【重点梳理】-初三数学-圆的基本概念和性质
初中数学知识归纳圆的概念及性质

初中数学知识归纳圆的概念及性质圆是初中数学中的一个重要概念,它具有独特的性质和应用。
本文将对圆的概念及其性质进行归纳总结,以帮助读者更好地理解和掌握这一数学知识点。
一、圆的定义与基本概念圆是由平面上与一个确定点的距离相等的所有点组成的图形。
这个确定点称为圆心,距离称为半径。
圆可以用符号表示为O(A,r),其中O为圆心,A为圆上的任意一点,r为半径。
二、圆的性质1. 圆的直径圆上的任意两点连线,经过圆心,则称为圆的直径。
直径的长度是半径的两倍,用符号表示为d=2r。
2. 圆的弦圆上的任意两点连线,不经过圆心,则称为圆的弦。
圆的直径是一条特殊的弦,它同时也是最长的弦。
3. 圆的弧圆上的部分曲线,是由两个弦之间的交点所夹的部分,称为圆的弧。
同一个圆上的两个弧可以互补称为对称弧。
4. 圆的周长圆的周长是圆上所有点与圆心的距离之和,也就是圆的一周的长度。
圆的周长公式为C=2πr,其中π取约等于3.14。
5. 圆的面积圆的面积是圆内部的所有点与圆心的距离之和,也就是圆所围成的区域的大小。
圆的面积公式为A=πr²。
6. 圆的切线与切点从圆外一点引一条直线与圆相交,该直线在圆上的切点和与圆相切的直线称为圆的切线。
7. 圆的切圆两个圆相切于一点,称为圆的切圆。
8. 圆的切线定理如果一条直线与一个圆相切,那么与这条直线相垂直的半径也是与这条直线相切的。
9. 圆的相交性质两个圆相交于两个点,这两个点到各自的圆心的距离相等,且此两点不在任一圆内部。
10. 弧长与弧度圆的弧长是指圆心角所对应的弧的长度。
弧度是表示弧长与半径之比,记作θ,弧度大小等于圆心角大小的弧长除以半径,即θ=弧长/半径。
11. 弧长公式圆的弧长公式为L=θr,其中L表示弧长,θ表示圆心角的大小(弧度制),r表示半径。
12. 扇形的面积公式扇形是由圆心角和半径所夹的弧围成的区域,扇形的面积公式为S=1/2θr²,其中S表示扇形的面积。
初三圆知识点

初三圆知识点圆是初中数学中非常重要的一个图形,也是中考的重点和热点内容。
下面我们来详细了解一下初三圆的相关知识点。
一、圆的定义圆是平面内到定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
圆的标准方程为:$(x a)^2 +(y b)^2 = r^2$,其中$(a,b)$为圆心坐标,$r$为半径。
二、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
圆周角定理的推论:同弧或等弧所对的圆周角相等。
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
三、圆的位置关系1、点与圆的位置关系设点到圆心的距离为$d$,圆的半径为$r$,则有:点在圆外:$d > r$点在圆上:$d = r$点在圆内:$d < r$2、直线与圆的位置关系设圆心到直线的距离为$d$,圆的半径为$r$,则有:直线与圆相离:$d > r$,没有公共点。
直线与圆相切:$d = r$,有一个公共点。
直线与圆相交:$d < r$,有两个公共点。
3、圆与圆的位置关系设两圆的圆心距为$d$,两圆的半径分别为$R$和$r$($R >r$),则有:两圆外离:$d > R + r$,没有公共点。
两圆外切:$d = R + r$,有一个公共点。
两圆相交:$R r < d < R + r$,有两个公共点。
两圆内切:$d = R r$,有一个公共点。
两圆内含:$d < R r$,没有公共点。
四、圆的周长和面积1、圆的周长圆的周长公式为$C = 2\pi r$,其中$\pi$是圆周率,约等于 314,$r$是圆的半径。
圆数学九年级知识点

圆数学九年级知识点圆是我们学习数学中非常重要的一个几何图形,它在我们的生活中随处可见。
本文将介绍九年级数学学科中涉及的一些基本的圆的知识点。
一、圆的定义与性质1. 圆的定义:圆是由平面上与一个定点距离相等于定长的所有点组成的图形。
这个定点叫做圆心,定长叫做半径。
2. 圆的性质:(1) 圆心到圆上任意一点的距离都相等。
(2) 圆上的点到圆心的距离都等于半径的长度。
(3) 圆的直径是通过圆心并且两端点都在圆上的一条线段,直径的长度等于半径的两倍。
二、圆的元素及其关系1. 弧:由圆上的两点确定的一段弧线。
2. 弦:连接圆上的两点的线段。
3. 弧长:弧的长度,通常用字母l表示。
4. 弧度制:用弧长与半径的比值来度量角,简称弧度。
一个圆周的弧长等于半径的2π倍,记作2π。
5. 弧度与度数的相互转换:(1) 角度转弧度:弧度 = 角度× π/180。
(2) 弧度转角度:角度 = 弧度× 180/π。
三、圆与直线的关系1. 切线与切点:切线是与圆只有一个交点的直线,这个交点称为切点。
2. 弦的性质:(1) 弦等长定理:圆上两个弦等长的充要条件是这两个弦对应的弧相等。
(2) 弦心角定理:圆上两个弦对应的弧所对的圆心角相等的充要条件是这两个弦等长。
(3) 直径所对的圆心角是直角。
(4) 圆上的任意弧所对的圆心角等于其所对的弧的两倍。
四、圆与角的关系1. 圆心角:以圆心为顶点的角叫做圆心角。
2. 弧所对的圆心角:圆上的弧所对的圆心角等于这个弧的两倍。
五、圆的面积和弧长1. 圆的面积公式:圆的面积等于半径的平方乘以π,即A = πr²。
2. 弧长公式:弧长等于圆心角度数除以360度再乘以圆周的长度。
六、圆的平行线与切线1. 平行线与切线的关系:若直线与圆相切,则直线与圆的切点连线垂直于直线。
2. 切线定理:与同一圆相切的两条切线所切圆的切点与切线的连线垂直。
综上所述,圆是数学中一个重要的几何图形,掌握圆的定义、性质以及与直线、角的关系,对于九年级学生来说是非常重要的。
九年级圆知识点总结

九年级圆知识点总结圆是几何图形中最基本的图形之一,具有很多特殊性质和运用。
在数学课上,我们学习了关于圆的很多知识,包括圆的定义、性质、定理以及应用等。
下面就让我们一起来总结和回顾一下关于圆的知识点吧。
一、圆的定义及基本性质1. 圆的定义:圆是平面上到一个定点的距离恒定的点的集合。
2. 圆的基本性质:(1)圆的半径:以圆心O到圆上任一点A为边,画得的线段OA,叫做圆的半径。
(2)圆的直径:以圆心O为端点,以圆上一点A为端点的线段OA,叫做圆的直径。
直径是圆的最长线段,其长度等于半径的两倍。
(3)圆的周长:圆的周长又叫做圆周长,是指沿圆周的长度,记作L。
(4)圆的面积:圆的面积是指圆内部的面积,记作A。
二、圆的相关定理1. 圆心角与弦关系:如果圆上的两条弦所对的圆心角相等,则这两条弦的长度也相等。
2. 圆周角定理:圆周角是指以圆心为顶点的角,如果一个角的顶点在圆周上,这个角的两边是两条弦,则这个角的度数等于它所对的圆弧的度数。
3. 弧长定理:圆的圆周长等于360°角对应的圆弧长的长度。
4. 弧度制:弧度是表示弧长与半径的比值的单位,1弧度等于圆的半径长的弧所对的圆心角的单位面积。
5. 弦切线定理:如果一个弦高点C,它调节在大于直径EF的圆上,C在弦AB的内侧,则EC的平方等于EA*EB。
6. 余弦定理:余弦定理用于直角三角形,可据为a^2=b^2+c^2-2bc*cosA 。
7. 正弦定理:正弦定理用于三角形,可据为a/sinA=b/sinB。
8. 勾股定理:用于直角三角形,根据勾股定理可据为a^2+b^2=c^2。
三、圆的应用1. 圆的求面积和周长:圆的面积可以用公式πr²来表示(其中r代表圆的半径),圆的周长可以用公式2πr来表示。
2. 圆的切线、割线和相交定理:圆外一点与圆相交的两条切线长度相等的关系、圆内一点的切线长度和割线长度乘积相等的关系。
3. 圆的几何位置关系:关于圆的切线和圆的角,可以得到一定的证明和结论。
九年级圆章节知识点总结

九年级圆章节知识点总结圆是中学数学中一个重要的几何概念,它的相关知识点在九年级的数学学习中经常出现。
本文将对九年级圆章节的知识点进行总结和梳理,帮助同学们更好地掌握圆的相关知识。
一、圆的定义和性质1. 定义:圆是由平面上到一个确定点的距离都相等的所有点的集合。
2. 圆心和半径:圆心是圆的中心点,用O表示;半径是圆心到圆上任一点的距离,用r表示。
3. 直径和弦:直径是通过圆心的一条线段,用d表示;弦是圆上的一条线段,连接两点,用AB表示。
4. 弧和弧长:弧是圆上的一段弯曲部分,用AB表示;弧长是弧所占据的圆的周长的长度比例。
二、圆的相关定理1. 相等定理:圆心角相等的弧相等;等弧对应的弧相等。
2. 弧度:圆周角为360°,对应的弧长为2πr。
3. 同圆弧:如果两个弧在同一个圆上,则这两个弧叫做同圆弧,且它们的弧长相等。
4. 弧的夹角公式:夹在同一弧上的圆心角相等。
5. 锐角和钝角:圆心角小于180°则为锐角,大于180°则为钝角。
三、弦的性质1. 弦分割圆:弦AB分割圆为两个弧,即AB和AB',且它们的圆心角相等。
2. 弦的性质:等长的弦对应的圆心角相等;同一个圆上,离圆心较远的弧所对圆心角较小,离圆心较近的弧所对圆心角较大。
3. 弧与弦的关系:在同一个圆上,对任意弦来说,在此弦上的弧所对的圆心角所对的弧长大于不在此弦上的弧所对的圆心角所对的弧长。
四、切线的性质1. 切线的定义:切线是与圆只有一个交点的线。
2. 切线与半径的关系:过圆外一点做圆的切线,切点与圆心连线是切线的垂线。
3. 切线与弦的关系:圆的切线与弦的切点处的切线相等。
五、定理的应用1. 弦切角定理:圆上的切线和半径所夹的角是直角。
2. 弧切角定理:圆上的切线和此切点处的弧所夹的角是半弧对应的圆心角。
3. 切线定理:两条相交的切线所夹的角等于对角所对的圆心角的一半。
六、九年级圆章节例题练习1. 已知圆的半径为8cm,求其周长和面积。
初中数学知识归纳圆的概念和性质

初中数学知识归纳圆的概念和性质圆是初中数学中的一个重要概念,它有许多独特的性质。
下面将对圆的概念和性质进行归纳。
一、圆的概念圆是由平面上所有到一个固定点的距离都相等的点的集合。
固定点叫做圆心,等距离叫做半径。
圆可以用圆心和半径表示,通常表示为∠O(r),其中O表示圆心,r表示半径。
二、圆的性质1. 圆上任意两点的距离都相等。
即圆上的任意两点A和B,都有AB = r,其中r为圆的半径。
2. 圆的直径是圆上任意两点间的最大距离。
直径d等于半径的两倍,即d = 2r。
3. 相交弧:圆上的两条弧如果有一个公共点,则称它们为相交弧。
4. 弧度:圆心角对应的弧长与圆的半径的比值叫做弧度。
常用弧度符号表示为θ。
5. 弧长:圆周上任意两点间的弧长等于该圆心角的弧度数乘以圆的半径。
即L = θr。
三、圆的相关公式1. 圆的面积公式:S = π * r²,其中S表示圆的面积,r表示半径。
π是一个常数,约等于3.14。
2. 圆的周长公式:C = 2π * r,其中C表示圆的周长,r表示半径。
3. 弓形的面积公式:A = 1/2 * θ * r²,其中A表示弓形的面积,θ表示圆心角的弧度数,r表示半径。
4. 弦与弦的关系公式:如果两条弦相交,且其中一条被另一条平分,则两条弦的乘积等于交叉部分之间的弦的乘积。
即AB * CD = BC * AD。
四、圆的常见问题类型1. 判断关系:判断两个图形是否为圆,判断是否为同心圆等。
2. 计算问题:根据已知条件计算圆的面积、周长等。
3. 推理问题:利用圆的性质进行推理,解决几何问题。
4. 证明问题:根据已知条件进行推导,证明一个几何命题。
5. 应用问题:将圆的概念和性质应用于生活实际,解决实际问题。
五、常见解题思路1. 利用定义:根据圆的定义进行判断或运用相关公式进行计算。
2. 运用性质:根据圆的性质推导出结论,解决几何问题。
3. 运用变换:将圆的问题转化为其他图形的问题,通过转换求解。
九上圆知识点总结

九上圆知识点总结一、圆的概念圆是平面上的一组点,到某一点的距离等于常数,这个常数就是圆的半径。
圆由圆心和圆周上的所有点构成,圆的概念是平面几何学中最基本的概念之一。
二、圆的性质1. 圆的圆心:圆心是圆的中心点,任意一条通过圆心的线段都等于圆的直径。
2. 圆的直径:圆的直径是通过圆心,且两端点在圆周上的线段,它的长度等于圆周的两倍。
3. 圆周:圆周是由无数个点构成的曲线,这些点到圆心的距离都等于圆的半径。
4. 圆的半径:半径是圆心到圆周上任意一点的距离,它的长度是一个固定值。
5. 弧长和弧度:圆周上任意两点之间的曲线段称为弧,弧对应的圆心角称为弧度。
弧长等于半径乘以弧度。
6. 圆的面积:圆形的面积是圆的面积,它等于π乘以半径的平方。
三、圆的相关定理和公式1. 直角三角形中圆的应用:在直角三角形中,圆的直径是斜边,这可用来求解直角三角形的边长和面积。
2. 确定圆的位置:通过圆心和半径可以唯一确定一个圆。
3. 弧长和扇形面积:弧长和扇形面积的计算公式均基于圆的半径和圆心角。
4. 圆外切四边形:圆外切四边形的性质和面积计算公式。
5. 正多边形内接圆:正多边形的内接圆心角和边数的关系。
四、圆的主要解题方法1. 几何画图法:在解题过程中,仔细画出几何图形,有助于理清问题的思路。
2. 数学归纳法:利用数学归纳法总结出一般规律,有助于解决一般情况的问题。
3. 利用已知性质和定理:通过已知定理和性质来解决问题,例如圆心角的性质等。
五、圆的延伸应用1. 圆的信息化应用:在计算机图形学、地图绘制等领域,圆的概念和运算被广泛应用。
2. 圆的工程应用:在建筑设计、地理测量、轮胎制造等领域,圆的性质和计算方法也发挥了重要作用。
六、习题训练1. 针对圆的相关定理和公式,通过大量的练习来掌握圆的性质和计算方法。
2. 利用解题方法和技巧,解决实际问题和复杂题目,提高解题能力和应用能力。
通过九上学期的学习,我们对圆的概念、性质、定理和应用有了更深入的了解,掌握了圆周、直径、半径、弧长、扇形面积等相关知识,为将来的学业打下了坚实的基础。
初中数学知识归纳圆的概念与性质

初中数学知识归纳圆的概念与性质圆是初中数学中的重要概念,在本文中将对圆的概念与性质进行归纳和总结。
文章将从圆的定义开始,逐步介绍圆的基本要素、圆心角、内接外接等重要性质,并辅以相关的定义、公式和图示,以便读者更好地理解和掌握。
1. 圆的定义圆是由平面上所有距离固定点(圆心)的点构成的集合。
圆的平面被称为圆面,圆上的每一个点到圆心的距离都相等,这个相等的距离被称为圆的半径。
2. 圆的基本要素(1)圆心:圆心是圆的中心点,通常用字母O表示。
(2)半径:圆心到圆上任一点的距离为圆的半径,通常用字母r表示。
(3)直径:直径是通过圆心且两端在圆上的线段,直径的长度为半径的两倍。
(4)弦:连接圆上两点的线段被称为弦,弦的长度可以小于或等于直径。
3. 圆的性质(1)圆的周长:圆的周长是圆上一周的长度,用C表示,可通过公式C = 2πr计算,其中π是一个常数,近似值为3.14。
(2)圆的面积:圆的面积是圆内部的所有点构成的区域,用S表示,可通过公式S = πr²计算。
(3)圆心角:以圆心为顶点的角被称为圆心角,圆心角所对的弧称为圆心角所对的弧。
(4)弧长:弧长是圆的一部分,通常通过弧度来度量,弧长的计算公式是L = rθ,其中θ是圆心角的弧度数。
(5)切线和法线:切线是与圆相切于一点并且与圆的切点的切线垂直的直线,而法线是与切线垂直的直线。
4. 圆的内接和外接(1)内接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为内接多边形,内接多边形的顶点都落在圆上。
(2)外接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为外接多边形,外接多边形的每个顶点都在圆上。
综上所述,圆是一种特殊的几何图形,其定义、基本要素、性质和内接外接等概念是初中数学中必须掌握的内容。
通过对圆的学习,我们可以应用圆的性质解决实际问题,如计算圆的周长、面积,进行内接外接多边形的相关计算等。
深入理解和掌握圆的概念和性质能够夯实数学基础,为进一步学习和应用提供坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的基本概念和性质の重点梳理
一、基础知识梳理
核心知识点一:圆的定义与性质
1.圆的定义
(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点
A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O 为圆心的圆,记作“⊙O”,读作“圆O”.
要点诠释:
①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二
者缺一不可;
②圆是一条封闭曲线.
(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.
要点诠释:
①定点为圆心,定长为半径;
②圆指的是圆周,而不是圆面;
③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的
点的集合是球面,一个闭合的曲面.
2.圆的性质
①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心
对称图形,对称中心是圆心;
②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何
一条直线都是圆的对称轴.
要点诠释:
①圆有无数条对称轴;
②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,
而应该说“圆的对称轴是直径所在的直线”.
3.两圆的性质
两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).
核心知识点二:与圆有关的概念
1.弦
弦:连结圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.
弦心距:圆心到弦的距离叫做弦心距.
要点诠释:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.
为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.
2.弧
弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆
弧AB”或“弧AB”.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
优弧:大于半圆的弧叫做优弧;
劣弧:小于半圆的弧叫做劣弧.
要点诠释:
①半圆是弧,而弧不一定是半圆;
②无特殊说明时,弧指的是劣弧.
3.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.
圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.
4.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.
要点诠释:
①等弧成立的前提条件是在同圆或等圆中,不能忽视;
②圆中两平行弦所夹的弧相等.。