Stata统计分析命令

合集下载

STATA命令应用及详细解释

STATA命令应用及详细解释

STATA命令应用及详细解释1. summarize:该命令用于计算数值变量的描述性统计信息,包括均值、标准差、最小值、最大值等。

2. tabulate:该命令用于生成一个分类变量的频数和百分比表。

它可以计算单个变量的分布情况,也可以计算多个变量之间的交叉分布情况。

3. tabstat:该命令用于生成一个或多个数值变量的汇总统计信息,包括均值、标准差、中位数等。

与summarize命令相比,tabstat命令可以同时计算多个变量的统计量。

4. regress:该命令用于进行线性回归分析。

可以使用regress命令估计一个自变量和一个或多个因变量之间的线性关系,并生成回归系数、拟合优度等回归结果。

5. logistic:该命令用于进行逻辑回归分析。

逻辑回归分析常用于二分类问题,可以估计自变量对因变量的影响,并生成回归系数、odds比等结果。

6. ttest:该命令用于进行两样本独立样本的t检验。

可以比较两个独立样本的均值差异,并计算t值、p值等检验结果。

7. oneway:该命令用于进行单因素方差分析。

可以比较不同组别之间的均值差异,并进行方差齐性检验和多重比较。

8. twoway:该命令用于进行双因素方差分析。

可以同时比较两个因素及其交互作用对均值差异的影响,并进行方差齐性检验和多重比较。

9. nonparametric:该命令用于进行非参数统计分析。

包括Wilcoxon秩和检验、Kruskal-Wallis H检验、Mann-Whitney U检验等非参数假设检验方法。

10. generate:该命令用于创建一个新的变量,并根据已有变量和运算符生成新的值。

生成的变量可以用于后续的计算和分析。

11. replace:该命令用于替换数据集中指定变量的值。

可以根据条件语句来替换指定变量中的值。

12. bysort:该命令用于按照一个或多个变量的值对数据集进行排序,并按照排序后的次序执行其他STATA命令。

stata常用的检验

stata常用的检验

stata常用的检验
Stata中常用的统计检验包括:
1. 单样本t检验(ttest命令):用于检验一个样本的均值是否与给定的理论值相等。

2. 双样本t检验(ttest命令):用于比较两个独立样本的均值是否存在显著差异。

3. 配对样本t检验(ttest命令):用于比较两个配对样本的均值是否存在显著差异。

4. 方差分析(anova命令):用于比较多个样本的均值是否存在显著差异。

5. 卡方检验(tab命令):用于检验两个或多个分类变量之间是否存在关联。

6. 相关性检验(correl命令):用于检验两个连续变量之间是否存在线性相关性。

7. 线性回归(reg命令):用于检验自变量与因变量之间的关系是否显著。

8. 非参数检验:包括Wilcoxon秩和检验(wilcoxon命令)、Mann-Whitney U检验(ranksum命令)等,适用于数据不满足正态分布的情况。

以上是Stata中常用的一些统计检验方法,具体使用方法可以参考Stata的官方文档或使用帮助命令获取更多信息。

Stata统计分析报告命令

Stata统计分析报告命令

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor 模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:/judson.caskey/data.html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以 winsor,也可以 trimming;(3) 附加了 by() 选项,可以分组 winsor 或 trimming;(4) 增加了 replace 选项,可以不必生成新变量,直接替换原变量。

Stata统计分析命令

Stata统计分析命令

Stata统计分析命令Stata是一种用于数据分析的统计软件,具有广泛的应用领域,可以用于社会科学、健康科学、金融等领域的数据分析。

Stata具有强大的数据处理和统计分析功能,可以对数据进行清洗、整理和分析,还可以进行数据可视化和报告制作。

本文将介绍一些常用的Stata统计分析命令,以供参考。

数据导入与清洗在进行数据分析之前,需要先将数据导入Stata软件中,并进行数据清洗。

以下是常用的数据导入和清洗命令:导入数据•use:使用已有的Stata数据集•import delimited:导入以逗号为分隔符或制表符为分隔符的纯文本数据•import excel:导入Excel数据文件•insheet:将文本文件读入数据集数据清洗•drop:删除变量或数据•keep:保存变量或数据•rename:重命名变量•egen:生成新的变量•recode:将变量值重新编码•merge:合并两个数据集描述性统计分析在进行数据分析之前,需要先对数据进行描述性分析。

以下是常用的描述性统计分析命令:•summarize:计算变量的基本统计量,如均值、标准差、最小和最大值、中位数、1/4和3/4位数•tabulate:计算变量的频数和百分比,可以进行交叉分析•graph box:绘制箱线图•graph scatter:绘制散点图统计分析在进行统计分析时,需要根据变量的类型和分析目的选择不同的统计方法。

以下是常用的统计分析命令:单样本统计分析•ttest:单样本t检验•onesamplewilcoxon:单样本Wilcoxon秩和检验双样本统计分析•ttest:双样本t检验•ranksum:Wilcoxon秩和检验相关分析•correlate:计算两个或多个变量之间的相关系数•pwcorr:计算Pearson相关系数矩阵回归分析•regress:运行普通最小二乘回归•logit:运行二元Logistic回归模型•oprobit:运行有序Logistic回归模型数据可视化数据可视化是Stata的另一个强大特性,可以使分析人员更清晰、更直观地了解数据分析结果。

Stata统计分析命令

Stata统计分析命令

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以winsor,也可以trimming;(3) 附加了by() 选项,可以分组winsor 或trimming;(4) 增加了replace 选项,可以不必生成新变量,直接替换原变量。

Stata统计分析命令..

Stata统计分析命令..

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:/judson.caskey/data.html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以winsor,也可以trimming;(3) 附加了by() 选项,可以分组winsor 或trimming;(4) 增加了replace 选项,可以不必生成新变量,直接替换原变量。

stata命令总结

stata命令总结

stata命令总结.docStata命令总结引言Stata是一款强大的统计分析软件,广泛应用于经济学、社会学、医学等领域。

Stata命令是进行数据处理、统计分析、图形展示等操作的基础。

本文将对Stata中常用的命令进行总结,以帮助用户更高效地使用Stata进行数据分析。

Stata基础命令1. 数据管理导入数据:import excel, import delimited导出数据:export excel, export delimited数据集保存:save, saveold2. 变量管理创建变量:generate, egen修改变量:replace删除变量:drop3. 数据清洗数据类型转换:destring, encode, format缺失值处理:mvdecode, drop if missing()异常值检测:tabulate, summarize描述性统计分析1. 基本统计量描述性统计:summarize频率统计:tabulate相关系数:correlate2. 分组统计分组描述:bysort, xtsum 分组汇总:collapse3. 数据转换数据长格式:reshape long 数据宽格式:reshape wide 推断性统计分析1. 假设检验t检验:ttest方差分析:anova卡方检验:tabulate, chi2 2. 回归分析线性回归:regress逻辑回归:logit泊松回归:poisson3. 时间序列分析时间序列描述:tsreport自回归模型:arima高级统计分析1. 面板数据分析面板数据描述:xtset, xtsum固定效应模型:xtreg fe随机效应模型:xtreg re2. 多层次模型多层次线性模型:xtmelogit3. 结构方程模型结构方程模型:sem绘图与可视化1. 基本图形散点图:scatter线图:line柱状图:bar2. 高级图形箱线图:boxplot直方图:histogram核密度估计图:kdensity3. 交互式图形交互式图形:twoway, graph edit编程与自动化1. 循环与条件语句循环:foreach, forvalues条件语句:if, else2. 脚本与批处理脚本编写:do-file批处理:batch3. 宏与用户定义命令宏:macro用户定义命令:program define结语Stata命令的掌握是进行高效数据分析的前提。

如何使用Stata进行统计学分析

如何使用Stata进行统计学分析

如何使用Stata进行统计学分析Stata是一种流行的统计学软件,广泛应用于各个领域的数据分析和统计学研究。

本文将介绍如何使用Stata进行统计学分析,并按照不同的主题进行划分章节。

第一章:Stata基础操作在开始使用Stata进行统计学分析之前,首先需要了解一些基础操作。

包括数据导入和导出、数据清洗、变量定义等。

Stata支持各种数据文件格式的导入,例如Excel、CSV等,通过使用`import`命令可以将数据导入到Stata中。

此外,Stata还提供了丰富的数据清洗功能,如缺失值处理、异常值处理等。

在数据准备工作完成后,可以使用`generate`命令定义变量,并使用`list`命令查看数据集的内容。

第二章:描述性统计分析描述性统计分析是了解数据的基本特征和分布情况的重要手段。

在Stata中,可以使用`summarize`命令计算变量的均值、方差、最大值、最小值等统计量。

此外,还可以使用`tabulate`命令生成频数表和列联表,用以统计分类变量的分布情况和不同变量之间的关联。

第三章:统计图形绘制统计图形是数据可视化的重要工具,有助于更直观地理解数据的特点和模式。

Stata提供了多种绘图命令,例如`histogram`命令用于绘制直方图、`scatter`命令用于绘制散点图、`boxplot`命令用于绘制箱线图等。

通过适当选择和组合这些绘图命令,可以呈现出丰富的数据图形,有助于揭示数据背后的规律。

第四章:参数估计与假设检验参数估计和假设检验是统计学分析的核心内容。

Stata提供了多种统计分析命令,如`ttest`命令用于独立样本t检验、`regress`命令用于回归分析、`anova`命令用于方差分析等。

这些命令可以根据用户提供的数据和分析需求,进行相应的估计和检验,并输出相应的统计结果和解释。

第五章:相关分析和回归分析相关分析和回归分析是统计学中常用的分析方法,用于探究变量之间的关系和预测模型的建立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Stata统计分析常用命令汇总一、winsorize极端值处理范围:一般在1%和99%分位做极端值处理,对于小于1%的数用1%的值赋值,对于大于99%的数用99%的值赋值。

1、Stata中的单变量极端值处理:stata 11.0,在命令窗口输入“findit winsor”后,系统弹出一个窗口,安装winsor模块安装好模块之后,就可以调用winsor命令,命令格式:winsor var1, gen(new var) p(0.01) 或者在命令窗口中输入:ssc install winsor安装winsor命令。

winsor命令不能进行批量处理。

2、批量进行winsorize极端值处理:打开链接:/judson.caskey/data.html,找到winsorizeJ,点击右键,另存为到stata中的ado/plus/目录下即可。

命令格式:winsorizeJ var1var2var3,suffix(w)即可,这样会生成三个新变量,var1w var2w var3w,而且默认的是上下1%winsorize。

如果要修改分位点,则写成如下格式:winsorizeJ var 1 var2 var3,suffix(w) cuts(5 95)。

3、Excel中的极端值处理:(略)winsor2 命令使用说明简介:winsor2 winsorize or trim (if trim option is specified) the variables in varlist at particular percentiles specified by option cuts(# #). In defult, new variables will be generated with a suffix "_w" or "_tr", which can be changed by specifying suffix() option. The replace option replaces the variables with their winsorized or trimmed ones.相比于winsor命令的改进:(1) 可以批量处理多个变量;(2) 不仅可以winsor,也可以trimming;(3) 附加了by() 选项,可以分组winsor 或trimming;(4) 增加了replace 选项,可以不必生成新变量,直接替换原变量。

范例:*- winsor at (p1 p99), get new variable "wage_w". sysuse nlsw88, clear. winsor2 wage*- left-trimming at 2th percentile. winsor2 wage, cuts(2 100) trim*- winsor variables by (industry south), overwrite the old variables. winsor2 wage hours, replace by(industry south)使用方法:1. 请将winsor2.ado 和winsor2.sthlp 放置于stata12\ado\base\w 文件夹下;2. 输入help winsor2 可以查看帮助文件;二、描述性统计1、summarize命令格式:su、sum或者summarize [varlist] [if] [in] [weight] [,options]如果summarize或sum后不加任何变量,则默认对数据中的所有变量进行描述统计options 选项:detail 表示产生更加详细的统计变量Separator(n)表示每n个变量画一条分界线,n=0表示禁止使用分界线Summarize 描述统计输出表中包含:样本容量、平均数、标准差、最小值和最大值2、tabstat命令格式:tabstat [varlist] [if] [in] [weight] [,options]options 选项:stat(statname) 表示设定所需要的统计量col(stat)或c(s)表示将结果报表转置统计量:mean:平均数count/n:观测值数目sum:加总max/min :最大值/最小值range :极差sd:标准差cv:变异系数semean :平均标准误差skewness:偏度var :方差kurtosis :峰度median/p50:中位数p# :#%百分位数例如:tabstat[varlist],stat(count mean sd median min max range) col(stat)3、描述性统计结果输出到word或Excel用sum做的描述性统计:logout, save(miaoshutongji) word replace:sum用tabstat做的描述性统计:logout, save(miaoshutongji) word replace:tabstat [varlist] ,stat(count mean sd median min max range) col(stat)分组描述:bysort var:三、相关性分析(一)相关性分析1、Pearson相关系数命令格式:correlate(简写:cor或corr)[varlist] [if] [in] [weight] [,options]2、spearman相关系数命令格式:spearman[varlist], stats(rho p)3、在Stata中,命令corr用于计算一组变量间的协方差或相关系数矩阵;4、命令pwcorr可用于计算一组变量中两两变量的相关系数,同时还可以对相关系数的显著性进行检验;option选项中加上sig可显示显著性水平:pwcorr[varlist] ,sig5、命令pcorr 用于计算一组变量中两两变量的偏相关系数并进行显著性检验。

6、Spearman 和Pearson 检验同在一个表的命令:corrtbl[varlist] ,corrvars ([varlist])输出结果中,上三角为Spearman相关系数和显著水平,下三角为Pearson系数和显著水平。

(二)输出相关系数表到word或Excel中例如:logout, save(mytable) word replace: pwcorr_a price mpg rep78 headroom trunk, star1(0.01) star5(0.05) star10(0.1)四、截面数据单方程线性回归模型的Stata实现命令格式:regress(简写:reg)depvar indepvars [if] [in] [weigh] [option](depvar表示因变量,indepvars表示自变量)五、异方差的检验与处理1、检验异方差命令格式:hettest2、判断异方差的标准:看P值的大小来判断,如果P值小于0.05,则不能排除异方差的可能,上图中P值等于0.4584>0.05,因此,可以排除异方差的可能性。

3、处理异方差命令格式:在reg命令后加上“,r”或者“,robust”即可。

经异方差处理后的回归不显示调整后的R2(adj-R2),如果要查看调整后的R2,再输入命令:di e(r2_a)六、多重共线性(自变量之间高度相关)命令格式:vif(一)判断多重共线性的标准(两个标准必须同时满足):1、最大的vif大于10;2、平均的vif大于1 。

(二)多重共线性的修正1、采用逐步回归进行修正,命令格式:sw reg depvar indepvar, pr(0.05)2、对于含二次项的,使用“对中”的方法,既可以保留二次项,又可以在一定程度上克服多重共线性的问题:先定义两个变量,分别为该变量减去其均值和该变量的平方,命令如下:sum vargen var1=var-r(mean)gen var2=var^2再用新变量代替原来的变量进行回归处理七、内生性的检验与处理(内生性是指自变量与误差项之间有关系)1、内生性的检验:ovtest看P值的大小来判断,如果P值小于0.05,则不能排除内生性的可能,上图中P值等于0.4717>0.05,因此,可以排除内生性的可能。

2、内生性的处理:使用工具变量法:ivreg内生性的三个来源:测量误差、遗漏变量和双向因果。

1、变量的内生性。

这个是没有办法单独检验的。

当有合适工具变量时候,是可以检验的,就是hausman检验2、工具变量的外生性。

这个也是没办法检验的。

当有很多工具变量时候,可以检验是否有不是外生的,就是“过度识别”问题3、工具变量的相关性。

这个可以说成是“弱工具变量”问题,检验可以通过一阶段的F值。

还可以利用Partial R2。

4、估计方法stata里面有这么几个2sls,2sls smal、liml、gmm,各自适用情况:small适合小样本;liml 适合弱工具变量;gmm适合异方差。

【例子】webuse hsng2*Fit a regression via 2SLS, requesting small-sample statisticsivregress 2sls rent pcturban (hsngval = faminc iregion), small*Fit a regression using the LIML estimatorivregress liml rent pcturban (hsngval = faminc iregion)*Fit a regression via GMM using the default heteroskedasticity-robust weight matrixivregress gmm rent pcturban (hsngval = faminc iregion)*Fit a regression via GMM using a heteroskedasticity-robust weight matrix, requesting nonrobust standard errorsivregress gmm rent pcturban (hsngval = faminc iregion), vce(unadjusted)*检验estata firststage ,all forcenonrobust \\\可以查看第一阶段F值,已经partial R2estat overid \\\查看是否过度识别estat endogenous \\\查看是否异方差regress 2sls rent pcturban hsngvalest store m1ivregress 2sls rent pcturban (hsngval = faminc iregion)est store m2hausman m1 m2 \\\内生检验八、线性方程组的回归分析命令格式:sureg(depvar1 varlist1)(depvar2 varlist2)…(depvarN varlistN) [if] [in] [weigh]九、联立方程组命令格式:reg3 (depvar1 varlist1)(depvar2 varlist2)…(depvarN varlistN) [if] [in] [weigh]十、面板数据的固定效应和随机效应Xtset固定效应命令格式:xtreg depvar indepvars [if] [in] ,fe[FE_options]随机效应命令格式:xtreg depvar indepvars [if] [in] ,re[FE_options]hausman检验固定效应还是随机效应?【例子】xtreg y var1 var2 var3,feest store fextreg y var1 var2 var3,reest store rehausman fe re,sigmamorehausman fe re,sigmaless*sigmamore利用有效估计量方差,即re*sigmaless利用一致估计量方差,即fe十一:Stata回归结果的导出1、在命令窗口中输入:ssc install esttab,安装命令esttab2、reg 回归3、esttab using filename.rtf将以word形式输出回归结果,后缀改成.xls或者.csv则以Excel 格式输出,输出内容为变量名称和相应的回归系数,t值,显著性水平标识。

相关文档
最新文档