Host guest complex of β-cyclodextrin 5-thia pentacene-14-1 for photoinitiated polymerization of
布洛芬与环糊精的主_客体相互作用_张骞

2 结果与讨论
2.1 数据处理
数据处理由 Digitam 4.1 软件包中“Ligand Binding”程序采用多元非线性回归方法完成 , 原理和详细 步骤见前期工作的报道[ 5] 。 计算结果表明 , BFNa 的 3 种环糊精包合物的化学计量比均为 1∶1 , 同时获得 包合过程的标准焓变及实验平衡常数 。进而 , 由热力学公式 ΔG —○ =-RT ln β 和 ΔG —○ =ΔH —○ -T ΔS —○得到
(College of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252059)
Abstract Inclusion interactions of three cyclodextrins with ibuprofen in Tris-HCl buffer solutions (pH = 7.0)have been investigated using isothermal titration microcalorimetry at 298.15K .The thermodynamic parameters of the cyclodextrin inclusion compounds with ibuprofen are determined.The results indicate that inclusion processes of α-, β- cyclodextrins with ibuprofen are enthalpy and entropy co-driven, while complexation of γ- cyclodextrin with ibuprofen is entropy driven.A theoretical study on the inclusion processes between ibuprofen and cyclodextrins have been performed with B3LYP 6-31G * PM3 method to investigate the formation mechanism of the inclusion complexes.The results suggest that the hydrophobic part of ibuprofen molecule is inclined to enter the cavity of cyclodextrin molecules from the wide side than the narrow side .
基于β-环糊精和二茂铁主客体作用的超分子聚合物的制备及其凝胶化

基于β-环糊精和二茂铁主客体作用的超分子聚合物的制备及其凝胶化王亮;郭成功;王彩旗【摘要】以β-环糊精修饰的壳聚糖(CDCS)和二茂铁修饰的聚乙二醇(FCPEG)为构筑单元,以伊环糊精和二茂铁的主客体相互作用为驱动,构筑了水溶性的超分子聚合物CDCS-FCPEG。
在此基础上,加入α-环糊精(α-CD),通过其对聚乙二醇的穿环络合诱导结晶作用,制备了壳聚糖基水凝胶。
使用核磁(^1H—NMR)、紫外一可见光谱法(UV—Vis)、X射线衍射分析(XRD)和循环伏安法(CV)等手段进行了验证。
结果表明:超分子聚合物CDCS—FCPEG与共价键连接的传统聚合物一样可以和α—CD形成凝胶。
%Driven by the host-guest interaction betweenβ-cyclodextrin and ferrocene in aqueous solution, a water-soluble supramolecular copolymer CDCS-FcPEG was obtained based on β-cyclodextrin modified chitosan (CDCS) and ferrocene modified polyethylene glycol (FcPEG) as building blocks. The CDCS- FcPEG further constructed into hydrogel with α-cyclodextrin (a-CD), owing to the formation of crystalline inclusion complex of α-CD and PEG. These processes were monitored by 1 H-NMR, UV-Vis spectroscopy (UV-Vis), X-ray diffraction (XRD) and cyclic voltammetry (CV). Results show that CDCS-FcPEG can form hydrogel with a-CD like traditional copolymers linked by covalent bonds.【期刊名称】《功能高分子学报》【年(卷),期】2012(025)004【总页数】8页(P335-341,363)【关键词】壳聚糖;环糊精;二茂铁;超分子聚合物;水凝胶【作者】王亮;郭成功;王彩旗【作者单位】中国科学院大学化学与化学工程学院,北京100049;中国科学院大学化学与化学工程学院,北京100049;中国科学院大学化学与化学工程学院,北京100049【正文语种】中文【中图分类】O631环糊精(CD)是由6~8个葡萄糖单元以α-1,4-糖苷键连结而成的环状低聚糖,具有独特的内疏水、外亲水的空腔结构,能够通过疏水作用、范德华力等相互作用与许多有机和无机分子形成包合物。
环糊精结构

环糊精(Cyclodextrin,简称CD)是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有6~12个D-吡喃葡萄糖单元。
其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为alpha -、beta -和gama -环糊精。
根据X-线晶体衍射、红外光谱和核磁共振波谱分析的结果,确定构成环糊精分子的每个D(+)- 吡喃葡萄糖都是椅式构象。
各葡萄糖单元均以1,4-糖苷键结合成环。
由于连接葡萄糖单元的糖苷键不能自由旋转,环糊精不是圆筒状分子而是略呈锥形的圆环。
结构环糊精分子具有略呈锥形的中空圆筒立体环状结构,在其空洞结构中,外侧上端(较大开口端)由C2和C3的仲羟基构成,下端(较小开口端)由C6的伯羟基构成,具有亲水性,而空腔内由于受到C-H键的屏蔽作用形成了疏水区。
既无还原端也无非还原端,没有还原性;在碱性介质中很稳定,但强酸可以使之裂解;只能被α-淀粉酶水解而不能被β- 淀粉酶水解,对酸及一般淀粉酶的耐受性比直链淀粉强;在水溶液及醇水溶液中,能很好地结晶;无固定熔点,加热到约200℃开始分解,有较好的热稳定性;无吸湿性,但容易形成各种稳定的水合物;它的疏水性空洞内可嵌入各种有机化合物,形成包接复合物,并改变被包络物的物理和化学性质;可以在环糊精分子上交链许多官能团或将环糊精交链于聚合物上,进行化学改性或者以环糊精为单体进行聚合。
由于环糊精的外缘(Rim)亲水而内腔(Cavity)疏水,因而它能够像酶一样提供一个疏水的结合部位,作为主体(Host)包络各种适当的客体(Guest),如有机分子、无机离子以及气体分子等。
其内腔疏水而外部亲水的特性使其可依据范德华力、疏水相互作用力、主客体分子间的匹配作用等与许多有机和无机分子形成包合物及分子组装体系,成为化学和化工研究者感兴趣的研究对象。
这种选择性的包络作用即通常所说的分子识别,其结果是形成主客体包络物(Host-Guest Complex)。
环糊精包合物超分子材料的制备及应用研究进展

环糊精包合物超分子材料的制备及应用研究进展2.山东中烟工业有限责任公司,济南 250100)摘要:环糊精是一类具有良好的水溶性、生物相容性的大环分子,其具有独特的中空截锥结构以及“内疏水、外亲水”的性质,能够通过主客体相互作用与各种有机、无机、生物分子结合形成包合物。
环糊精作为一种优良的载体材料,在化学、医学、生物学相关领域倍受关注。
本文对环糊精及其包合物材料的制备及在不应用进行了综述,并对其发展前景作出了进一步展望。
关键词:环糊精;包合;主客体相互作用;氢键;超分子中图分类号:TS202 文献标识码:AProgress in the preparation and application of cyclodextrins inclusion supramolecular materialsZHANG Chunxiao1, YU Hongxiao2, ZHANG Donghai2, YUE Yong2, ZHANG Kaiqiang1,(1. National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China;2. The China Tobacco Shandong Industrial Co., Ltd., Jinan, 250100, China)Abstract:Cyclodextrins are a class of macrocyclic molecules with good water solubility and biocompatibility. With their unique hollow truncated conical structure and "inner hydrophobic and outerhydrophilic" properties, they can form inclusion complexes withvarious organic, inorganic or biological molecules through host-guest interactions. As an excellent carrier material, cyclodextrins are of great interest in fields related to chemistry, medicine and biology. Herein,,the preparation and in application of cyclodextrins inclusion materials are reviewed, and further outlooks on their development prospects are given.Key words: cyclodextrin; inclusion; host-guest interaction; hydrogen bonding; supramolecule1 环糊精简介1.1环糊精结构与性质环糊精(CD)是由环糊精葡萄糖基转移酶作用于淀粉而产生的一系列环状低聚糖,它们由通过α-1,4糖苷键连接的D-吡喃葡萄糖单元组成[1-3]。
美沙拉嗪与β-环糊精的主客体相互作用及其分析应用

第34卷第6期化㊀学㊀研㊀究Vol.34㊀No.62023年11月CHEMICAL㊀RESEARCHNov.2023美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用张晨轩,李晓鹏,戚鹏飞,魏㊀莉∗(河北省药品职业化检查员总队(南片区),河北石家庄050000)收稿日期:2022⁃07⁃09基金项目:山西省重点研发计划项目(201903D321009)作者简介:张晨轩(1988-),男,工程师,研究方向:药物分析㊂∗通信作者,E⁃mail:earth⁃shaker@qq.com摘㊀要:采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法研究了美沙拉嗪(MSZ)与β⁃环糊精(β⁃CD)的主客体相互作用,同时测试了主客体包合物的热力学参数(ΔG㊁ΔH㊁ΔS)㊂光谱数据表明MSZ⁃β⁃CD包合物的形成,包合比为1ʒ1,包合常数K=1.362ˑ102L㊃mol-1㊂基于MSZ⁃β⁃CD包合物荧光强度的显著增大,建立了一个简单㊁准确㊁快速㊁高灵敏度测定水溶液中MSZ的荧光分析新方法㊂MSZ的浓度与MSZ⁃β⁃CD包合物的荧光强度变化值ΔF具有良好的线性关系,相关系数为0.998,线性范围为0.1 0.7mg㊃L-1,检测限为8μg㊃L-1,该方法可应用于药品中美沙拉嗪的含量测定㊂关键词:美沙拉嗪;β⁃环糊精;超分子化学;荧光分光光度法;药物分析中图分类号:R917文献标志码:A文章编号:1008-1011(2023)06-0505-06Host⁃guestinteractionofmesalazinewithβ⁃cyclodextrinanditsanalyticalapplicationZHANGChenxuan LIXiaopeng QIPengfei WEILi∗HebeiProvincePharmaceuticalProfessionalInspectorCorps SouthDivision Shijiazhuang050000 Hebei ChinaAbstract Thehost⁃guestinteractionofmesalazine(MSZ)withβ⁃cyclodextrin(β⁃CD)hasbeeninvestigatedusingabsorption,spectrofluorimetryand1HNMR.Thethermodynamicparameters(ΔG,ΔHandΔS)ofMSZ⁃β⁃CDwerealsostudied.Theinclusioncomplexformationhasbeenconfirmedbasedonthechangesofthespectralproperties,thelineardoublereciprocalplotindicatinga1ʒ1binding,andthebindingconstant(K)wasdeterminedas1.362ˑ102L㊃mol-1;Basedonthesignificantenhancementofthesupramolecularcomplexfluorescenceintensity,Asimple,accurate,rapidandhighlysensitivespectrofluorimetricmethodwasdevelopedtodeterminethecontentofMSZinaqueoussolution.Agoodlinearcorrelationwasobtainedbetweenthefluorescenceenhancement(ΔF)andtheMSZconcentrationsfrom0.1mg㊃L-1to0.7mg㊃L-1,acorrelationcoefficientof0.998andadetectionlimitof8μg㊃L-1werealsodetermined.TheproposedmethodwassuccessfullyappliedtodetermineMSZinitspharmaceuticaldosageforms.Keywords:mesalazine;β⁃cyclodextrin;supramolecularchemistry;spectrofluorimetry;pharmaceuticalanalysis㊀㊀环糊精(CD)是淀粉酶解作用下生成的一系列环状低聚糖㊂β⁃环糊精(β⁃CD,图1)由7个葡萄糖单元组成,具有疏水的内部空腔结构,外部具有良好的亲水性㊂在超分子化学领域,环糊精作为分子主体被广泛关注[1]㊂主客体包合物的形成会显著影响客体分子的物理化学性质,比如溶解性㊁光谱学和电化学性质㊂这一特性被广泛应用于分析化学和制药工业等诸多领域,旨在改善难溶性㊁易降解小分子药物的溶解性㊁稳定性和生物有效性[2]㊂此外,包合物的形成可以增强客体分子的荧光强度,促进毛细管电泳中的手性分离[3]㊂许多基于环糊精包合物的荧光特性建立的分析方法已应用于测定多种药物制剂㊁农药和金属离子[4]㊂506㊀化㊀学㊀研㊀究2023年美沙拉嗪(MSZ,图1)是一种治疗轻中度溃疡性结肠炎的药物㊂MSZ能够有效清除引起肠道炎症的活性氧自由基,抑制血小板环氧合酶和脂氧合酶途径,对中性粒细胞的某些功能也有抑制作用[5]㊂许多测定药物制剂或生物体液中MSZ含量的分析方法已见报道,如毛细管胶束电动色谱法[6]㊁微分脉冲伏安法[7]㊁高效液相色谱法[8]㊁液质联用技术[9]㊁分光光度法[10]㊂然而,荧光分光光度法测定药物制剂中美沙拉嗪含量的文献未见报道㊂鉴于荧光分光光度法具有操作简捷㊁灵敏度高以及较低费用等优势,目前该方法已经成为了最便捷的分析方法之一㊂图1㊀β⁃环糊精和美沙拉嗪的结构Fig.1㊀Structuresofβ⁃CDandMSZ本文采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法验证了美沙拉嗪和β⁃环糊精之间的主客体包合作用,研究了一系列影响主客体包合物形成的因素㊂β⁃环糊精本身无荧光,美沙拉嗪在水溶液中也不产生荧光发射信号,因此不能采用常规的荧光方法进行美沙拉嗪的定量分析,当美沙拉嗪和β⁃环糊精在水溶液中形成包合物时,溶液的荧光强度会显著增大㊂基于主客体包合物荧光强度与美沙拉嗪之间的线性关系,建立了一种新型测定药物制剂中美沙拉嗪含量的荧光分析方法㊂1㊀实验部分1.1㊀仪器与试剂㊀㊀Cary300型紫外分光光度计(美国瓦里安公司),CaryEclipse型荧光分光光度计(澳大利亚安捷伦公司),DRX⁃600MHz型核磁共振仪(瑞士布鲁克公司),pHS⁃3TC型pH计(上海雷磁公司),HH⁃6数显恒温水浴锅(常州国华公司)㊂所用化学试剂均为分析纯或色谱纯,实验用水为纯化水㊂美沙拉嗪和β⁃环糊精对照品购买自中国食品药品检定研究院㊂美沙拉嗪肠溶片购买自葵花药业集团股份有限公司,规格0.25g㊂1.2㊀对照品溶液和供试品储备液1.2.1㊀美沙拉嗪对照品溶液㊀㊀准确称量美沙拉嗪对照品0.01g至100mL容量瓶,加水30mL使溶解,摇匀,用水定容至刻度,振荡均匀,得到100mg㊃L-1的储备液㊂10mg㊃L-1的工作液由储备液加水稀释得到㊂1.2.2㊀β⁃环糊精对照品溶液准确称取β⁃环糊精对照品1.135g置于100mL容量瓶内,加水适量,振摇使溶解,再用水定容至刻度得到0.01mol㊃L-1的溶液㊂溶液临用现配㊂1.2.3㊀美沙拉嗪供试品储备液取10粒MSZ肠溶片,除去肠溶衣后,精密称定,研细,精密称取约相当于250mg的MSZ药品粉末,溶解在100mL容量瓶中,充分振荡㊂将此溶液过滤,弃去部分前滤液,移取10mL后续滤液并稀释为100mL的储备液㊂1.3㊀紫外分光光度法取2mL的MSZ工作溶液(10mg㊃L-1)两份,分别加入到10mL的容量瓶中,再分别加入1.5mL磷酸盐缓冲溶液(pH=7.0)来保持溶液pH呈中性,向其中一个容量瓶中加入β⁃CD对照品溶液(0.01mol㊃L-1)2mL,另一个不加β⁃CD对照品溶液㊂定容后在室温下放置10min测定吸收光谱㊂1.4㊀荧光分光光度法将2mL的β⁃CD溶液(0.01mol㊃L-1)分别加入到100mL容量瓶中,再分别加入不同体积的MSZ溶液和1.5mL的磷酸盐缓冲溶液(pH=7.0),制成MSZ最终浓度分别为0.1 0.7mg㊃L-1的混合溶液,在室温下放置10min后测定溶液的荧光强度㊂1.5㊀反应的化学计量学向100mL容量瓶中加入浓度为10mg㊃L-1的MSZ溶液和1.5mL磷酸盐缓冲溶液(pH=7.0),再将不同体积(0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0mL)0.01mol㊃L-1的β⁃CD溶液分别加入到容量瓶中,定容后在室温下放置10min㊂2㊀结果与讨论2.1㊀紫外吸收光谱㊀㊀MSZ溶液的紫外吸收光谱和MSZ与β⁃CD混合溶液的紫外吸收光谱如图2所示,结果表明在pH=7.0条件下,MSZ溶液的最大吸收波长为330nm,当加入β⁃CD后,混合溶液最大吸收波长没有变化,但第6期张晨轩等:美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用507㊀是吸光度增强㊂图2㊀MSZ紫外吸收光谱(黑色)和MSZ⁃β⁃CD包合物紫外吸收光谱(红色)Fig.2㊀AbsorptionspectraofMSZintheabsence(black)andpresence(red)ofMSZ⁃β⁃CD2.2㊀荧光光谱在pH=7.0条件下,MSZ溶液的最大发射波长为493nm,当MSZ溶液与β⁃CD溶液混合后,混合溶液的最大发射波长没有变化,但是荧光强度增强,如图3所示㊂这是由于MSZ分子进入了β⁃CD的疏水性空腔,通过范德华力和氢键等非共价键相互作用包合在一起,包合作用使MSZ分子的运动自由度降低,激发态分子以非辐射方式释放能量减少,因此MSZ⁃β⁃CD包合物的形成增强了溶液的荧光强度㊂图3㊀β⁃CD溶液中加入不同体积MSZ溶液后的荧光光谱Fig.3㊀VariationofthefluorescencespectraofMSZ⁃β⁃CDcomplexonadditionofdifferentconcentrationsofMSZ2.3㊀反应条件的优化2.3.1㊀pH的影响㊀㊀采用荧光分光光度法研究了不同pH对包合反应的影响,并测定包合物的荧光强度㊂结果表明,随着pH的增大,包合物荧光强度会增强㊂当pH为7时包合物的荧光强度最大㊂当pH大于7时,包合物的荧光强度会逐渐减弱㊂此外,通过非线性曲线拟合法计算出MSZ⁃β⁃CD包合物的包合常数(K)㊂2.3.2㊀温度和时间的影响分别在室温和30 90ħ水浴条件下,研究了MSZ⁃β⁃CD包合物受温度的影响㊂结果表明,在室温条件下包合物的荧光强度最强,故该反应在室温下进行㊂同时研究了室温下反应时间对包合物的影响,结果表明,在室温下的放置时间对包合物的荧光强度基本无影响㊂因此,本实验选择在室温放置10min的条件下进行㊂2.4㊀反应的化学计量学在最优实验条件下研究了主客体包合反应的化学计量学㊂假设主客体发生1ʒ1的包合反应,则化学计量学可以用Benesi⁃Hildebrand非线性曲线表示[11]:1/(F-F0)=1/(F¥-F0)K[β⁃CD]0+1/(F¥-F0)(1)㊀㊀[β⁃CD]0代表β⁃CD的浓度,F代表特定浓度下的主体分子同客体分子形成包合物时的荧光强度,F0表示客体分子单独存在时的荧光强度,Fɕ指主体分子与客体分子充分包合时的荧光强度,K就是主客体发生1ʒ1包合作用时的包合常数㊂通过做1/(F-F0)对1/[β⁃CD]0的双倒数曲线,如图4所示,可以验证包合比为1ʒ1的相互作用的存在㊂只有相互作用的包合比为1ʒ1时,双倒数曲线才具有线性,并且计算得到包合常数K=1.362ˑ102L㊃mol-1㊂图4㊀MSZ⁃β⁃CD包合物的双倒数曲线Fig.4㊀Plotof1/(F⁃F0)vs.1/[β⁃CD]oftheMSZ⁃β⁃CDcomplex2.5㊀包合物的热力学参数从热力学角度(ΔH㊁ΔS㊁ΔG)证明了包合物的形成,包合常数(K)与温度(T)的关系可以通过508㊀化㊀学㊀研㊀究2023年Van tHoff方程(lnK=-ΔH/RT+ΔS/R)描述,包合反应的焓变(ΔH)和熵变(ΔS)与MSZ⁃β⁃CD包合物的形成有关㊂将lnK与1/T进行线性回归,ΔH和ΔS可以分别通过回归方程的斜率和截距得到[12]㊂而吉布斯自由能变(ΔG)可以由公式ΔG=ΔH-TΔS求出,结果如表1所示㊂表1中,负的焓变和自由能变值表明这是一个放热且自发的过程,同时伴随着少量的熵损失,热力学参数表明了MSZ和β⁃CD的包合作用主要是受焓变驱使,这要归因于β⁃CD分子的羟基与MSZ分子间的氢键作用,主客体分子之间的范德华力以及β⁃CD分子空腔的疏水作用[13]㊂此外,构象变化和去溶剂化效应也促进了熵变㊂包合作用使得分子运动自由度降低,也导致了熵的损失[14]㊂表1㊀包合反应的热力学参数Table1㊀Thermodynamicparameterofthereaction热力学参数数值/(J㊃mol-1)ΔH-546.1ΔS-1.7ΔG-125.22.6㊀1HNMR谱图采用核磁共振验证了MSZ和β⁃CD的包合作用㊂图5分别为MSZ和MSZ⁃β⁃CD包合物的1HNMR谱图,与MSZ单独存在时的1HNMR谱图相比,包合物1HNMR谱图中MSZ的H3,H4,H6质子信号向高场移动,这一特征表明MSZ分子包合进入了β⁃CD的空腔[15]㊂图5㊀MSZ(黑色)和MSZ⁃β⁃CD(红色)包合物的1HNMR谱图Fig.5㊀1HNMRspectra(600MHz)ofMSZ(black)andMSZ⁃β⁃CDcomplex(red)inD2O2.7㊀方法学验证2.7.1㊀线性和灵敏度㊀㊀在最适实验条件下,对MSZ的浓度与MSZ⁃β⁃CD包合物荧光强度变化量ΔF的关系曲线进行线性回归,线性方程为:ΔF=719.5C+12.82,相关系数为0.998,线性范围为0.1 0.7mg㊃L-1㊂取空白溶液连续测定11次并计算荧光强度的标准偏差(SD),以3倍SD除以线性方程的斜率计算检出限为8μg㊃L-1㊂2.7.2㊀重复性精密称取同一批样品粉末适量,按 1.2.3 项下供试品储备液制备方法,平行制备6份,再分别按1.4 项下方法制备供试品溶液㊂在最适实验条件下进行测定,记录各供试品溶液的荧光强度,以荧光强度的RSD评价重复性㊂结果显示荧光强度的RSD为1.02%(n=6),表明该方法重复性良好㊂2.7.3㊀中间精密度由另一名分析人员,于不同日期使用不同的仪器,同 重复性 试验操作㊂结果显示各供试品溶液荧光强度的RSD为1.15%(n=6),表明该方法中间精密度良好㊂2.7.4㊀溶液稳定性试验取 1.2.3 项下供试品储备液适量,按 1.4 项下方法制备供试品溶液,分别于室温下放置0㊁6㊁12㊁24㊁48h,在最适实验条件下进行测定,并记录供试品溶液的荧光强度㊂结果,供试品溶液的荧光强第6期张晨轩等:美沙拉嗪与β⁃环糊精的主客体相互作用及其分析应用509㊀度的RSD为0.73%,表明供试品溶液在48h内稳定,能够满足测定需要㊂2.7.5㊀分析应用该方法可应用于药品中MSZ的含量测定㊂按1.2.3 项下供试品储备液制备方法,再按 1.4 项下方法制备供试品溶液,在最适实验条件下,测定MSZ的含量,结果满意,如表2所示,并且相对标准偏差小于2.00%,具有良好的准确性㊂表2㊀药品中MSZ的含量测定(n=5)Table2㊀DeterminationofMSZinpharmaceuticalformulation(n=5)药品规格/(mg/tablet)本法测定值/(mg/tablet)回收率/%MSZ250242.6097.0ʃ0.863㊀结论采用紫外分光光度法㊁荧光分光光度法以及核磁共振光谱法研究了MSZ和β⁃CD之间的超分子相互作用,结果表明MSZ和β⁃CD可以形成1ʒ1的主客体包合物,包合常数K=1.362ˑ102L㊃mol-1㊂基于MSZ⁃β⁃CD包合物的荧光增敏作用,建立了一种简便㊁灵敏㊁准确的测定MSZ含量的荧光分析方法,该方法具有良好的精密度㊁重复性和适用性,可应用于药品中MSZ的定量分析㊂参考文献:[1]王恩举,陈光英,彭明生.NMR研究β⁃环糊精对布洛芬的手性识别[J].波谱学杂志,2009,26(2):216⁃222.WANGEJ,CHENGY,PENGMS.NMRstudiesofchiraldiscriminationofibuprofenenantiomersinβ⁃cyclodextrininclusioncomplexes[J].ChineseJournalofMagneticResonance,2009,26(2):216⁃222.[2]LINARESM,DEBERTORELLOMM,LONGHIM.Preparationandcharacterizationofsolidcomplexesofnaphtoquinoneandhydroxypropyl⁃b⁃cyclodextrin[J].Molecules,2000,5(3):342⁃344.[3]ELBASHIRAA,SULIMANFEO,SAADB,etal.Capillaryelectrophoreticseparationandcomputationalmodelingofinclusioncomplexesofβ⁃cyclodextrinand18⁃crown⁃6etherwithprimaquineandquinocide[J].BiomedicalChromatography,2010,24(4):393⁃398.[4]ELBASHIRAA,DSUGINFA,MOHMEDTOM,etal.Spectrofluorometricanalyticalapplicationsofcyclodextrins[J].Luminescence,2014,29(1):1⁃7.[5]马郑,董煜,彭涛.离子对RP⁃HPLC法测定美沙拉嗪栓的含量及有关物质[J].中国药房,2014,25(44):4209⁃4214.MAZ,DONGY,PENGT.Contentdeterminationof5⁃aminosalicylicsuppositoryanditsrelatedsubstancesbyion⁃pairRP⁃HPLC[J].ChinaPharmacy,2014,25(44):4209⁃4214.[6]GOTTIR,POMPONIOR,BERTUCCIC,etal.Determinationof5⁃aminosalicylicacidrelatedimpuritiesbymicellarelectrokineticchromatographywithanion⁃pairreagent[J].JournalofChromatographyA,2001,916(1/2):175⁃183.[7]NIGOVIC'B,ŠIMUNIC'B.Determinationof5⁃aminosalicylicacidinpharmaceuticalformulationbydifferentialpulsevoltammetry[J].JournalofPharmaceuticalandBiomedicalAnalysis,2003,31(1):169⁃174.[8]RAFAELJA,JABORJR,CASAGRANDER,etal.ValidationofHPLC,DPPHandnitrosationmethodsformesalaminedeterminationinpharmaceuticaldosageforms[J].BrazilianJournalofPharmaceuticalSciences,2007,43(1):97⁃103.[9]PASTORINIE,LOCATELLIM,SIMONIP,etal.DevelopmentandvalidationofaHPLC⁃ESI⁃MS/MSmethodforthedeterminationof5⁃aminosalicylicacidanditsmajormetaboliteN⁃acetyl⁃5⁃aminosalicylicacidinhumanplasma[J].JournalofChromatographyB,2008,872(1/2):99⁃106.[10]MADHAVIV,PANCHAKSHARIV,PRATHYUSHATN,etal.Spectrophotometricdeterminationofmesalazineinbulkandtabletdosageformsbasedondiazocouplingreactionwithresorcinol[J].InternationalJournalofPharmaceuticalSciencesReviewandResearch,2011,11(1):105⁃109.[11]NIGAMS,DUROCHERG.Spectralandphotophysicalstudiesofinclusioncomplexesofsomeneutral3H⁃indolesandtheircationsandanionswithβ⁃cyclodextrin[J].TheJournalofPhysicalChemistry,1996,100(17):7135⁃7142.[12]LIWY,LIH,ZHANGGM,etal.Interactionofwater⁃solublecalix[4]arenewithL⁃tryptophanstudiedbyfluorescencespectroscopy[J].JournalofPhotochemistryandPhotobiologyA:Chemistry,2008,197(2/3):389⁃393.[13]ZHANGQF,JIANGZT,GUOYX,etal.Complexationstudyofbrilliantcresylbluewithβ⁃cyclodextrinandits510㊀化㊀学㊀研㊀究2023年derivativesbyUV⁃visandfluorospectrometry[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy,2008,69(1):65⁃70.[14]LIUY,HANBH,CHENYT.Molecularrecognitionandcomplexationthermodynamicsofdyeguestmoleculesbymodifiedcyclodextrinsandcalixarenesulfonates[J].TheJournalofPhysicalChemistryB,2002,106(18):4678⁃4687.[15]MOCKWL,SHIHNY.Structureandselectivityinhost⁃guestcomplexesofcucurbituril[J].TheJournalofOrganicChemistry,1986,51(23):4440⁃4446.[责任编辑:吴文鹏]。
环糊精包合物的分子尺寸,纳米

环糊精包合物的分子尺寸,纳米英文版Molecular Size of Cyclodextrin Inclusion Complexes, NanoscaleCyclodextrins are cyclic oligosaccharides composed of glucose units. They have a unique structure that allows them to form inclusion complexes with a variety of guest molecules. These inclusion complexes have been widely studied for their potential applications in various fields, including drug delivery, food science, and environmental remediation.One of the key properties of cyclodextrin inclusion complexes is their molecular size. The size of the inclusion complex is determined by the size of the guest molecule and the cavity size of the cyclodextrin molecule. In general, cyclodextrins can form inclusion complexes with guest molecules that are smaller than the cavity size of the cyclodextrin molecule. This results in the guest molecule being encapsulated within the cavity of the cyclodextrin molecule, forming a stable inclusion complex.The molecular size of cyclodextrin inclusion complexes is of particular interest in the field of nanotechnology. Nanoparticles formed by cyclodextrin inclusion complexes have unique properties that make them ideal for various applications. For example, the small size of these nanoparticles allows them to penetrate cell membranes easily, making them promising candidates for drug delivery systems. Additionally, the encapsulation of guest molecules within cyclodextrin nanoparticles can protect the guest molecules from degradation and improve their stability.Overall, the molecular size of cyclodextrin inclusion complexes plays a crucial rolein determining their properties and potential applications. Further research in this area is needed to fully understand the behavior of these inclusion complexes at the nanoscale.中文翻译环糊精包合物的分子尺寸,纳米环糊精是由葡萄糖单元组成的环状寡糖。
INCLUSION COMPLEX

Material for inclusion complex
The common material for inclusion complex are Cyclodextrin and its derivative
Cyclodextrin (CD) is the product of
starch by using the Cyclodextrin glucanotransferase ,it is cyclic oligosaccharides consisting of 6-12 glucoses units, mostly α, β and γcyclodextrins (or 6,7 and 8 glucose units respectively). the main difference of the three types are the size of the cavity and the physical property
Release of inclusion complex
Inclusion complex is usually diluted in our body, and some contents in our blood or tissues can competitively replace the drug, resulting a rapid release. Drug can also be released with the degradation of the material
Structure of the β- Cyclodextrin
三种CD的基本性质
Cyclodextrin derivative is a sort of better material with some modified properties which make them easier to held guest molecules, here it can be classified into two groups: Hydrosoluble CD derivative Hydrophobic CD derivative
环糊精包合原理

β环糊精及其衍生物包合原理与制药技术资料来源:超星电子图书馆藏书\<药剂学>第四版\毕殿洲主编第六章制剂新技术(P108-112)\陆彬编著制剂新技术涉及范围广,内容多。
本章仅对目前在制剂中应用较成熟,且能改变药物的物理性质或释放性能的新技术进行讨论,内容有包合技术、固体分散技术以及微型包囊技术。
包合技术在药剂学中的应用很广泛。
包合技术系指一种分子被包嵌于另一种分子的空穴结构内,形成包合物(inClusion Compound)的技术。
这种包合物是由主分子(host mo1eCule)和客分子(guest moleCule)两种组分加合组成,主分子具有较大的空穴结构,足以将客分子容纳在内,形成分子囊(mo1eCule Capsule)。
药物作为客分子经包合后,溶解度增大,稳定性提高,液体药物可粉末化,可防止挥发性成分挥发,掩盖药物的不良气味或味道,调节释药速率,提高药物的生物利用度,降低药物的刺激性与毒副作用等。
如难溶性药物前列腺素E 2经包合后溶解度大大提高,并可制成粉针剂。
盐酸雷尼替丁具有不良臭味,可制成包合物加以改善[1],可提高病人用药的顺从性。
陈皮挥发油制成包合物后,可粉末化且可防止挥发[2]。
诺氟沙星难溶于水,口服生物利用度低。
制成诺氮沙星-β环糊精包合物胶囊[3],该胶囊起效快,相对生物利用度提高到%。
用研磨法制得维A酸-β环糊精包合物后[4],包合物稳定性明显提高,副作用的发生率明显降低。
硝酸异山梨醇酯-二甲基β环糊精包合物片剂血药水平可维持相当长时间,说明包合物具有明显的缓释性。
目前利用包合技术生产且已上市的产品有碘口含片、吡罗昔康片、螺内酯片以及可遮盖舌部麻木副作用的磷酸苯丙哌林片等。
包合物能否形成及其是否稳定,主要取决于主分子和客分子的立体结构和二者的极性:客分子必须和主分子的空穴形状和大小相适应,包合物的稳定性主要取决于两组分间的范德华力。
包合过程是物理过程而不是化学反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Photochemistry and Photobiology A:Chemistry200(2008)377–380Contents lists available at ScienceDirectJournal of Photochemistry and Photobiology A:Chemistryj o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/j p h o t o c h em Host/guest complex of-cyclodextrin/5-thia pentacene-14-one for photoinitiated polymerization of acrylamide in waterDemet Karaca Balta,Nergis Arsu∗Yildiz Technical University,Department of Chemistry,Davutpasa Campus,34210Istanbul,Turkeya r t i c l e i n f oArticle history:Received11June2008Received in revised form9August2008 Accepted31August2008Available online7September2008Keywords:Anthracene-CyclodextrinSinglet oxygenPhotopolymerizationThioxanthone a b s t r a c t-Cyclodextrin(-CD)was used to complex the photoinitiator,5-thia pentacene-14-one(TX-A),yielding a water-soluble host/guest complex.IR,UV–Vis andfluorescence spectroscopy were employed to char-acterize complexed-CD/TX-A.Photoinitiated polymerization of acrylamide in water was achieved with -CD/TX-A in the presence of N-methyldiethanolamine(MDEA).Excellent polymerization yields were observed in air saturated solutions when MDEA was added.©2008Elsevier B.V.All rights reserved.1.IntroductionCyclodextrins(CDs)are cyclic oligosaccharides built from six, seven,eight or nine optically active glucopyranose units(␣-CD,-CD,␥-CD or␦-CD,respectively)with a hydrophobic cavity and hydrophilic exterior[1].Because of their special molecular structure,these molecules have the capability to enclose small hydrophobic molecules into their cavity and consequently to form host/guest compounds in aqueous solution and in emulsion[2–5].Photoinitiated free radical polymerization is a well-accepted technology whichfinds industrial application in coatings on var-ious materials,adhesives,printing inks and photoresists[6–10]. Environmental issues involving conventional organic solvents are one of the major concerns in such applications.Photopolymeriza-tion in aqueous solution is a highly effective approach using water instead of organic solvents.Pioneering work by Ritter demonstrated that hydrophobic vinyl monomers became water soluble due to the inclusion/complexation of CD and can easily be polymerized in aqueous solution in the presence of a water-soluble thermal free radical initiator[11].During polymerization,the CD gradually slipped off from the growing chain and remained in an aqueous phase.The concomitantly precipitated polymer was obtained in high yields.Photoinitiators play a vital role in photopolymeriza-tion as they generate initiating species upon photolysis.The same ∗Corresponding author.Tel.:+902123834186;fax:+902123834134.E-mail address:narsu@.tr(N.Arsu).research group also showed that the complexation of a Type I (␣-cleavage)photoinitiator,namely2-hydroxy-1-phenylpropan-1-one,with methylated-CD(Me--CD)results in the formation of a water-soluble host/guest complex[12].Compared to the bare photoinitiator,this complex exhibited a much higher initiation efficiency in the polymerization of the water-soluble monomer, N-isopropylacrylamide[12].In another study,Li et al.[13]demon-strated that the host/guest complexation of Me--CD with the more hydrophobic photoinitiator,2,2-dimethoxy-2-phenyl acetophe-none(DMPA),gave a stable water-soluble compound with high photoactivity and the same efficiency of polymerization.Yin et al. also prepared a similar water-soluble supramolecular-structured photoinitiator between Me--CD and DMPA.The efficiency of Me--CD/DMPA was found to be a more efficient photoinitiator than DMPA[14].We reported previously the photoactivity of TX groups chemically attached to-CD and their efficiency in the pho-topolymerization of methyl methacrylate(MMA)which can form a host/guest complex with these molecules[15](see Scheme1).As a continuing interest in synthesizing novel photoinitiators, thioxanthone-anthracene(TX-A),namely5-thia-pentacene-14-one,possessing respective photochromic groups was synthesized and it was found that TX-A is an efficient photoinitiator for free rad-ical polymerization of acrylic and styrenic type monomers in the presence of oxygen(see Scheme2)[16].UV–Vis,FT-IR andfluorescence spectroscopic and polymer-ization studies revealed that photoinitiation occurs through the anthracene chromophore.In contrast to thioxanthone based1010-6030/$–see front matter©2008Elsevier B.V.All rights reserved. doi:10.1016/j.jphotochem.2008.08.017378 D.K.Balta,N.Arsu /Journal of Photochemistry and Photobiology A:Chemistry 200(2008)377–380Scheme 1.Structure of thioxanthone--cyclodextrin (TX--CD).Scheme 2.Photoinitiated free radical polymerization by using thioxanthone-anthracene (TX-A).photoinitiators,TX-A does not require an additional hydrogen donor for the initiation.In this study,TX-A was used as initiator and prepared as an inclusion complex with -CD in water.The photoinitiated poly-merization of acrylamide with -CD/TX-A complex was achieved in an air atmosphere.2.Experimental part 2.1.Materials-Cyclodextrin (Aldrich)and N -methyldiethanolamine (MDEA)(Aldrich),acrylamide (AAm,97%,Merck)and methanol (Merck)were used as received.5-Thia pentacene-14-one (TX-A)was pre-pared as indicated in literature [16].Distilled water was used as solvent for acrylamide plexation of photoinitiator0.57g (0.5mmol)of -CD was dissolved in 100mL of distilled water in 50◦C and 0.0312g (0.1mmol)of photoinitiator was added.The colorless dispersion was sonicated for 30min yielding a clear yellow solution of the complexed photoinitiator.The host/guest complex was prepared with -CD/TX-A molar ratios of 5:1;10:1;50:1and 100:1,respectively.2.3.Photopolymerization in waterAppropriate solutions of the acrylamide (1.0M)as monomer and the host/guest complex of -CD/TX-A in water with MDEA were irradiated in an air atmosphere in a photoreactor consisting of a 400W medium pressure mercury lamp and a water cooling sys-tem.Polymers were obtained after precipitation in methanol and drying in vacuo .Conversions for all samples were calculated gravi-metrically.2.4.CharacterizationGel permeation chromatography (GPC)measurements were performed at room temperature with a setup consisting of a pump (HP 1050),a refractive index detector (HP 1047A),and three high resolution Waters columns (AQ3.0,AQ4.0and AQ5.0).The effec-tive molecular weight ranges were 1000–60,000,10,000–400,000and 50,000–4,000,000,respectively.Water was used as eluent at a flow rate of 0.5mL/min at room temperature.Data analyses were performed with HP Chemstation Software.Calibration with lin-ear polyethylene oxide standards (Polymer Laboratories)was used to estimate the molecular weights.UV–Vis spectra were taken on an Agilent 8453.Fluorescence spectra were recorded on a Jobin Yvon–Horiba Fluoromax-P.3.Results and discussionTX-A is a novel oil soluble photoinitiator and it turned out to be fully water soluble after complexation with -CD.Several methods were applied to the characterization of -CD/TX-A com-plex.The IR spectrum indicated the formation of -CD/TX-A paring the spectra of TX-A with the complexed -CD/TX-A it became obvious that the characteristic signal for the carbonyl group of TX-A had significantly shifted to higher frequencies (from 1630to 1651)due to the influence of the -CD host component [12].The UV spectra of TX-A in DMF and the complexed -CD/TX-A in water,are given in Fig.1.UV–Vis absorption spectra of both uncomplexed TX-A and complexed -CD/TX-A proved the inclusion complex (see Fig.1).As can be seen from Fig.1,the absorption spectra had simi-lar spectral shapes and lower intensity.Fluorescence spectroscopy was also employed to characterize the inclusion complex of -CD/TX-A.The emission spectrum represents the characteris-tics of the anthracene moiety rather than thioxanthone (see Fig.2).We used Benesi–Hildebrand’s method to obtain information on the stoichiometry of the -CD/TX-A complex [17–19].The enhance-ment of the fluorescence intensity was measured as a function of host concentration,while the total concentration of TX-A remained constant.It is interesting to note that the increase in fluores-cence intensity of TX-A with increasing -CD concentration is attributed to the incorporation of TX-A into the nonpolar cavity.The enhancement of fluorescence intensity was observed up to a certain concentration of CD;with further increases of host concentration,some errors occurred (see Fig.3).Fig.1.Absorption spectra of TX-A [1×10−4mol L −1]in DMF and -CD/TX-A complex [2×10−4mol L −1]and -CD [1×10−3mol L −1]in water.D.K.Balta,N.Arsu /Journal of Photochemistry and Photobiology A:Chemistry 200(2008)377–380379Fig.2.Fluorescence spectra of TX-A [1×10−4mol L −1]in DMF and -CD/TX-A [2×10−4mol L −1]complex in water exc =360nm.Fig.3.Effect of -CD on the fluorescence spectrum of TX-A [1×10−3mol L −1]in DMSO.The data in Fig.4can be treated using the Benesi–Hildebrand equation for 1:1(Eq.(1))binding model or 2:1model (Eq.(2)).1I −I 0=1I 1−I 0+1(I 1−I 0)K [ˇ−CD](1)1I −I 0=1I 1−I 0+1(I 1−I 0)K [ˇ−CD]2(2)Fig.4.The Benesi–Hildbrand plot of 1/(I −I 0)vs.1/[-CD]2.Table 1Photoinitiated polymerization of acrylamide with -CD/TX-A complex in water [TX-A](mol L −1)[-CD](mol L −1)Conversion (%)M n a ×10−4(g mol −1)M w /M n a 5.0×10−55×10−350.918.9 2.441.0×10−45×10−324.812.7 3.755.0×10−45×10−324.811.5 4.021.0×10−35×10−314.09.64.25t irr :15min.[MDEA]:5×10−3mol L −1.aDetermined by GPC using polyethylene oxide standards.[Aam]=1.0M.where I and I 0are the initial fluorescence intensities of TX-A in thepresence and absence of CD,respectively,and I 1is the expected fluorescence intensity when all quest molecules are included in a complex.According to Eq.(2),a plot of 1/I −I 0versus 1/[-CD]2,produces a good straight line (Fig.4),from which K was calculated to be 5.6×106M −1.The linearity in the plot (R 2=0.98)reflects the formation of a 2:1complex between -CD and TX-A.The linearity of the plot obtained from Eq.(1)was not very satisfying,hence the possibility of a 1:1complex formation is ruled out.The resulting homogenous aqueous reaction mixture,included -CD/TX-A complex and N -methyldiethanolamine as co-initiator for the polymerization of acrylamide in water,using a medium pressure mercury lamp as the polychromatic light source for irra-diation (see Table 1).Photoinitiated polymerization of AAm in water with -CD/TX-A was not achieved in an air atmosphere compared to TX-A itself.There is no similarity in the polymerization results between uncomplexed TX-A and complexed -CD/TX-A.Previously,it was found that TX-A is an efficient photoinitiator for the polymerization of methyl methacrylate and styrene in the presence of oxygen with-out a co-initiator such as MDEA [16],in contrast to thioxanthone types of photoinitiators.According to the results obtained from IR,UV–Vis and fluores-cence spectroscopy,the anthracene part seems to be included in the CD cavity and the phenyl group on the other side of the carbonyl was trapped with another CD,and the carbonyl group as a photoactive site is situated in the exterior of the cavity of cyclodextrin.The highest conversion percentage values were obtained espe-cially at low initiator concentrations of complex (see Table 1).The increase of the concentration of the photoinitiator led to a decrease in the conversion percentage.High concentrations of photoinitiator may lead to an absorption of light in the upper region of the film or solution,which decreases the rate of polymerization due to radical termination.Also if the light does not penetrate the whole film or solution,radical production will not occur in all of the polymer-izable material [20–22].Polymerization in water did not occur in air atmosphere without adding MDEA to the solution of complex.Therefore,additional photopolymerization studies using -CD/TX-A complex in H 2O and D 2O were also performed in air atmosphere (see Table 2).Anthracene derivatives are known to form instable endoperox-ides upon irradiation.These endoperoxides decompose throughTable 2Photoinitiated polymerization of acrylamide with -CD/TX-A complex in H 2O and D 2O Run [AAm](mol L −1)D 2O Conv.%H 2O Conv.%[MDEA](mol L −1)11 1.2––2167.550.95×10−330.5–––40.536.032.05×10−350.25–––60.2510.3<15×10−3t irr :15min.[TX-A]:5×10−5M,[-CD]:5×10−3M.380 D.K.Balta,N.Arsu /Journal of Photochemistry and Photobiology A:Chemistry 200(2008)377–380Fig.5.Absorption spectra of TX-A [1×10−4mol L −1]in DMF and poly-(acrylamide)obtained by photoinitiated polymerization of AAm with -CD/TX-A complex inwater.Scheme 3.Photoinitiated free radical polymerization of acrylamide with -CD/TX-A complex in the presence of MDEA in water.radical intermediates,which could initiate the polymerization of the monomers.It is known that singlet oxygen lives much longer in deuterated solvents (D 2O)[23,24].As can be seen from Table 2,at 1M concentration of Aam,polymerization occurred without adding MDEA to the D 2O solution.When amine was added to the formula-tion,a higher conversion percentage value was obtained compare to H 2O solution.When low monomer concentration was used,no polymer was obtained in the absence of MDEA.But higher conver-sion percentage values,for various monomer concentrations,were obtained for photopolymerization of complex in D 2O.The oxygen concentration in water is about one order of magnitude lower than in regular organic solvents so oxygen quenching should be slower,and less singlet oxygen is formed in water.In addition,the life-time of singlet oxygen in water is much shorter than in most other organic solvents.Hence,the chance of reaction of singlet oxygen with the anthracene to form the endoperoxide is much lower.The obtained results confirmed this (see Table 2).Furthermore,the 9,10position of the anthracene could be shielded by the CD so that endoperoxide formation is hindered.As a result,the complex -CD/TX-A exhibited a different photoini-tiation mechanism compared with the uncomplexed TX-A.Indeed,the UV–Vis spectrum of the resulting poly-(acrylamide)confirmed that the photoinitiator (TX-A)was not attached to the polymer and the possible initiating radical is an ␣-aminoalkyl radical (see Fig.5).The carbonyl group of complexed -CD/TX-A abstracted hydro-gen from the tertiary amine (MDEA)and resulted in ␣-aminoalkyl radical initiated polymerization of the acrylamide and the proposed mechanism is given in Scheme 3.In conclusion,from the results,it was demonstrated that host/guest complexation of -CD with hydrophobic photoinitiator TX-A gave a stable water-soluble complex with high photoini-tiation reactivity.The initiation mechanisms,uncomplexed and complexed TX-A,were different from each other;complexed TX-A with -CD initiates polymerization of acrylamide according to a Type II mechanism.In contrast,uncomplexed TX-A initiated poly-merization of MMA in the presence of oxygen and possibly via endoperoxide formation.AcknowledgementsThe authors thank TUBITAK,DPT and Yildiz Technical Univer-sity Research Foundation for their financial support and Dr.Steffen Jockusch for helpful discussions.References[1]G.Wenz,Angew.Chem.106(1994)851–870.[2]A.Harada,Acta Polym.49(1998)3–17.[3]J.Jeromin,H.Ritter,Macromolecules 32(1999)5236–5239.[4]H.Ritter,J.Storsberg,Macromol.Rapid Commun.21(2000)236–241.[5]J.Leyrer,W.Machtle,Macromol.Chem.Phys.201(2000)1235–1243.[6]S.P.Pappas,UV Curing Science and Technology,Technology Marketting Corp.,Norwalk,CT,1978.[7]J.P.Fouassier,Photoinitiation,Photopolymerization and Photocuring,Hanser Verlag,Munich,1995.[8]K.Dietliker,Chemistry &Technology of UV &EB Formulation for Coatings,vol.III,Inks &Paints,SITA Technology Ltd.,London,1991.[9]R.S.Davidson,Exploring the Science,Technology and Applications of UV and EB Curing,SITA Technology Ltd.,London,1999.[10]M.K.Mishra,Y.Yagci,Handbook of Radical Vinyl Polymerization,Marcel Dekker Inc.,New York,1998(Chapter 7).[11]J.Storsberg,H.Ritter,Macromol.Rapid Commun.21(2000)236–241.[12]I.C.Alupei,V.Alupei,H.Ritter,Macromol.Rapid Commun.23(2002)55–58.[13]S.J.Li,F.P.Wu,M.Z.Li,E.J.Wang,Polymer 46(2005)11934–11939.[14]Y.Wang,X.Jiang,J.Yin,J.Appl.Pol.Sci.105(2007)3817–3823.[15]D.K.Balta,E.Bagdatli,N.Arsu,N.Ocal,Y.Yagci,J.Photochem.Photobiol.A:Chem.196(2008)33–37.[16]D.K.Balta,N.Arsu,Y.Yagci,S.Jockusch,N.J.Turro,Macromolecules 40(2007)4138–4141.[17]V.K.Indirapriyadharshini,P.Karunanithi,P.Ramamurthy,Langmuir 17(2001)4056–4060.[18]A.A.Abdel-Shafi,Spectrochim.Acta Part A 66(2007)732–738.[19]M.Mukhopadhyay,D.Banerjee,A.Koll,A.Mandal,A.Filarowski,D.Fitzmaurice,R.Das,S.Mukherjee,J.Photochem.Photobiol.A:Chem.175(2005)94–99.[20]N.Arsu,M.Aydin,Die.Angew.Makromol.Chem.266(1999)70–74.[21]N.Arsu,J.Photochem.Photobiol.A:Chem.153(2002)129–133.[22]S.Keskin,N.Arsu,Polym.Bull.57(2006)643–650.[23]N.J.Turro,N.Modern Molecular Photochemistry,University Science Books,Sausalito,CA,1991.[24]T.A.Jenny,N.J.Turro,Tetrahedron Lett.23(1982)2923–2926.。