺时针自起点出发,甲每分 钟跑300米,乙每分钟跑275米,甲第四次追上乙时距离起点多少米?
如果不是同地出发,环形 路线问题还具有周期性吗?
例题三:
甲、乙两人在400米长的环形跑道上跑步,甲以每分钟300米的速度从起点跑出,一 分钟后,乙以每分钟280米的速度从起点同向跑出,请问甲出发后多少分钟第一次 追上乙?如果追上后他们的速度保持不变,甲还需要再过多少分钟才能第10次追上 乙? 【分析】从乙出发到甲第一次追上乙。与从甲第一次追上乙到第二次追上乙间隔的 时间一样吗?从第几次追上开始就具有周期性了?

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容:,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨:在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米)800÷25=32(分钟)甲:400×32=12800(米)乙:375×32=12000(米)甲:12800÷800=16(圈)乙:16-1=15(圈)例2:幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

行程问题之环形跑道演示课件.ppt

行程问题之环形跑道演示课件.ppt

小军
A●


C
●D
分析:
第1次相遇两人合起来走了半周长,从C
小勇 点开始到D点相遇两人共走了一周长,
● B 两次共走了一周半。
小军: A C D走了50米的3倍。
50×3=150(米) 半周:150-BD(30米)
周长:(150-30)×2=240(米)
答:这个花园一周长240米。
精选文摘
13
5 已知等边三角形ABC的周长为360米,甲从A点出发,按逆 时针方向前进,每分钟走55米,乙从BC边上D点(距C点30米) 出发,按顺时针方向前进,每分钟走50米。两人同时出发,几 分钟相遇?当乙到达A点时,甲在哪条边上,离C点多远?
360÷(305-275)=12(分) 甲:305×12=3660(米) 共跑的圈数:3660÷360=10(圈)……60(米)
答:第一次相遇在离起点60米处。
精选文摘
12
4 下图是一个圆形中央花园,A、B是直径的两端。 小军在A点,小勇在B点,同时出发相向而行。他俩 第1次在C点相遇,C点离A有50米;第2次在D点相遇, D离B有30米。问这个花园一周长多少米?
所以小明走一周要:12+8=20(分钟)
精选文摘
8
精选文摘
9
1.甲、乙两运动员在周长为400米环形跑道上同向竞走,已知乙 的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在 乙前面100米处。问几分钟后,甲第1次追上乙?
● ●

同一点出发,
距离差=跑道长
甲 甲的速度:80×1.25=100米/分
精选文摘
15
• 当甲跑的800米时用时: 800÷7+5×7≈149.28(秒)又离开A点。

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题

第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈)乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题

环形跑道中的相遇追及问题(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈需要课时:2课时教学内容: ,正确将环形跑道问题转化成追及问题解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇甲、乙两名运动员各跑了多少米甲、乙两名运动员各跑了多少圈思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一辆摩托艇在距离120千米以外的地方开 始追及一艘轮船,经过2.5小时追上。已知摩 托艇的速度是100千米,问轮船的速度是多少?
速度差=路程差÷时间
120÷48(千米)
轮船速度=摩托艇速度 - 速度差
100-48=52(千米)
一条225米的环形跑道,哥哥和弟弟同向 开始跑,哥哥每分钟跑150米,弟弟每分钟 跑60米,问过多久,哥哥会第一次追上弟弟?
追及时间=路程差÷速度差
225÷(150-60)=2.5(分钟)
一条环形公交线路,快车和慢车同时同 向发车,快车速度是90千米/小时,慢车速 度是60千米/小时,过了1.8小时,快车跑完 一圈后再次追上慢车。问:这条环形公交线 路有多长?
路程差(环形跑道)=追及时间×速度差
1.8×(90-60)=54(千米)
速度差×时间=路程差
小雪、小露两人从A、B两地同时出发同 向而行,经过4小时小雪追上小露,已知A、 B两地相距52千米,求两人的速度差是多少?
C 追上
A 小雪
B 小露
速度差=路程差÷追及时间
52÷4=13(千米)
美美、丫丫两人从甲、乙两地同时出发 同向而行,经过2.5小时美美追上丫丫,已 知甲乙两地相距100千米,求两人的速度差 是多少?
行程问题 之
追及问题
(含环形跑道)
行程问题中有三个数量: 路程、时间和速度。
速度×时间=路程
两个物体的行程问题除 了之前讲到的“相遇问题”, 最常见的还有“追及问题”
两个物体之间有一定距离, 速度快的追速度慢的,最终 追上的叫做“追及问题”
追及问题中,两个物体是敌对关系, 速度和路程都应该求差。
C
B
追上
丫丫 A
美美 速度差=路程差÷追及时间
100÷2.5=40(千米)
一辆汽车和一辆小轿车同时从相距180 千米的两地同向而行,经过3小时两车小轿 车追上汽车,已知汽车的速度为25千米/小 时,问小轿车的速度是多少?
速度差=路程差÷时间
180÷3=60(千米)
轿车速度=汽车速度+速度差
60+25=85(千米)
1、追及问题中的有哪三个数量? 2、追及问题的基本关系式是什么?
3、环形跑道追及问题中路程差是什么?
相关文档
最新文档