九年级数学辅偏卷——相似

合集下载

九年级数学竞赛辅导系列 讲座八 相似形练习试题

九年级数学竞赛辅导系列 讲座八 相似形练习试题

轧东卡州北占业市传业学校数学竞赛辅导系列讲座八——相似形1、在正三角形ABC 的边BC 、AC 上分别有点E 、F ,且满足BE=CF=a , EC=FA=b 〔a>b 〕,当BF 平分AE 时,那么ab的值为〔 〕 A 、5-12B 、5-22C 、5+12D 、5+222、设AD 、BE 、CF 为△ABC 的三条高,假设AB=6,BC=5,EF=3,那么线段BE 的长为〔 〕A 、185B 、4C 、215D 、2453、O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,那么OD :OE :OF=〔 〕A 、a :b :cB 、1a :1b :1cC 、Cos A :CosB : CosCD 、SinA :SinB :SinC4、如图,△ABC 是边长为6cm 的等边三角形,被一平行于BC 的矩形所截, AB 被截成三等分,那么图中阴影局部面积为〔 〕A 、4B 、2 3C 、3 3D 、4 35、在等腰直角三角形ABC 的斜边AB 上取两点M 、N ,使∠MCN=45°, 记AM=m ,MN=x ,BN=n ,那么以x 、m 、n 为边长的三角形形状是〔 〕A 、锐角三角形B 、直角三角形C 、钝角三角形D 、随x 、m 、n 的变化而变化 6、△ABC 中,D 、F 分别在AC 、BC 上,且AB ⊥AC ,AF ⊥BC ,BD=DC=FC=1,那么AC=〔 〕A 、 2B 、 3C 、32D 、337、Rt △ABC 中,∠C=Rt ∠,CD 是斜边AB 上的高,在BC 和CA 上分别取点E 和F ,使△EFD 和△ABC 相似,这样的△FED 有〔 〕个A 、1B 、2C 、3D 、多于38、设锐角△ABC 的三条高AD 、BE 、CF 相交于H ,假设BC=a ,AC=b ,AB=c ,那么AH ·AC+BH ·BE+CH ·CF 的值是〔 〕FABCEA 、1()2ab bc ca ++ B 、2221()2a b c ++ C 、2()3ab bc ca ++ D 、2222()3a b c ++ 9、设D 是△ABC 的边AB 上的一点,作DE ∥BC 交AC 于点E ,作DF ∥AC 交BC 于点F ,△ADE ,△DBF 的面积为m 和n ,那么四边形DECF 的面积为__________. 10、如图,ABCD 的对角线相交于O ,在AB 的延长线上任取一点E ,连结OE ,交BC 于F ,假设AB=a ,AD=c ,BE=b ,那么BF=___________.11、△ABC 为锐角三角形,其最大边AC 上有一点P 〔P 与A 、C 不重合〕,过P 作直线l ,使l 截△ABC 所得的三角形与原三角形相似,那么这样的直线可以作______条.12、正方形ABCD 边长为1,M 、N 为BD 所在直线上两点,且AM= 5 ,∠MAN=135°,那么四边形AMCN 的面积为________.13、如图,△ABC 的面积为1,D 为BC 的中点,E 、F 分别在AC 、AB 上,且S.14、△ABC 中,∠C=90°,D 、E 分别为BC 上的两点,且∠ABC=12 ∠,那么AC=______. 15、如图,边长为c 的正方形DEFG内接于面积为1的正三角形,其中a 、b 、c 是整数,且b 不能被任何质数的平方整除,那么a cb-=___________. 16AC= 3 ,∠A=∠BCD=4517、设I 1、I 218、如图,在△ABC ,D 、E 分别是AC 、BC 的中点,BF=3AB ,BD 与FC 相交于G ,〔1〕求证:EG ∥AC ;〔2〕求BFGBEGS S ∆∆的比值.19、线段AB ,只用圆规把线段AB 二等分.20、分别以锐角△ABC 的三边为边向外作正△ABC 、正△BCE 、正△CAF ,三个正三角形的中心分别为O 1、O 2、EDBCA CBCO 3,求证:△O 1O 2O 3是正三角形.21、如图,在平行四边形ABCD 中,P 1、P 2、……、P n-1分别是BD 的n 等分点,连结AP 2并延长交BC 于点E ,连结AP n-2并延长交CD 于点F , 〔1〕求证:EF ∥BD ;〔2〕假设平行四边形ABCD 的面积为S ,且S △AEF =38S ,求n 的值.22、是否存在一个边长恰是三个连续正整数,且其中一个内角是另一个内角的2倍的△ABC ?证明你的结论. 23、如图,在直角梯形ABCD ,∠ABC=∠BAD=90°,AB=16,对角线AC 与BD 交于点E ,过E 作EF ⊥AB 于点F ,O 为AB 中点,且EF+EO=8,求AD+BC 的值.24、点D 在△ABC 的边BC 上,且与B 、C 不重合,过D 作AC 的平行线DE 交AC 于点F ,又BC=5,①设△ABC 的面积为S ,假设四边形AEDF的面积为25 S ,求BD 的长;②假设AC= 2 AB ,且DF 经过△ABC 的重心G ,求EF 两点间的距离.25、如图,O 是四边形ABCD 对角线交点,∠BAD+∠BCA=180°,AB=5,AC=4,AD=3,BO DO =76 ,求BC . 26.如图是由四个大小不等的、顶角为120o成.三角形ABC 面积为100,三角形ACD 为35.组成图形的四个等腰三角形27.如图在等腰梯形ABCD 中,AD ∥BC ,AD=1,AB=2,E 是CD 上一点,且∠EBC=∠ABD .〔1〕假设BC=x ,CE=y .求y 关于x 的函数关系式,并求自变量x 的取值范围;〔2〕连结AE ,是否存在x ,使⊿ABE 与⊿DBC 相似.假设存在,求出x 的值;假设不存在,请说明理由.28.29.如图,正方形ABCD 和正方形EFGH 中,O 为BC 、FG 的中点,且点F 在正方形ABCD 内,连AE 、BF ,那么AE :BF 的值为 .EBDC D30.如下列图,在⊿ABC 的两侧向形外作正⊿ABP 和⊿ACQ ,点E 、F 是这两个正三角形的中心,再以EF 为一边向上作正三角形DEF .求证:〔1〕BC=3AD ; 〔2〕AD ⊥BC .31.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .假设⊿CDF 为等腰三角形,那么AEAD= . 32.在⊿ABC 中,∠A=024,∠B=030,在边AB 上有一点D ,使BD=AC ,连结CD .求∠BDC 的度数.33.〔2021年中考〕如图在Rt △ABC 中,90ACB ∠=︒,30BAC ∠=︒,AB =2,D 是AB 边上的一个动点〔不与点A 、B 重合〕,过点D 作CD 的垂线交射线CA 于点E .设AD x =,CE y =,那么以下列图象中,能表示y 与x 的函数关系图象大致是( ) 34.等腰梯形ABCD 中,AD BC ∥,BC =42,AD =2,B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动〔不与点C 重合〕,一直角边始终经过点A 〔如图〕,斜边与CD 交于点F .设BE=x ,CF=y ,(1) 求y 关于x 的函数解析式,并求出当点E 移动到什么位置时y 的值最大,最大值是多少? (2) 连结AF ,当⊿AEF 为直角三角形时,求x 的值; (3) 求点E 移动过程中,⊿ADF 外接圆半径的最小值.QPFEDCBADCBA。

九年级数学上册-相似练习题

九年级数学上册-相似练习题
A.1B.2C.3D.4
【分析】由∠ACD=∠B结合公共角∠A=∠A,即可证出△ACD∽△ABC,根据相似三角形的性质可得出 =( )2= ,结合△ADC的面积为1,即可求出△BCD的面积.
【解答】解:∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC,
∴ =( )2= .
∵S△ACD=1,
∴S△ABC=4,S△BCD=S△ABC﹣S△ACD=3.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.
23.如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.
24.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.
(1)求证:AC•CD=CP•BP;
(1)求证:△AFE∽△ABC;
(2)若∠A=60°时,求△AFE与△ABC面积之比.
2017年12月12日初中数学的初中数学组卷
参考答案与试题解析
一.选择题(共10小题)
1.已知2x=3y(y≠0),则下面结论成立的是( )
A. = B. = C. = D. =
【分析】根据等式的性质,可得答案.
【解答】解:A、两边都除以2y,得 = ,故A符合题意;
B、两边除以不同的整式,故B不符合题意;
C、两边都除以2y,得 = ,故C不符合题意;
D、两边除以不同的整式,故D不符合题意;
故选:A.
【点评】本题考查了等式的性质,利用等式的性质是解题关键.
2.若△ABC~△DEF,相似比为3:2,则对应高的比为( )
A.3:2B.3:5C.9:4D.4:9
【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.

北京市2023年九年级中考数学一轮复习——相似形 练习题(解析版)

北京市2023年九年级中考数学一轮复习——相似形 练习题(解析版)

北京市2023年九年级中考数学一轮复习——相似形练习题一、单选题1.(2022·北京西城·一模)△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是()A.1:2B.1:4C.1:8D.2.(2022·北京西城·二模)如图,在ABCD中,点E在BA的延长线上,2=,EC,BD交于点AB AEBD=,则DF的长为()F.若10A.3.5B.4.5C.4D.53.(2021·北京东城·一模)一个直角三角形木架的两条直角边的边长分别是30cm,40cm.现要做一个与其相似的三角形木架,如果以60cm长的木条为其中一边,那么另两边中长度最大的一边最多可达到()A.60cm B.75cm C.100cm D.120cm4.(2021·北京西城·二模)若相似三角形的相似比为1:4,则面积比为()A.1:16B.16:1C.1:4D.1:25.(2020·(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH△AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH6.(2020·北京西城·一模)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度,阳光下他测得长1m的竹竿落在地面上的影长为0.9m,在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上,他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m7.(2020·北京市海淀外国语实验学校模拟预测)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G,设正方形ABCD的周长为m,CHG△的周长为n,则mn的值为()AB.12C D.28.(2020·北京顺义·二模)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的面积为y,则y与x之间的关系描述正确的是()A.y与x之间是函数关系,且当x增大时,y先增大再减小B.y与x之间是函数关系,且当x增大时,y先减小再增大C.y与x之间是函数关系,且当x增大时,y一直保持不变D.y与x之间不是函数关系9.(2020·北京市第三十五中学二模)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为16m.若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m)A .163B .9C .12D .643二、填空题10.(2022·北京·中考真题)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.11.(2021·北京·中考真题)某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m n 的值为______________.12.(2022·北京·清华附中一模)如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE △B C .如果32AD DB =,AC =10,那么EC =________.13.(2022·北京·北理工附中模拟预测)如图,正方形ABCD ,E 是AD 上一点,113AE AD ==,CF BE ⊥于F ,则BF 的长为______.14.(2022·北京通州·一模)如图,在△ABC中点D在AB上(不与点A,B重合),连接CD.只需添加一个条件即可证明△ACD与△ABC相似,这个条件可以是______(写出一个即可).15.(2022·北京市三帆中学模拟预测)如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=____.16.(2022·北京师大附中模拟预测)如图,在矩形ABCD中,AB=3,BC=10,点E在边BC上,DF△AE,垂足为F,若DF=6,则线段EF的长为_____.17.(2022·北京昌平·模拟预测)如图,为了测量两个路灯之间的距离,小明在夜晚由路灯AB走向路灯CD,当他走到点E时,发现身后他头顶部F的影子刚好接触到路灯AB的底部A处,当他向前再步行15m到达G点时,发现身前他头顶部H的影子刚好接触到路灯CD的底部C处,已知小明同学的身高是1.7m,两个路灯的高度都是8.5米,则AC=_____m.18.(2022·北京房山·二模)如图,在ABC 中,点D 在AB 上(不与点A ,B 重合),过点D 作DE BC ∥交AC 于点E ,若1=AD DB ,则AE AC =__________.三、解答题19.(2022·北京昌平·模拟预测)如图,正方形ABCD 的边长为1.对角线AC 、BD 相交于点O ,P 是BC 延长线上的一点,AP 交BD 于点E ,交CD 于点H ,OP 交CD 于点F ,且EF 与AC 平行.(1)求证:EF △BD .(2)求证:四边形ACPD 为平行四边形.(3)求OF 的长度.20.(2022·北京十一学校一分校模拟预测)如图1,在ABC ∆中,90,,BAC AB AC BD CD ∠=︒=⊥于点D ,连接,AD 在CD 上截取CE ,使,CE BD =连接AE()1直接判断AE 与AD 的位置关系()2如图2,延长,AD CB 交于点F ,过点E 作//EG AF 交BC 于点G ,试判断FG 与AB 之间的数量关系,并证明;()3在()2的条件下,若2,AE EC ==EG 的长.21.(2022·北京西城·一模)已知:如图,线段AB .求作:点C ,D ,使得点C ,D 在线段AB 上,且AC =CD =DB .作法:△作射线AM ,在射线AM 上顺次截取线段AE =EF =FG ,连接BG ;△以点E 为圆心,BG 长为半径画弧,再以点B 为圆心,EG 长为半径画弧,两弧在AB 上方交于点H ; △连接BH ,连接EH 交AB 于点C ,在线段CB 上截取线段CD =AC .所以点C ,D 就是所求作的点.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:△EH =BG ,BH =EG ,△四边形EGBH 是平行四边形.(______)(填推理的依据)△EH BG ∥,即EC BG ∥.△AC △______=AE △AG .△AE =EF =FG ,△AE =______AG . △13AC AB CD ==. △13DB AB =.△AC =CD =DB .22.(2022·北京昌平·模拟预测)数学课上,李老师出示了这样一道题目:如图,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N .当CP =6时,EM 与EN 的比值是多少?经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DE FC EP=,因为DE =EP ,所以DF =FC .可求出EF 和EG 的值,进而可求得EM 与EN 的比值.(1)请按照小明的思路写出求解过程.(2)小东又对此题作了进一步探究,得出了DP =MN 的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.23.(2022·北京房山·二模)如图1,在四边形ABCD 中,ABC BCD ∠=∠,过点A 作AE DC ∥交BC 边于点E ,过点E 作EF AB ∥交CD 边于点F ,连接AF ,过点C 作CH AF ∥交AE 于点H ,连接BH .(1)求证:ABH EAF △≌△;(2)如图2,若BH 的延长线经过AF 的中点M ,求BE EC的值. 24.(2021·北京海淀·一模)如图,四边形ABCD 是矩形,点E 是边BC 上一点,AE ED ⊥.(1)求证:ABE ECD ∽△△;(2)F 为AE 延长线上一点,满足EF EA =,连接DF 交BC 于点G .若2,1AB BE ==,求GC 的长.25.(2020·北京顺义·一模)已知,如图,△ABC 是等边三角形.(1)如图1,将线段AC 绕点A 逆时针旋转90°,得到AD ,连接BD ,△BAC 的平分线交BD 于点E ,连接CE .△求△AED 的度数;△用等式表示线段AE 、CE 、BD 之间的数量关系(直接写出结果).(2)如图2,将线段AC 绕点A 顺时针旋转90°,得到AD ,连接BD ,△BAC 的平分线交DB 的延长线于点E ,连接CE .△依题意补全图2;△用等式表示线段AE 、CE 、BD 之间的数量关系,并证明.26.(2020·北京东城·二模)如图,ABC 内接于O ,AB 为直径,作OD AB ⊥交AC 于点D ,延长BC ,OD 交于点F ,过点C 作O 的切线CE ,交OF 于点E(1)求证:EC ED =;(2)如果4OA =,3EF =,求弦AC 的长.27.(2020·北京朝阳·模拟预测)如图△所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG绕点A旋转,如图△所示.△线段DG与BE之间的数量关系是;△直线DG与直线BE之间的位置关系是;(2)探究:如图△所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).参考答案:1.B【分析】所有的等边三角形都相似,且相似比等于其边长比,再利用两个相似三角的面积之比等于其相似比的平方,即可求解.【详解】△△ABC 和△DEF 是两个等边三角形,△ABC DEF △△,且有相似比为:2142AB ED ==, 又△两个相似三角的面积比等于其相似比的平方, △2211()()24ABC DEF AB S ED S ===△△, 故选:B .【点睛】本题考查了相似三角形的基本性质,利用两个相似三角的面积比等于其相似比的平方是解答本题关键.2.C【分析】根据平行四边形的性质和相似三角形的性质与判定即可解决问题.【详解】解:△四边形ABCD 是平行四边形,,//,AB CD AB CD ∴=2,AB AE =2,CD AE ∴=3,BE AB AE AE =+=22,33CD AE BE AE ∴== //,AB CD,CDF EBF ∴,CD DF BE BF∴= 10,BD =设,DF x =则10,BF x =-2,310x x∴=- ()3210,x x ∴=-3202,x x ∴=-4,x ∴=即 4.DF =故选:C.【点睛】本题考查平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C【分析】根据勾股定理求出斜边的长,以60cm长的木条为直角边,设相似的三角形中斜边长为xcm,利用相似三角形的对应边的比相等列分式方程,解方程即可得到答案.【详解】△直角三角形两条直角边分别是30cm,40cm,△斜边50=,△要做一个与其相似的三角形木架,△两个三角形对应边成比例,△直角三角形中斜边最大,△以60cm长的木条为直角边,设相似的三角形中斜边长为xcm,则有2种情况,△3050=60x,解得:100x=,△4050=60x,解得:75x=,△另两边中长度最大的一边最多可达到100cm,故选:C.【点睛】本题考查了相似三角形的性质及勾股定理,利用相似三角形的性质即相似三角形的对应边的比相等进行计算是解题的关键.4.A【分析】根据相似三角形的面积比等于相似比的平方进行解答.【详解】两个相似三角形的相似比为1:4,相似三角形面积的比等于相似比的平方是1:16,故正确的答案为:A【点睛】本题考查对相似三角形性质的理解,相似三角形面积的比等于相似比的平方.5.D【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF中,DF=FG∴=1CG∴=CGCD∴=△矩形DCGH为黄金矩形故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.6.C【分析】根据在同一时刻物高和影长比值相同,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【详解】解:延长AC交BD延长线于点E,根据物高与影长成正比得:109 CDDE.=,△CD=1,△1109 DE.=解得:DE=0.9,则BE=2.7+0.9=3.6米,△AB△CD,△△ABE△△CDE,△AB BE CD DE=,即36 109 AB..=,解得:AB=4,即树AB的高度为4米,故选:C.【点睛】本题考查了相似三角形的性质,解决本题的关键是作出辅助线得到AB的影长.7.D【分析】设正方形ABCD 的边长为a ,CH=x ,DE=y ,则m=4a ,根据折叠的性质可得△EHG=△A=90°,EH=AE ,可得EH=a-y ,DH=a-x ,根据直角三角形两锐角互余的关系可得△DEH=△CHG ,可证明△DEH△△CHG ,根据相似三角形的性质可用a 、x 、y 表示出CG 、HG 的长,在Rt△DEH 中利用勾股定理可得x 2=2a(x-y),表示出△CHG 的周长,进而可得答案.【详解】设正方形ABCD 的边长为a ,CH=x ,DE=y ,则m=4a ,△将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合,△△EHG=△A=90°,EH=AE ,△DH=a-x ,EH=a-y ,△△CHG+△DHE=90°,△DEH+△DHE=90°,△△CHG=△DEH ,△△D=△C=90°,△△DEH△△CHG , △CH CG HG DE DH EH==,即:x CG HG y a x a y ==--, △CG=()x a x y -,HG=()x a y y -, 在Rt△DEH 中,EH 2=DE 2+DH 2,即(a-y)2=y 2+(a-x)2,△x 2=2a(x-y), △n=CH+HG+CG=x+()x a x y -+()x a y y -=22ax x y-=2a , △m n =42a a=2, 故选:D .【点睛】本题考查翻折变换及正方形的性质及相似三角形的判定与性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.8.C【分析】设正方形的边长为(0)a a >,先根据正方形的性质得出,CB CD AB a BE a x ====-,90B BCD ∠=∠=︒,再根据矩形的性质得出90ECF F ∠=∠=︒,从而可得DCF ECB ∠=∠,然后根据相似三角形的判定与性质可得2CE CF CD CB a ⋅=⋅=,由此即可得出答案.【详解】设正方形的边长为(0)a a >四边形ABCD 是正方形,AE x =90B BCD ∴∠=∠=︒,,CB CD AB a BE a x ====-四边形ECFG 是矩形90ECF F ∴∠=∠=︒90DCF DCE ECB DCE ∴∠+∠=∠+∠=︒DCF ECB ∴∠=∠又90F B ∠=∠=︒CDF CEB ∴~CD CF CE CB∴=,即2CE CF CD CB a ⋅=⋅= 则矩形ECFG 的面积2y CE CF a =⋅=因此,y 与x 之间是函数关系,且当x 增大时,y 一直保持不变故选:C .【点睛】本题考查了矩形与正方形的性质、相似三角形的判定与性质、函数等知识点,利用矩形与正方形的性质正确找出两个相似三角形是解题关键.9.C【详解】分析:根据题意容易得到△CDE△△AEB ,再根据相似三角形的性质解答即可.详解:如图:△根据入射角与反射角相等可知,△CED=△AEB,故Rt △CDE△Rt △AEB , △=CD DE AB BE ,即1.52=16AB , 解得AB=12m.故选C.点睛:本题考查相似三角形性质的应用,解题的关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.10.1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中, AD BC ∥ ,90ABC ∠=︒,△14AE AF BC FC ==,4BC ==, △144AE =, △1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键. 11. 2△3 12【分析】设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得()41253x x +=-+,然后求解即可,由题意可得第二天开工时,由上一问可得方程为()()421233m n ++=++,进而求解即可得出答案.【详解】解:设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得: ()41253x x +=-+,解得:2x =,△分配到B 生产线的吨数为5-2=3(吨),△分配到A 生产线的吨数与分配到B 生产线的吨数的比为2△3;△第二天开工时,给A 生产线分配了()2m +吨原材料,给B 生产线分配了()3n +吨原材料,△加工时间相同,△()()421233m n ++=++, 解得:12m n =, △12m n =; 故答案为2:3,12.【点睛】本题主要考查一元一次方程、二元一次方程的应用及比例的基本性质,熟练掌握一元一次方程的应用及比例的基本性质是解题的关键.12.4【分析】由DE△BC ,推出32AD AE DB EC == , 可得EC=25AC , 由此即可解决问题. 【详解】解:△DE△BC , △32AD AE DB EC ==, △AC=10,△EC=25AC =2105⨯=4, 故答案为4.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13【分析】根据正方形的性质得到AB BC AD ==,90A ABC ∠=∠=,根据勾股定理得到BE【详解】△四边形ABCD 是正方形,△AB BC AD ==,90A ABC ∠=∠=, △113AE AD ==, △3AB BC AD ===,△BE△CF BE ⊥,△90CFB ∠=,△90ABE CBF CBF BCF ∠+∠=∠+∠=,△∠=∠ABE BCF ,△ABEFCB ∆∆, △AE BE BF BC =,△1BF =,△BF =【点睛】本题考查了正方形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键. 14.△ACD =△B (答案不唯一,或△ADC =△ACB 或=AD AC AC AB 均可) 【分析】根据相似三角形的判定条件解答即可.【详解】解:△△A =△A△添加△ACD =△B 或△ADC =△ACB 或=AD AC AC AB. 故答案是:△ACD =△B 或△ADC =△ACB 或=AD AC AC AB (答案不唯一). 【点睛】本题主要考查了相似三角形的判定.两边对应成比例且夹角相等,两个三角形相似;两角对应相等,两个三角形相似.15.3.【分析】利用三角形中位线定理以及相似三角形的性质解决问题即可.【详解】△P ,Q 分别为AB ,AC 的中点,△//PQ BC ,12PQ BC =, △APQ ABC ∆∆∽, △211()24APQABC S S ∆∆==, △=1APQ S ∆,△=4ABC S ∆,△3ABC APQ PBCQ S S S ∆∆=-=四边形,故答案为:3.【点睛】本题考查相似三角形的判定和性质,三角形中位线定理等知识,熟练掌握基本知识是解题的关键.16.3【分析】证明△AFD △△EBA ,得到AF AD DF BE AE AB==,求出AF ,即可求出AE ,从而可得EF . 【详解】解:△四边形ABCD 为矩形,△AB =CD =3,BC =AD =10,AD BC ∥,△△AEB =△DAF ,△△AFD △△EBA , △AF AD DF BE AE AB==, △DF =6,△8AF , △81063BE AE ==, △AE =5,△EF =AF -AE =8-5=3,故答案为:3.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,解题的关键是掌握相似三角形的判定方法.17.25【分析】先证明△AEF△△ACD 得到1.78.5=15AE AE CG ++ ,即AE+15+CG =5AE ,再证明△CGH△△CAB 得到1.78.5=15CG AE CG++,即AE+15+CG =5CG ,然后解关于AE 、CG 的方程组,从而得到AC 的长. 【详解】解:△EF△CD ,△△AEF△△ACD , △EF CD =AE AC ,即1.78.5=15AE AE CG++,即AE+15+CG =5AE , △GH△AB ,△△CGH△△CAB , △GH AB =CG CA ,即1.78.5=15CG AE CG ++,即AE+15+CG =5CG , △AE =CG =5,△AC =5+15+5=25(m ).故答案为25.【点睛】本题考查相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.18.12 【分析】利用平行线分线段成比例定理的推论得出1AE AD EC DB ==, 即可求解. 【详解】解:△ ABC 中,DE BC ∥,1=AD DB, △1AE AD EC DB ==, △AE EC =, △122AE AE AE AC AE EC AE ===+, 故答案为:12.【点睛】本题考查平行线分线段成比例定理的推论,解题关键是牢记“平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例”.19.(1)见解析;(2)见解析;(3 【分析】(1)根据正方形的性质求出AC △BD ,即可得出答案;(2)根据平行线得出DE OE =PE AE,求出AC △DP ,根据平行四边形的判定推出即可;(3)求出OE和EF的长,再根据勾股定理求出即可.【详解】(1)证明:△四边形ABCD是正方形,△AC△BD,△EF△AC,△EF△BD;(2)证明:△EF△AC,△PEPA=EFOA,DEDO=EFOC,△四边形ABCD是正方形,△AD△CP,OA=OC,△PEPA=DEDO,即PEAE=DEOE,△AO△DP,△AD△CP,△四边形ACPD为平行四边形;(3)解:由勾股定理得:AC=BD △四边形ACPD为平行四边形,△CP=AD=BC,△ADPB=12,△AD△BP,△DEBE=ADBP=12,△DE=13BD,OE=OD﹣DE△DO =12BD △△DEF =△DOC =90°﹣△EDF =45°,△△DFE =45°,△EF =DE ,在Rt△OEF 中,由勾股定理得:OF 【点睛】本题考查了正方形的性质,平行四边形的判定和性质,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.20.(1)AE AD ⊥;(2)FG =,证明见解析;(3)1【分析】(1)证明()ACE ABD SAS ∆≅∆,由全等三角形的性质得出CAE BAD ∠=∠,再根据余角的性质得到90DAE BAE BAD ∠=∠+∠=︒即可判断;(2)过点B 作BM BD ⊥交DF 于点M ,证得BDM ∆为等腰直角三角形,则BD BM =,证明()CEG BMF AAS ∆≅∆,由全等三角形的性质得出CG BF =,由直角三角形的性质可得出结论;(3)设EG FM x ==,则2DF x =+,证明CEG CDF ∆∆∽,由相似三角形的性质得出EG CE DF CD=,则可得出答案.【详解】解:(1)AE AD ⊥;理由如下:如图,DBA DFB AFE ACE ∠+∠=∠+∠,DFB AFE ∠=∠,DBA ACE ∴∠=∠,CE BD =,AB AC =,()ACE ABD SAS ∴∆≅∆,CAE BAD ∴∠=∠,△90BAC BAE CAE ∠=∠+∠=︒,△90DAE BAE BAD ∠=∠+∠=︒,即AE AD ⊥,故答案为:AE AD ⊥;(2)FG ;过点B 作BM BD ⊥交DF 于点M ,ACE ABD ∆≅∆,CAE BAD ∴∠=∠,AE AD =,CE BD =,90BAD BAE ∴∠+∠=︒,45ADE ∴∠=︒,BD CD ⊥,45BDM ∴∠=︒,BDM ∴∆为等腰直角三角形,BD BM ∴=,CE BM ∴=,//EG AF ,EGC MFB ∴∠=∠,,90,AB AC BAC =∠=︒45FBM ABD ∴∠+∠=︒,又45GCE ACE ∠+∠=︒,FBM GCE ∴∠=∠,()CEG BMF AAS ∴∆≅∆,CG BF ∴=,CG BG BF BG ∴+=+,FG BC ∴=, 2BC =,FG ∴=;(3)2AD AE ==,ADE ∆为等腰直角三角形,DE ∴= 2CE =,DC ∴=BD CE =2DM ∴=,CEG BMF ∆≅∆,EG FM ∴=,设EG FM x ==,2DF x ∴=+,//EG DF ,CEG CDF ∴∆∆∽, ∴EG CE DF CD =,∴123x x =+, 1x ∴=,经检验:1x =符合题意.1EG ∴=.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,平行线的性质,相似三角形的判定与性质,等腰直角三角形的性质等知识,解题的关键是正确构造全等三角形解决问题.21.(1)见解析;(2)两组对边分别相等的四边形是平行四边形;AB ;13.【分析】(1)根据要求作出图形即可.(2)先证明四边形EGBH 是平行四边形,再通过平行线分线段成比例定理来解决问题.【详解】(1)、补全图形如下图所示:(2)证明:△EH =BG ,BH =EG ,△四边形EGBH 是平行四边形.(两组对边分别相等的四边形是平行四边形)△EH BG ∥,即EC BG ∥.△AC △AB =AE △AG .△AE =EF =FG ,△AE =13AG . △13AC AB CD ==. △13DB AB =.△AC =CD =DB .故答案为:两组对边分别相等的四边形是平行四边形;AB ;13. 【点睛】本题考查基本作图,平行四边形的判定和性质及平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)见解析(2)正确,见解析【分析】(1)过E 作EG △BC 交DC 、AB 分别于F 、G ,结合平行线分线段成比例定理可得:DF DE FC EP =,由DE =EP ,可知DF =FC ,可求出EF 和EG 的值,再利用AB △CD ,可得EM EF EN EG=,进而可求得EM 与EN 的比值;(2)作MH △BC 交AB 于点H ,可得一对直角和一组对应边相等,然后根据AB △CD ,可得△MNH =△CMN ,结合对顶角的性质可证得△DPC =△MNH ,进而可得△DPC △△MNH ,从而有DP =MN .(1)解:过E 作直线GE 平行于BC 交DC ,AB 分别于点F ,G ,(如图1),则DF DE FC EP=,GF =BC =12, △DE =EP ,△DF =FC ,△EF =12CP =162⨯=3,EG =GF +EF =12+3=15, △AB △CD ,△31155EM EF EN EG ===; (2)解:正确,证明:作MH △BC 交AB 于点H ,(如图2),则MH =CB =CD ,△MHN =90°,△△DCP =180°﹣90°=90°,△△DCP =△MHN ,△AB △CD ,△△MNH =△CMN ,△NE 是DP 的垂直平分线,△△CMN =△DME =90°﹣△CDP ,△△DPC =90°﹣△CDP ,△△DPC =△MNH ,△△DPC △△MNH (AAS ),△DP =MN .【点睛】本题考查了正方形的性质,平行线分线段成比例定理、平行线的性质、全等三角形的判定和性质等知识.关键是作出合适的辅助线,使所求的线段在一个三角形中.23.(1)证明见解析(2)1【分析】(1)由ABC BCD ∠=∠, AE DC ∥可证明AB =AE ,再根据EF AB ∥证得△BAH =△AEF ,△ABC =△FEC ,进而得到EF =CF ,再证明四边形AHCF 是平行四边形得到AH =CF =EF ,再利用SAS 证明两三角形全等即可;(2)设CF =EF =AH =a ,BE CE=k ,证明△ABE △△FEC 得出AB =AE =ak ,再证明△ABM △△FGM (AAS )证得AB =GF =ak ,则GE =ak +a ,再证明△ABH △△EGH 得到AB AH EG EH =即111k k k =+-,解方程求出k 值即可解答.(1)证明:△ABC BCD ∠=∠, AE DC ∥,△△AEB =△BCD =△ABC ,△AB =EA ,△EF AB ∥,△△BAH =△AEF ,△ABC =△FEC ,△EF =CF ,△AE △CD ,CH △AF ,△四边形AHCF 是平行四边形,△CF =AH ,即AH =EF ,在△ABH 和△EAF 中,AB EA BAH AEF AH EF =⎧⎪∠=∠⎨⎪=⎩,△△ABH △△EAF (SAS );(2)解:延长BM 、EF 交于点G ,△AB △EF ,AE △CD ,△△ABE =△FEC ,△AEB =△FCE ,△ABM =△FGM ,△△ABE △△FEC , △BE AB AE EC FE CF==, 由(1)知CF =EF =AH ,AB =AE ,设CF =EF =AH =a ,BE EC=k ,则AB =AE =ak , △点M 为AF 的中点,△AM =MF ,在△ABM 和△FGM 中,ABM FGM AMB FMG AM MF ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABM △△FGM (AAS ),△AB =GF =ak ,则GE =ak +a ,△AB △EF ,△△ABH =△EGH ,△BAH =△GEH ,△△ABH △△EGH , △AB AH EG EH =, △ak a ak a ak a =+-即111k k k =+-,解得:k =1k =1-,经检验,k =1 △BEEC=k =1【点睛】本题考查平行线的性质、等腰三角形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、解分式方程等知识,熟练掌握相关知识的联系与运用是解答的关键.24.(1)证明见解析 ;(2) 32. 【分析】(1)由矩形的性质和垂直的定义,得到90B C ∠=∠=︒,BAE CED ∠=∠,即可得到结论成立; (2)由相似三角形的性质和矩形的性质,求出4EC =,5BC =,再证明AFD EFG ∽,再利用相似三角形的性质,即可求出GC 的长.【详解】(1)证明:△四边形ABCD 是矩形,△90B C ∠=∠=︒.△90BAE AEB ∠+∠=︒.△AE ED ⊥,△90AED ∠=︒.△90AEB CED ∠+∠=︒.△BAE CED ∠=∠.△ABE ECD ∽.(2)解:△由(1)ABE ECD ∽△△, △AB EC BE CD=. △矩形ABCD 中,2,1CD AB BE ===,△4EC =.△5BC BE EC =+=.△//AD BC ,△AFD EFG ∽. △AD AF EG EF=. △AE EF =,△2AF EF =. △2AD EG =,即115222EG AD BC ===. △32CG EC EG =-=. 【点睛】本题考查了相似三角形的判定和性质,矩形的性质,余角的性质,以及垂直的定义,解题的关键是熟练掌握相似三角形的判定和性质,正确的进行解题.25.(1)△45°,△2=BD CE ;(2)△见解析,△BD 2CE =-,证明见解析【分析】(1)△证明△AED =△D =15°,△BAE =30°,再利用三角形的外角的性质即可解决问题.△结论:2=BD CE .作CK △BC 交BD 于K ,连接CD .证明BE =EK ,DK AE 即可解决问题.(2)△根据要求画出图形即可.△结论:BD 2CE -.过点A 作AF △AE ,交ED 的延长线于点F (如图3),利用全等三角形的性质以及等腰直角三角形的性质解决问题即可.【详解】(1)解:△如图1中,△△ABC是等边三角形,△AB=AC,△BAC=60°,△AE平分△BAC,△△BAE=1△BAC=30°,2由旋转可知:AD=AC,△CAD=90°.△AB=AD,△BAD=150°,△△ABD=△D=15°,△△AED=△ABD+△BAE=45°.△结论:2BD CE.=理由:作CK△BC交BD于K,连接CD.△AB=AC,△BAE=△CAE,AE=AE,△△AEB△△AEC(SAS),△BE=EC,△AEB=△AEC=135°,△△BEC=90°,△△EBC=△ECB=45°,△△BCK=90°,△△CKB=△CBE=45°,△CB=CE,△CE△BK,△BE=EK,△△ADC=45°,△ADB=15°,△△CDK=△CAE=30°,△△CKD=△AEC=135°,△△CDK△△CAE,△DKAE=CDAC,△DK,△BD=BK+DK=2BE AE.(2)解:△图形如图2所示:△结论:BD2CE-.理由:过点A作AF△AE,交ED的延长线于点F(如图3).△△ABC是等边三角形,△AB=AC,△BAC=60°,△AE平分△BAC,△△1=12△BAC=30°,由旋转可知:AD=AC,△CAD=90°,△AB=AD,△2=△CAD﹣△BAC=30°,△△3=△4=75°,△△5=△4﹣△1=45°,△AF△AE,△△F=45°=△5,△AF=AE,△EF,△△6=△EAF﹣△1﹣△2=30°,△△6=△1=30°,又△△F=△5=45°,AD=AB,△△ADF△△ABE(SAS),△DF=BE,△AB=AC,AE平分△BAC,△AE垂直平分BC,△CE=BE,△BD=EF﹣DF﹣BE,△BD﹣2CE.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.26.(1)见解析;(2)AC=【分析】(1)连接OC,由切线的性质可证得△ACE+△A=90°,又△CDE+△A=90°,可得△CDE=△ACE,则结论得证;(2)先根据勾股定理求出OE,OD,AD的长,证明Rt△AOD△Rt△ACB,得出比例线段即可求出AC的长.【详解】(1)证明:连接OC,△CE与O相切,OC是O的半径,△OC CE⊥,△90OCA ACE ︒∠+∠=.△OA OC =,△A OCA ∠=∠,△90ACE A ︒∠+∠=.△OD AB ⊥,△90ODA A ︒∠+∠=.△CDE ACE ∠=∠,△EC ED =.(2)△AB 为直径,△90ACB ∠=.在Rt DCF ∆中,90DCE ECF ︒∠+∠=,又DCE CDE ∠=∠,△90CDE ECF ︒∠+∠=,又△90CDE F ︒∠+∠=,△ECF F ∠=∠,△EC EF =.△3EF =,△3EC DE ==.在Rt OCE ∆中,4OC =,3CE =,△5OE =.△2OD OE DE =-=.在Rt OAD ∆中,AD =在Rt AOD ∆和Rt ACB ∆中,△A A ∠=∠,△Rt AOD Rt ACB ∆∆∽,△AO AD AC AB =,即4AC =,△AC = 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.27.(1)△BE =DG ,△BE △DG ;(2)数量关系不成立,DG =2BE ,位置关系成立.理由见解析;(3)BG 2+DE 2=25.【分析】(1)先判断出△ABE△△DAG ,进而得出BE=DG ,△ABE=△ADG ,再利用等角的余角相等即可得出结论;(2)先利用两边对应成比例夹角相等判断出△ABE△△DAG ,得出△ABE=△ADG ,再利用等角的余角相等即可得出结论;(3)如图△中,作ET△AD 于T ,GH△BA 交BA 的延长线于H .设ET=x ,A T=y .利用勾股定理,以及相似三角形的性质即可解决问题.【详解】(1)△如图△中,△四边形ABCD 和四边形AEFG 是正方形,△AE =AG ,AB =AD ,△BAD =△EAG =90°,△△BAE =△DAG ,在△ABE 和△DAG 中,AB AD BAE DAG AE AG =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△DAG (SAS ),△BE =DG ;△如图2,延长BE 交AD 于T ,交DG 于H .由△知,△ABE △△DAG ,△△ABE =△ADG ,△△ATB +△ABE =90°,△△ATB +△ADG =90°,△△ATB =△DTH ,△△DTH +△ADG =90°,△△DHB =90°,△BE△DG,故答案为:BE=DG,BE△DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图△中,延长BE交AD于T,交DG于H.△四边形ABCD与四边形AEFG都为矩形,△△BAD=△DAG,△△BAE=△DAG,△AD=2AB,AG=2AE,△ABAD=AEAG=12,△△ABE△△ADG,△△ABE=△ADG,BEDG =12,△DG=2BE,△△ATB+△ABE=90°,△△ATB+△ADG=90°,△△ATB=△DTH,△△DTH+△ADG=90°,△△DHB=90°,△BE△DG;(3)如图△中,作ET△AD于T,GH△BA交BA的延长线于H.设ET=x,AT=y.。

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。

2022年人教版九年级数学下册第二十七章-相似专题测评试题(含答案解析)

2022年人教版九年级数学下册第二十七章-相似专题测评试题(含答案解析)

人教版九年级数学下册第二十七章-相似专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在▱ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB=4,BC=6,CE=1,则CF的长为()A B.1.5 C D.12、如图,已知矩形ABCD中,AB=3,BE=2,EF⊥B C.若四边形EFDC与四边形BEFA相似而不全等,则CE的值为()A.92B.6 C.152D.93、在ABC中,D,E分别是边AB,AC上的两个点,并且DE∥BC,AD:BD=3:2,则ADE与四边形BCED的面积之比为()A .3:5B .4:25C .9:16D .9:254、如图,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,3S :2S 的值为( )A .12 B .23C D 3525、若578a b ck ===且323a b c -+=,则243a b c +-的值是( ) A .14 B .42 C .7 D .1436、下列图形中,不是位似图形的是( )A .B .C .D .7、已知32a b =,那么下列等式中正确的是( )A .53a b b += B .13a b b -= C .23a b = D .23ab =8、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则BEEC的值为( )A .13B .14C .15D .1259、如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A .2:3B .4:9C D .16:8110、如图,DE ∥BC ,则下列式子正确的是( )A .=AB BDEC AEB .AD DEAB BC= C .=AE ABEC ADD .AD DEAB BC=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=6,BC275=,点N在边AD上,ND=2,点M在边BC上,BM=1,点E在DC的延长线上,连接AE,过点E作EF⊥AE交直线MN于点F,当AE=EF时,DE的长为 _____.2、如果5a=4b,那么ba=____.3、如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且54OEEA=,则FGBC=________.4、如图,在矩形ABCD中,AB=30,BC=40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将△OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F.若△PDF为直角三角形,则PD的长为______.5、如图,在ABCD □中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果:2:3DE EC =,那么:DEF ABF S S =△△____________.三、解答题(5小题,每小题10分,共计50分)1、如图,O 为坐标原点,B ,C 两点坐标分别为()3,1-,()2,1.(1)以O 为位似中心在y 轴左侧将OBC 放大两倍,并画出图形; (2)分别写出B ,C 两点的对应点B ',C '的坐标;(3)已知(),M x y 为OBC 内部一点,写出M 的对应点M '的坐标. 2、如图,在平面直角坐标系中,点A 、点B 的坐标分别为()1,3,()3,2.(1)画出OAB绕点B顺时针旋转90︒后的O A B''△;'''';(2)以点B为位似中心,相似比为2:1,在x轴的上方画出O A B''△放大后的O A B3、在等边三角形ABC中,点D是边AB的中点,过点D作DE∥BC交AC于点E,点F在BC边上,连接DF,EF.(1)如图1,当DF是∠BDE的平分线时,若AE=2,求EF的长;(2)如图2,当DF⊥DE时,设AE=a,则EF的长为(用含a的式子表示).4、如图,在Rt△ABC中,∠C=90°,BC=A=60°,四边形DEFG是△ABC的内接矩形,顶点D、G分别在边AC、BC上,点E、F在边AB上,设AE=x,DG=y.(1)求y与x之间的函数关系式;(2)当矩形DEFG 的面积S 取得最大值时,求△CDG 与△BFG 的相似比.5、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC . (1)作出ABC 关于x 轴对称的A B C ''';(2)以坐标原点为位似中心在图中的网格中作出A B C '''的位似图形A B C ''''''△,使A B C '''与A B C ''''''△的位似比为1:2;(3)若ABC 的面积为3.5平方单位,求出A B C ''''''△的面积.---------参考答案----------- 一、单选题 1、D 【解析】 【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CEOM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:设CE =x ,∵四边形EFDC 与四边形BEFA 相似, ∴AB CEBE EF=, ∵AB =3,BE =2,EF =AB , ∴323x =, 解得:x =4.5, 故选:A . 【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC 与四边形BEFA 相似得到比例式. 3、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.故选:C. 【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方. 4、C 【解析】 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到512AEAB 和BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴512AE AB,BE AE =∴AE AB ==,∴2BE a ==⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,22S BE BC =⋅=,∴)222232S a a ==,∴)2232:2S S a ==. 故选C .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.5、D【解析】【分析】将,,a b c 用k 表示出来,得到5,7,8a k b k c k ===,再将求出,,a b c 的结果与323a b c -+=联立求出,,a b c 的值 ,最后把所求的,,a b c 代入所求的代数式即可求解.【详解】 解:578a b c k ===, 5,7,8a k b k c k ∴===,323a b c -+=,352783k k k ∴⨯-⨯+=, 解,得13k =,578,333a b c ∴==,= 578142432433333a b c ∴+-=⨯+⨯-⨯=, 故选:D .【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示,,a b c 是解题的关键.6、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.【详解】解:根据位似图形的概念,A 、B 、C 三个图形中的两个图形都是位似图形;D 中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形.故选D .【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.7、C【解析】【分析】由题意设()30,a k k =≠ 则2,b k = 再逐一代入各选项进行计算与检验即可得到答案.【详解】 解: 32a b =, 设()30,a k k =≠ 则2,b k =∴55,22a b k b k +==故A 不符合题意; 321,22a b k k b k --==故B 不符合题意; 263,a k b ==故C 符合题意;32,,2233a k b k ==则,23a b ≠故D 不符合题意; 故选C【点睛】本题考查的是比例的基本性质,掌握“设参数的方法解决比例问题”是解本题的关键.8、B【解析】【分析】根据∥DE AC 可得BED BCA ∽△△,DOE COA ∽,再根据相似三角形的性质可得BE DE BC AC=和DOE △与COA 的相似比为1:5,进而可得15BE BC =,最后用BC 表示EC 即可求出BE EC . 【详解】解:∵∥DE AC ,∴BED BCA ∠=∠,ODE OCA ∠=∠.∵DBE ABC ∠=∠,DOE COA ∠=∠,∴BED BCA ∽△△,DOE COA ∽. ∴BE DE BC AC=. ∵:1:25DOE COA S S =△△,∴DOE △与COA 的相似比为1:5. ∴15DE CA =. ∴15BE BC =. ∴15BE BC =. ∴45EC BC BE BC =-=. ∴14BE EC =.故选:B .【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键.9、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B .【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.10、B【解析】【分析】由题意直接根据平行线所截线段成比例进行分析判断即可.【详解】解:∵DE ∥BC ,∴,ADE ABC AED ACB ==∠∠∠∠,∴ADE ABC , ∴AD DE AE AB BC AC==. 故选:B.【点睛】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.二、填空题1、10415【解析】【分析】过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L ,先证明四边形NLGD 是矩形,得到LG =ND =2,∠DNL =90°,NL =DG ,再证明四边形NHCD 是矩形,得到HH =CD =6,CH =ND =2,则125MH BC BM CH =--=;然后证明△EFG ≌△AEF 得到FG =DE ,275GE AD BC ===,则275NL DG DE EG DE ==+=+,设=DE FG x =,则2FL FG LG x =-=-,275NL x =+,证明△NMH ∽△NFL ,的MH NH FL NL=,即12652725x x =-+,由此求解即可. 【详解】解:如图所示,过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L , ∴∠NLG =∠G =90°,∵四边形ABCD 是矩形,∴CD =AB =6,∠D =∠BCD =90°,AD BC =,∴四边形NLGD 是矩形,∴LG =ND =2,∠DNL =90°,NL =DG ,∴四边形NHCD是矩形,∴HH=CD=6,CH=ND=2,∴125 MH BC BM CH=--=;∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEG=90°,又∵∠FEG+∠EFG=90°,∴∠EFG=∠AED,又∵AE=EF,∠D=∠G=90°,∴△EFG≌△AEF(AAS),∴FG=DE,275 GE AD BC===,∴275 NL DG DE EG DE==+=+,设=DE FG x=,则2FL FG LG x=-=-,275 NL x=+,∵∠NHM=∠NLF=90°,∠MNH=∠FNL,∴△NMH∽△NFL,∴MH NHFL NL=,即12652725x x=-+,解得10415x=,∴10415 DE=,故答案为:104 15.【点睛】本题主要考查了矩形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,解题的关键在于能够正确作出辅助线求解.2、5 4【解析】【分析】由5a=4b,结合比例的基本性质即可求出ba的值.【详解】解:∵5a=4b,∴54ba.故答案为:54.【点睛】本题考查的是比例的基本性质,掌握比例的基本性质是解题的关键.3、59【解析】【分析】 利用位似的性质得到FG OF OE BC OB OA ==,然后根据比例的性质求解. 【详解】解:∵四边形ABCD 与四边形EFGH 位似,其位似中心为点O , ∴FG OF OE BC OB OA ==, ∵54OE EA =, ∴55549FG BC ==+, 故答案为:59.【点睛】本题考查了位似变换:位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.4、5或252 【解析】【分析】分情况进行讨论,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,先证△DHO ∽△DAB ,得到1=2OH HD OD AB AD BD ==,求出1152OH AB ==,1202HD AD ==,证明∠HOP =∠HPO =45°,得到OH =PH =15,则PD =HD -PH =5;当∠PFD =90°时,先求出50BD =,得到11=2522OA OB OC OD AC BD =====,从而得到∠DAO =∠ODA ;证明△OFE ∽△BAD ,推出1152OF AB ==,则10DF OD OF =-=,最后证明△PDF ∽△BDA ,则12542PD BD ==. 【详解】解:如图1所示,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∴∠HPF =90°,∵四边形ABCD 是矩形,∴BD =2OD ,∠BAD =∠OHD =90°,AD =BC =40,∴OH ∥AB ,∴△DHO ∽△DAB , ∴1=2OH HD OD AB AD BD ==, ∴1152OH AB ==,1202HD AD ==, 由折叠的性质可得:1==452HPO FPO HPF ∠=∠︒∠,∴∠HOP =45°,∴∠HOP =∠HPO =45°,∴OH =PH =15,∴PD =HD -PH =5;如图2所示,当∠PFD =90°时,∴∠OFE=90°,∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=30,∴50BD=,∴11=2522OA OB OC OD AC BD=====,∴∠DAO=∠ODA,由折叠的性质可知:AO=EO=25,∠PEO=∠DAO=∠ODA,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴12 OF OEAB BD==,∴1152OF AB==,∴10DF OD OF=-=,∵∠PFD=∠BAD,∠PDF=∠BDA,∴△PDF∽△BDA,∴14 PD DFBD DA==,∴12542 PD BD==,∴综上所述,当△PDF为直角三角形,则PD的长为5或252,故答案为:5或252.【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.5、4:25##425 【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB , ∴2()DEF ABF S DE S AB=. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴:425DEF ABF S S =:△△ 故答案为:4:25或425 . 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.三、解答题1、(1)画图见解析;(2)点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)点M'的坐标为(-2x,-2y)【解析】【分析】(1)利用位似变换的性质分别作出B、C的对应点B',C',然后顺次连接O,B',C'即可;(2)根据(1)中所作图形即可得到B',C'两点的坐标;(3)根据位似图形上对应点的坐标的横纵坐标对应比相同进行求解即可.【详解】解:(1)如图所示,△OO′O′即为所求;(2)如图所示,点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)∵△OO′O′是△OBC以O为位似中心,位似比为2的对应图形,点M(x,y)为△OBC内部一点,∴点M的对应点M'的坐标为(-2x,-2y).【点睛】本题主要考查了画位似图形和求位似图形上的对应点的坐标,解题的关键在于能够熟练掌握位似图形的相关知识.2、(1)见解析;(2)见解析【解析】【分析】(1)找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)延长OO′至O″,OO′至O″,使得OO″=2OO′,OO″=2OO′,连接O″O″,则''''即为所求O A B【详解】(1)如图,找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)如图,延长OO ′至O ″,OO ′至O ″,使得OO ″=2OO ′,OO ″=2OO ′,连接O ″O ″,则O A B ''''【点睛】本题考查了画旋转图形,在平面直角坐标系中画位似图形,掌握旋转的性质和位似图形的性质是解题的关键.3、(1)EF =2(2)72【解析】【分析】(1)根据DE ∥BC 证明ADE 是等边三角形,再根据D 是AB 中点,可证明BFD 是等边三角形,在证明DEF 是等边三角形,从而求得EF =2,(2)过点A 作AM 垂直BC 于点M ,可证DBF ∽ABM ,由相似可求出DF ,在利用勾股定理即可求出EF .【详解】解:(1)∵ABC 是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∴∠A=∠ADE=60°,∴ADE是等边三角形,∴AD=DE=2,∵D是AB中点,∴BD=AD=2,∵DF平分∠BDE,∴∠BDF=∠EDF=12∠BDE=12(180°-60°)=60°,又∵∠B=60°,∴BFD是等边三角形,∴DF=BD=2,∵DF=DE=2,∠EDF=60°,∴DEF是等边三角形,∴EF=DE=DF=2;(2)过点A作AM垂直BC于点M,∵DE∥BC,DF⊥DE,∴∠BFD=∠FDE=90°,∵∠DFB=∠AMB=90°,又∵∠B=∠B,∴DBF∽ABM,∵D为AB中点,∴1=2 DB DFAB AM,∴DF=12AM,∵AM是等边三角形BC边上的高,∴M是BC的中点,∴BM=12BC=a,∴AM,∴DF=12AM,∴在Rt DEF △中,EF 32a a (). 【点睛】本题主要考查等边三角形的性质和判定,三角形的相似和勾股定理,熟练掌握三角形的相似是解决本题的关键.4、(1)y =8﹣4x ;(2)2√33 【解析】【分析】(1)依据Rt △ABC 中,∠O =90°,OO =4√3,∠O =60°,即可得到AC =4,AD =2AE =2x ,OO =12OO =12O ,再根据CD =AC -AD ,可得12O =4−2O ,进而得出y 与x 之间的函数关系式; (2)依据S =DE ×DG =√3O ×(8−4O )=−4√3(O −1)2+4√3,可得当x =1时,S 最大=4√3,再根据△DCG ∽△GFB ,即可得到OO OO =2√3=2√33,进而得出△CDG 与△BFG 的相似比. 【详解】解:(1)∵Rt △ABC 中,∠C =90°,BC =A =60°,∴AC =4,AD =2AE =2x ,OO =12OO =12O ,∵CD =AC ﹣AD ,∴12O =4−2O ,即y 与x 之间的函数关系式为y =8﹣4x ;(2)∵DE ,∴S =DE ×DG ×(8﹣4x )=﹣x ﹣1)2∴当x =1时,S 最大=此时,GF =DE∴BG =2GF =DG =8﹣4=4,∵∠C =∠BFG =90°,∠DGC =∠B ,∴△DCG ∽△GFB ,∴OO OO =2√3=2√33, ∴△CDG 与△BFG 的相似比为2√33. 【点睛】 本题考查的是相似三角形的判定与性质以及矩形的性质,熟知相似三角形的对应边成比例是解答此题的关键.5、(1)见解析;(2)见解析;(3)14平方单位.【解析】【分析】(1)根据轴对称性质即可画出△ABC 关于x 轴对称的A B C '''; (2)根据位似图形的性质即可画出A B C '''以点O 为位似中心的位似图形A B C ''''''△,A B C '''与A B C ''''''△的位似比为1:2;(3)利用相似三角形的性质计算即可.【详解】解:(1)如图,A B C ''',即为所求作; (2)如图,A B C ''''''△,即为所求作;(3)∵A B C '''与A B C ''''''△的位似比为1:2, ∴A B C '''∽A B C ''''''△,O ′O ′O ″O ″=12, ∴O △O ′O ′O ′O △O ″O ″O ″=(O ′O ′O ″O ″)2=14,∵ABC 的面积为3.5平方单位,即A B C '''的面积为3.5平方单位,∴A B C ''''''△的面积为:2O △O ′O ′O ′=4×3.5=14平方单位.【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

九年级数学上---相似三角形综合练习题(共30小题)

九年级数学上---相似三角形综合练习题(共30小题)

九年级数学上--—相似三角形综合练习题(共30小题)一.解答题:1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.6.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在四边形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明); (3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17、已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1。

数学九年级上册相似试卷【含答案】

数学九年级上册相似试卷【含答案】

数学九年级上册相似试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若两个三角形的对应角相等,则它们是相似的,这句话是否正确?A. 正确B. 错误2. 在ΔABC和ΔDEF中,若AB/DE = BC/EF = AC/DF,则这两个三角形是否相似?A. 相似B. 不相似3. 两个相似三角形的面积比是9:1,它们的边长比是:A. 3:1B. 1:3C. 9:1D. 1:94. 若ΔABC ∽ ΔA'B'C',则以下哪个比例是错误的?A. AB/A'B' = BC/B'C'B. AB/A'B' = AC/A'C'C. AB/A'B' = (BCAC)/(B'C'A'C')D. AB/A'B' = (BC+AC)/(B'C'+A'C')5. 在ΔABC中,AB = 6cm, BC = 8cm, ∠B = 90°,若ΔDEF ∽ ΔABC,且EF = 4cm,则DE的长度是:A. 3cmB. 4cmC. 5cmD. 6cm二、判断题(每题1分,共5分)6. 相似三角形的对应边长之比相等。

()7. 相似三角形的面积比等于对应边长比的平方。

()8. 若两个三角形的对应边成比例,则这两个三角形一定相似。

()9. 在ΔABC中,若AB = AC,则ΔABC是等腰三角形。

()10. 两个全等三角形的面积比一定是1:1。

()三、填空题(每题1分,共5分)11. 在ΔABC和ΔDEF中,若AB/DE = BC/EF = AC/DF = 2/3,则ΔABC与ΔDEF______。

12. 若ΔABC ∽ ΔA'B'C',且AB = 6cm, A'B' = 9cm,则BC与B'C'的长度之比是______。

2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析

2023年人教版九年级数学下册第27章《相似》复习检测卷(一)附答案解析

2023年九年级数学下册第27章《相似》复习检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠AD .∠D =9∠A2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .74.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .108.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()第5题第3题第4题第6题第7题第9题第10题A .22B .23C .33D .3210.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE 交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD 的值为_________.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC =2AB ,探究AE 与BF 的数量关系,并证明你的结论.第10题第11题第16题第12题第13题第15题19.(8分)如图,在四边形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°.(1)求证:AC2=AB·AD;(2)若BC=3,AB=5,求CD的长.20.(8分)如图,在矩形ABCD中,E是AD上一点,连接BE.(1)请用尺规在BE上求作一点P,使得△PCB∽△ABE(不写作法,保留作图痕迹);(2)若AE=3,AB=4,BC=6,求EP的长.21.(8分)如图,在△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.22.(10分)在△ABC中,AB=6,AC=8,点D、E分别在AB、AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).(1)当x=2,y=5时,求证:△AED∽△ABC;(2)若△ADE和△ABC相似,求y与x的函数表达式.23.(10分)如图,在△ABC中,∠ABC=90°,D是斜边AC的中点,连接DB.过点A作AE⊥BD于点F,交BC于点E.(1)求证:EB2=EF・EA;(2)若AB=4,CE=3BE,求AE的长.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.《相似》阶段检测卷(一)考试范围:§27.1图形的相似~27.2相似三角形的判定满分:120分一、选择题(每小题3分,共30分)1.将△ABC 的每条边都扩大3倍得到△DEF ,其中点A 、B 、C 的对应点分别是D 、E 、F ,则∠D 与∠A 的关系为()A .∠D =∠AB .∠D =3∠AC .∠D =6∠A D .∠D =9∠A【答案】A .详解:依题意,△ABC 与△DEF 的三边成比例,∴△ABC ∽△DEF ,∴∠A =∠D ,故选A .2.如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()【答案】C .详解:由两个角分别相等的两个三角形相似,知选项A 和B 中的阴影三角形与原三角形相似,选项D 中,阴影三角形的∠A 的两边分别为4-1=3,6-4=2,∵4623=,∠A =∠A ,∴选项D 中的阴影三角形与原三角形相似.而选项C 中,不能保证∠B 的两边成比例,故选C .3.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E ,B 、D 、F ,AC =8,CE =12,BD =6,则DF 的长为()A .4B .5C .9D .7【答案】C .详解:∵a ∥b ∥c ,∴AC BD CE DF =,即8612DF=,解得DF =9,故选C . 4.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是()A .AD AEAB CE=B .AC AEGF BD=C .BD CEAD AE=D .AG ACAF CE=【答案】C .详解:∵DE ∥BC ,∴BD CE AD AE =,故C 对;AD AEAB AC=,故A 错;AG AE ADAF AC AB==,故D 错;选项B 中的4条线段不成比例,故D 错.故选C .5.如图,在正方形网格上有两个三角形,且△ABC 和△DEF 相似,则∠BAC 的度数为()A .135°B .125°C .115°D .105°【答案】A .详解:∵△ABC 和△DEF 相似,观察角的大小,∠BAC =∠DEF =90°+45°=135°,故选A . 6.如图,△ACP ∽△ABC ,若∠A =100°,∠ACP =20°,则∠ACB 的度数是()A .80°B .60°C .50°D .30°【答案】B .详解:在△ACP 中,∵∠A =100°,∠ACP =20°,∴∠APC =60°.∵△ACP ∽△ABC ,∴∠ACB =∠APC =60°,故选B .7.如图,在□ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为()A .6B .8C .9D .10【答案】D .详解:∵EF ∥AB ,∴EF DEAB DA=,∵DE ∶EA =2∶3,EF =4,∴4223AB =+,∴AB =10,则CD =AB =10,故选D .8.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm 、6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为()A .3cmB .4cmC .4.5cmD .5cm【答案】C .详解:设所求的最长边为xcm ,则592.5x=,解得x =4.5,故选C .9.如图,在矩形ABCD 中,AB =a ,AD =3,按照图中的方式将它分成完全相同的三个矩形,如果每一个小矩形都与矩形ABCD 相似,则a 的值为()A .B .C .D .【答案】C .详解:小矩形的边边分别为13a 和3,∵小矩形与矩形ABCD 相似,∴13a ∶3=3∶a ,解得a =±(舍去负值),∴a =C .10.如图,正方形ABCD 的边长为4,E 是BC 边上一点,过点E 作EF ⊥AE交CD 边于点F ,则CF 的最大值是()A .0.5B .1C .1.5D .2【答案】B .详解:∵∠B =∠C =90°,AE ⊥EF ,可证△ABE ∽△ECF ,∴AB BECE CF=,设BE =x ,则CE =4-x ,∴44x x CF =-,∴CF =14x (4-x )=-14(x -2)2+1,当x =2时,CF 取得最大值1,故选B .二、填空题(每小题3分,共18分)11.如图,添加一个条件__________________,使△ADE ∽△ACB .【答案】答案不唯一,可以填下列中的一个:∠ADE =∠C ,∠AED =∠B ,AD AEAC AB=.12.如图,在□ABCD 中,E 是AD 的中点,EC 交对角线BD 于点F ,则BF ∶FD的值为_________.【答案】2.详解:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD .∵E 为AD 的中点,∴BC =AD =2DE ,由AD ∥BC ,得△BCF ∽DEF ,∴BF ∶FD =BC ∶DE =2.13.如图,在△ABC 中,DE ∥BC ,若AD =1,BD =3,BC =8,则DE 的长为________.【答案】2.详解:∵DE ∥BC ,∴AD DE AB BC =,即1138DE=+,∴DE =2.14.已知654a b c==,且a +b -2c =6,则a 的值为_______.【答案】12.详解:∵654a b c==,故可设a =6x ,b =5x ,c =4x ,代入a +b -2c =6,得:6x +5x -2(4x )=6,解得x =2,∴a =6x =12.15.如图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数ky x=(k >0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OCD ∽△ACO ,则直线OA 的解析式为_______.【答案】y =2x .详解:设B (t ,k t ),则直线OA 的解析式为y =2ktx .∵B 为OA 的中点,∴A (2t ,2k t ),∴D (2t ,2k t ),OC =2t ,CD =2k t ,CA =2kt.∵△OCD ∽△ACO ,∴OC CD AC OC =,∴OC 2=AC ·CD ,∴4t 2=2k t ·2k t,∴k 2=4t 4,∵k >0,∴k =2t 2,∴直线OA 的解析式为y =2x .16.如图,直线l 1∥l 2∥l 3,直线l 1与l 2之间的距离为2,直线l 2与l 3之间的距离为1,等边△ABC 的三个顶点分别在直线l 1、l 2、l 3上,则等边三角形的边长是______.【答案】2213.F详解:过C 作CE ⊥AC 交AB 的延长线于D ,过C 作CF ⊥l 1于F ,交l 3于H ,过E 作ED ⊥FC 交延长线于D ,∵∠AFC =∠ACE=∠CDE =90°,∴△ACF ∽△CED ,∴DE CD CECF AF AC==,∵△ABC 为等边△,∴CE ,AB =BC =BE ,则CD AF .依题意,FH =FC +CH =2+1=3,由AB =BE ,l 1∥l 3∥ED ,得DH =FH =3,CD =4,∴AF CD AC .三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD ∽四边形A 'B 'C 'D ',∠BCD =125°,分别求x 、y 、α的值.【答案】∵四边形ABCD ∽四边形A 'B 'C 'D ',∴∠C ′=∠C =125°,∴∠α=360°-80°-75°-125°=80°,且AD AB BC A D A B B C =='''''',即45316x y==,解得x =20,y =12.答:x =20,y =12,α=80°.18.(8分)如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,AE ⊥BF 于点M ,若BC ,探究AE 与BF 的数量关系,并证明你的结论.【答案】BF AE ,理由如下:∵四边形ABCD 是矩形,∴∠ABC =∠C ,∵AE ⊥BF ,∴∠AMB =∠BAM +∠ABM =90°,又∵∠ABM +∠CBF =90°,∴∠BAM =∠CBF ,∴△ABE ∽△BCF ,∴AE AB BF BC ==,∴BF AE .19.(8分)如图,在四边形ABCD 中,AC 平分∠BAD ,∠ADC =∠ACB =90°.(1)求证:AC 2=AB ·AD ;(2)若BC =3,AB =5,求CD 的长.【答案】(1)∵AC 平分∠BAD ,∴∠DAC =∠CAB .∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB ,∴AD ACAC AB=,∴AC 2=AB ·AD .(2)在Rt △ABC 中,∵BC =3,AB =5,由勾股定理,得AC =4.∵AC 2=AB ·AD ,∴42=5AD ,∴AD =165.在Rt △ADC 中,CD 125.20.(8分)如图,在矩形ABCD 中,E 是AD 上一点,连接BE .(1)请用尺规在BE 上求作一点P ,使得△PCB ∽△ABE(不写作法,保留作图痕迹);(2)若AE =3,AB =4,BC =6,求EP 的长.【答案】(1)如图所示;(2)由勾股定理,得BE 5,由△PCB ∽△ABE ,得BP BC AE BE =,即635BP =,∴BP =185,∴EP =BE -BP =5-185=75.21.(8分)如图,在△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请直接写出另一个与△ABD 相似的三角形,并求出DE 的长.【答案】(1)∵AB =2,BC =4,BD =1,∴AB BDBC AB=,又∠ABD =∠CBA ,∴△ABD ∽△CBA .(2)如图,∵DE ∥AB ,∴△CDE ∽△CBA ,∵△ABD ∽△CBA ,∴△CDE ∽△ABD ,∴DE CD BD AB =,即4112DE -=,∴DE =1.5.22.(10分)在△ABC 中,AB =6,AC =8,点D 、E 分别在AB 、AC 上,连接DE ,设BD =x (0<x <6),CE =y (0<y <8).(1)当x =2,y =5时,求证:△AED ∽△ABC ;(2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.【答案】(1)∵AB =6,BD =x =2,∴AD =4.∵AC =8,CE =y =5,∴AE =3.∴AD AEAC AB=.又∵∠EAD =∠BAC ,∴△AED ∽△ABC .(2)分两种情况,1°当△ADE ∽△ABC 时,AD AE AB AC =,则6868x y --=,∴y =43x (0<x <6).2°当△ADE ∽△ACB 时,AD AE AC AB =,则6886x y --=,∴y =34x +72(0<x <6).23.(10分)如图,在△ABC 中,∠ABC =90°,D 是斜边AC 的中点,连接DB .过点A 作AE ⊥BD 于点F ,交BC 于点E .(1)求证:EB 2=EF ・EA ;(2)若AB =4,CE =3BE ,求AE 的长.【答案】(1)∵AE ⊥BD ,∴∠BFE =90°=∠ABC .又∵∠BEF =∠AEB ,∴△EBF ∽△EAB ,∴BE EFAE BE=,∴EB 2=EF ・EA .(2)在Rt △ABC 中,∵D 为斜边AC 的中点,∴BD =CD ,∴∠DBC =∠C .由(1),得△EBF∽△EAB,∴∠EBF=∠EAB,∴∠C=∠EAB.又∠ABE=∠CBA,∴△BAE∽△BCA,∴AB BEBC AB=,∴AB2=BE·BC.∵AB=4,CE=3BE,∴BC=4BE,42=BE(4BE),∴BE=2.∴AE=.24.(12分)(1)【问题背景】如图1,D是等边△ABC中AB边上的点,以CD为边在CD的上方作等边△CDE,连接AE,求证:BD=AE;(2)【尝试应用】如图2,D是Rt△ABC中AB边上的一点,∠B=90°,∠BAC=30°,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,∠CED=30°,连接AE,请探究BD与AE的数量关系,并说明理由;(3)【拓展创新】如图3,在Rt△ABC中,∠ABC=90°,点D在AB边上,以CD为边在CD的上方作Rt△CDE,使∠CDE=90°,43DE ABCD BC==,DE交AC于F,若AD=3BD,求AFDF的值.【答案】(1)∵△ABC与△CDE均为等边三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∴△BCD≌△ACE,∴BD=AE.(2)AE=2BD,理由如下:∵∠BAC=∠DEC=30°,∠B=∠EDC=90°,∴△ABC∽△EDC,∴BC AC CD CE=.由条件得∠ACB=∠DCE,AC=2BC,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴12BD BCAE AC==,∴AE=2BD.(3)由(2)得,△BCD∽△ACE,∴AE ACBD BC=,∵43DE ABCD BC==,∴53ACBC=,∴53AE ACBD BC==设BD=a,则AD=3BD=3a,AB=4a,BC=3a,CDa,AE=53BD=53a.∵△AFE∽△DFC ,∴53aAF AEDF CD=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图1,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC = 4,CE = 6,BD = 3,则BF =()
A. 7 B. 7.5 C. 8 D. 8.5
2、如图2,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四
个三角形。

若OA∶OC = OB∶OD,则下列结论中一定正确的是( )
A.①和②相似B.①和③相似C.①和④相似D.②和④相似
3、如图3,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F 点,若四边形EFDC与矩形ABCD相似,则AD= ()
A.51
2
-
B.
51
2
+
C.3D.2
4.在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则BF
FD
的值是()
A.1
2
B.
1
3
C.
1
4
D.
1
5
5如图4,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误
..的
是()A.ED DF
EA AB
=B.
DE EF
BC FB
=C.
BC BF
DE BE
=D.
BF BC
BE AE
=
6. 如图5,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=1
4
BC.图中相似三
角形共有()A.1对B.2对C.3对D.4对
7.如图6,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()
A.∠ABD=∠C B.∠ADB=∠ABC C.AB CB
BD CD
=D.
AD AB
AB AC
=
(图7 )(图8 )(图9 )(图10 )
8、如图7,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的
长是;
9、如图8,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设
法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,
EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m;
10、如图9,正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,
当BM= cm时,四边形ABCN的面积最大,最大面积为cm2;
11、如图10,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若
AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为;
12、如图11,在平面直角坐标系中,将两个全等的矩形OABC和OA B C
'''按图示方式进行放置
(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为
(2,1),则经过点D的反比例函数解析式是;
(图13)
13、如图12,A、B是双曲线y=
k
x(k>0)上的点,A、B两点的横坐标分别是a、2a,线段
AB的延长线交x轴于点C,若S△AOC=6.则k= ___________;
14、如图13,y=
8
m
x
-
(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图9,
过点A作直线AC与函数y=
8
m
x
-
的图象交于点B,与x轴交于点C,且AB=2BC,,则点C
的坐标为_____________。

九年级数学辅偏卷
y
x
O
B
C
A
(第12题)
B
A
O
C
y
x
1、如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.
(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由
2、(2013•遵义)如图,在Rt △ABC 中,∠C=90°,AC=4cm ,BC=3cm .动点M ,N 从点C 同时出发,均以每秒1cm 的速度分别沿CA 、CB 向终点A ,B 移动,同时动点P 从点B 出发,以每秒2cm 的速度沿BA 向终点A 移动,连接PM ,PN ,设移动时间为t (单位:秒,0<t <2.5). (1)当t 为何值时,以A ,P ,M 为顶点的三角形与△ABC 相似?
(2)是否存在某一时刻t ,使四边形APNC 的面积S 有最小值?若存在,求S 的最小值;若不存在,请说明理由.
3、已知,如图,直线y =32 x +92 与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k
x 在第一象限内交
于点C , S △AOC =9.
(1)求点A 、B 的坐标; (2)求点C 的坐标,并求反比例函数解析式;
(3)若一次函数与反比例函数的另一个交点P 的纵坐标为-3
2 ,那么请根据图象直接写出使一
次函数的值大于反比例函数的值的x 的取值范围;
(4)双曲线y =k
x 上是否存在一点D ,过D 作DE 垂直x 轴于E ,使得
以O 、D 、E 为顶点的三角形与△AOB 相似.若存在,请求出点D 的坐标.;若不存在,请说明理由.
A B
C
D
E
B A
C
O
x
y
1.如图:已知矩形OABC 的面积为
3
100
,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶
OD =5∶3,则k =__________.
2.如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线k
y x
=交
OB 于D ,且OD :DB=1 :2,若△OBC 的面积等于3,则k 的值( )
A . 等于2
B .等于34
C .等于
245
D .无法确定
4.如图所示,点1A 、2A 、3A 在x 轴上,且32211A A A A OA ==,分别过点1A 、2A 、3A 作y 轴
的平行线,与分比例函数)0(8
>=x x
y 的图像分别交于点1B 、2B 、3B ,分别过点1B 、2B 、3
B 作x 轴的平行线,分别与y 轴交于点1
C 、2C 、3C ,连接1OB 、2OB 、3OB ,那么图中阴影部分的面积之和为 .
6.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数关系式?
4. (1)如图(1),正方形
AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);
(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).
4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B
按逆时针方向旋转,得到△A 1BC 1.
(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;
(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.
图18,已知正方形ABCD 的边长为2,E 是边AB 的中点,操作:将三角尺的直角顶点与点E 重合,使得直角的两边分别与正方形的边AD 交于点
G ,边BC 交于点F ,画出,EFG ∆连结AC,交GE 于点P,交GF 于点Q (1)、在下图18中,按上述要求作出图形 (2)、证明:FBE ∆相似于EAG ∆
(3)、设,,y GF x FC =
=求出y 与x 的函数关系式; (4)、当AEP ∆和CFQ ∆相似时,求CF 的长。

A
B
C
D
O x
y 第1题
O
A
B
C
D
x
y (第2题)
备用图
fig 18E
B
A
F
E B
A
D C C
D G
6.(2012•菏泽)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请按要求完成下列各题: (1)试证明三角形△ABC 为直角三角形;
(2)判断△ABC 和△DEF 是否相似,并说明理由;
(3)画一个三角形,
使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△ABC 相似(要求:用尺规作图,保留痕迹,不写作法与证明).
20.(2012•上海)己知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF=∠DAE ,AE 与BD 交于点G . (1)求证:BE=DF ; (2)当
DF AD
FC DF
时,求证:四边形BEFG 是平行四边形.。

相关文档
最新文档