植被光谱分析与植被指数计算

植被光谱分析与植被指数计算
植被光谱分析与植被指数计算

植被光谱分析与植被指数计算

在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation i ndices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁

迫性相关的色素、植被冠层中水分含量等。

包括以下内容:

? ?●植被光谱特征

? ?●植被指数

? ?●HJ-1-HSI植被指数计算

1.植被光谱特征

植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm t o 2500 nm,这也是传感器设计选择的波长范围。这个波长范围可范围以下四个部分:

??●可见光(Visible):400 nm to 700 nm

??●近红外(Near-infrared——NIR):700 nm to 1300 nm

??●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm

??●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm

其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

SWIR-1 和SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。

植被可分为三个部分组成:

??●植物叶片(Plant Foliage)

??●植被冠层(Plant Canopies)

??●非光合作用植被(Non-Photosynthetic Vegetation)

这三个部分是植被分析的基础,下面对他们详细介绍。

1.1植物叶片(Plant Foliage)

植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。对波谱特征产生重要影响

的主要化学成份包括:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),这也是遥感反演的基础,

如用植被指数来估算叶子的化学成份。

●色素(Pigments)

叶色素主要包括叶绿素、叶黄素和花青素。这些都是植被的健康的指标,比如含高浓度叶绿素的植被一般很健康,相反,叶黄素和花青素常常出现在健康较差的植被,濒临死亡的植被出现红色、黄色或棕色。

叶色素只影响可见光部分(400nm~700nm),图1为几种叶色素在可见光范围的相对光谱吸收特征。

图1 部分叶色素的相对光谱吸收特征

●水分(Water)

叶子的几何特性、冠层结构和对水的需求影响植被的水分含量。水分对植被反射率的影响波段范围在NIR和SWIR

(图2)。在1400nm和1900nm附近有吸收波谷,但是传感器一般会避开这两个波段范围。在970nm和1190nm附近

也有强吸收特征,可利用这两个波段范围监测植被水分。

●碳(Carbon)

植物中的碳是以很多形式存在,包括糖,淀粉,纤维素和木质素等。纤维素和木质素的吸收特征表现在短波光谱范

围内容(图3)。

图2 叶片水和碳(纤维素和木质素)相对光谱吸收特征

●氮(Nitrogen)

叶子中的氮元素一般包含在叶绿素、蛋白质以及其他分子中。植被指数(VI)对包含在叶绿素中的氮元素很敏感(大约含6%氮)。包含在蛋白质中的氮元素在1500nm~1720 nm范围内对叶片波谱特征影响比较大。

从上可以看出,植被与辐射的相互作用主要体现在叶片的波谱特征,因此,在可见光谱段内,主要太阳辐射的吸收来自叶绿素、叶黄素和花青素,形成450nm和670nm附近的吸收谷;在近红外谱段内,主要太阳辐射的吸收来自水分,形成970nm和1190nm两个水吸收带;在短波红外谱段内,除了水分,各种形式存在的碳和氮也对太阳辐射的吸收有一

定的贡献,形成1400nm和1900nm吸收谷。图3是叶片反射率与透射光谱(Transmittance Spectra)对比例子,木本植被和草本植被在色素、水分、氮等含量不一样,反射率与透射光谱关系也不一样。

图3木本植物(A)和草本植物(B)的叶片反射率与透射光谱

1.2植被冠层(Plant Canopies)

单片叶子的反射特性对植被冠层光谱特征是重要的,此外,叶子数量和冠层结构对植被冠层的散射、吸收也有重要的影响。比如不同的生态系统中,森林、草原、或农业用地等都具有不同的反射特性,虽然它们单个叶子很类似。

有很多植被模型用于描述冠层光谱特征。两个最重要的是叶面积指数(LAI)和叶倾叶角分布(LAD)。LA I指每单位面积地上绿叶面积,这表现了冠层中绿色植被的总数;LAD描述了树叶所有类型的定向,常用平均叶倾角(MLA)近似。

MLA表示冠层中的每个叶片角度与水平方向的差值的平均值。

图4表示LAI和LA D对植被冠层的影响效果,MLA近似LAD。在近红外谱段内,植被强反射太阳辐射,植被冠层在可见光和SWIR-2是强吸收。使用可见光和SWIR-2的植被指数对上层林冠非常敏感。

图4

LAI (A) 和MLA (B) 的增减对植被冠层的影响

1.3非光合作用植被(Non-Photosynthetic V egetation)

在自然界里,还包括占了全球植被覆盖一半的衰老或死亡植被,它们被称为非光合作用植被(简称NPV)。NPV的

冠层也具有木本森林结构,如树干,茎,和树枝等。

NPV主要包含碳元素,以淀粉,纤维素和木质素形式存在,NPV的光谱特征主要受这些物质支配。在短波红外内的波动比较大,与绿色植被相反,SWIR-1 和SWIR-2范围内散射占主导。图5显示了绿色植被和NPV冠层光谱特征。

图5 透射绿色植被和干植被的冠层反射特性的变化(400nm~2500nm)

2.植被指数

植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。所有的植被指数要求从高精度的多光谱或者高光谱反射率数据中计算。未经过大气校正的辐射亮度或者无量纲的DN值数据不适合计算

植被指数。

下面是7大类27种植被指数的说明,这些植被指数都是经过严格生物条件下测试的。

2.1宽带绿度——Broadband Greenness (5种)

宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。宽带绿度指数常用于植被物候发育的

研究,土地利用和气候影响评估,植被生产力建模等。

宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。下面的公式中规定波段的中心波

长:ρNIR = 800 nm,ρRED = 680 nm,ρBLUE = 450 nm。

表1 宽带绿度指数

1)归一化植被指数(Normalized Difference Vegetation Index——NDVI)

NDVI众所周知的一种植被指数,在LAI值很高,即植被茂密时其灵敏度会降低。其计算公式为:

NDVI=

(式1)

值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

2)比值植被指数(Simple Ratio Index——SR)

SR指数也是众所周知的一种植被指数,在LAI值很高,即植被茂密时其灵敏度会降低。其计算公式为:

SR=

(式2)

值的范围是0~30+,一般绿色植被区的范围是2~8。

3)增强植被指数(E nhanced V egetation Index——E VI)

EVI通过加入蓝色波段以增强植被信号,矫正土壤背景和气溶胶散射的影响。EVI常用于LAI值高,即植被茂密区。其

计算公式为:

EVI=

(式3)

值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

4)大气阻抗植被指数(Atmospherically Resistant Vegetation Index——ARVI)

ARVI是NDVI的改进,它使用蓝色波段矫正大气散射的影响(如气溶胶),ARVI常用于大气气溶胶浓度很高的区域,如烟尘污染的热带地区或原始刀耕火种地区。其计算公式为:

EVI=

(式4)

值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

5)绿度总和指数(Sum Green Index——SG)

SG指数是用于探测绿色植被变化最简单的植被指数。由于在可见光范围内,绿色植被对光强吸收,SG指数对稀疏植被的小变化非常敏感。SG指数是500 nm ~600 nm范围内平均波谱反射率。

总和最后会被转化回反射率。值的范围是0~50+,一般植被区域是10~25。

2.2窄带绿度——Narrowband Greenness (7种)

窄带绿度指数对叶绿素含量、叶子表面冠层、叶聚丛、冠层结构非常敏感。它使用了红色与近红外区域部分——红边,红边是介于690 nm ~ 740 nm之间区域,包括吸收与散射。它比宽带绿度指数更加灵敏,特别是对于茂密植被。

表2窄带绿度指数

1)红边归一化植被指数(Red Edge Normaliz ed Difference V egetation Index——NDVI 705)

NDVI 705是NDVI的改进型,它对叶冠层的微小变化、林窗片断和衰老非常灵敏。它可用于精细农业、森

林监测、植被胁迫性探测等。其计算公式为[7] [8]:

NDVI705=

(式5)

值的范围是-1~1,一般绿色植被区的范围是0.2~0.9。

2)改进红边比值植被指数(Modified Red Edge Simple Ratio Index——mSR 705)

mSR 705改正了叶片的镜面反射效应,可它可用于精细农业、森林监测、植被胁迫性探测等。其计

算公式为[6]:

mSR705=

(式6)

值的范围是0~30,一般绿色植被区的范围是2~8。

3)改进红边归一化植被指数(Modified Red Edge Normaliz ed Difference V egetation Index——mNDVI 705) mNDVI 705是NDVI 705的改进型,它考虑了叶片的镜面反射效应。它对叶冠层的微小变化、林窗片断和衰老非常灵敏。它可用于精细农业、森林监测、植被胁迫性探测等。

其计算公式为:

mNDVI705=

(式7)

值的范围是-1~1,一般绿色植被区的范围是0.2~0.7。

4)Vogelmann 红边指数1(Vogelmann Red Edge Index 1——VO G1)

VOG1指数对叶绿素浓度、叶冠层和水分含量的综合非常敏感。它可应用于植物物候变化研究、精细农业和植被生产

力建模。其计算公式为:

VOG1=

(式8)

值的范围是0~20,一般绿色植被区的范围是4~8。

5)Vogelmann 红边指数2(Vogelmann Red Edge Index 2——VO G2)

VOG2指数对叶绿素浓度、叶冠层和水分含量的综合非常敏感。它可应用于植物物候变化研究、精细农业和植被生产

力建模。其计算公式为:

VOG2=

(式9)

值的范围是0~20,一般绿色植被区的范围是4~8。

6)Vogelmann 红边指数3(Vogelmann Red Edge Index 3——VOG3)

VOG3指数对叶绿素浓度、叶冠层和水分含量的综合非常敏感。它可应用于植物物候变化研究、精细农业和植被生产

力建模。其计算公式为:

VOG3=

(式10)

值的范围是0~20,一般绿色植被区的范围是4~8。

7)红边位置指数(Red Edge Position Index——REP)

REP指数对植被叶绿素浓度变化、叶绿素浓度增加使得吸收特征变宽及红边向长波段方向移动非常敏感。红边位置在690 nm ~ 740 nm范围内急剧倾斜波长范围,一般植被在700nm~730nm。

REP指数的结果输出是在0.69微米~0.74微米光谱范围内,植被红边区域内的反射率的最大导数的波长。常用于农作物监测和估产,生态系统干扰探测,光合作用模型,和由气候或其他因素产生的冠层胁迫性。

2.3光利用率——Light Use Efficiency (3种)

光利用率指数是用来度量植被在光合作用中对入射光的利用效率。光的利用效率直接与碳吸收效率、植被生长速度

和光合有效辐射(fAPAR)有很大的关系。

表3光利用率指数

1)光化学植被指数(Photochemical Reflectance Index——PRI)

PRI对活植物的类胡萝卜素(尤其黄色色素)变化非常敏感,类胡萝卜素可标识光合作用光的利用率,或者碳吸收效率。可用于研究植被生产力和胁迫性,常绿灌木植被的健康,森林以及农作物的衰老。其计算公式为:

PRI=

(式11)

值的范围是-1~1,一般绿色植被区的范围是-0.2~0.2。

2)结构不敏感色素指数(Structure Insensitive Pigment Index——SIPI)

SIPI用来最大限度地提高类胡萝卜素(例如α-胡萝卜素和β-胡萝卜素)与叶绿素比率在冠层结构(如叶面积指数)减少时的敏感度,SIPI的增加标识冠层胁迫性的增加。可用于植被健康监测、植物生理胁迫性检测和作物生产和产量分

析。其计算公式为:

SIPI=

(式12)

值的范围是0~2,一般绿色植被区的范围是0.8~1.8。

3)红绿比值指数(Red Green Ratio Index——RG)

RG比值指数指示由于花青素代替叶绿素而引起叶片变红的相关表达式。可估算植被冠层发展过程,它还是叶片生产力与胁迫性的指示器,甚至可标识一些冠层的开花。应用于植物生长周期(物候)研究,冠层胁迫性检测和作物估产。RG比值指数结果输出是红色范围内所有波段均值除以与绿色范围内所有波段均值。值的范围是0.1~8,一般绿色植被区

的范围是0.7~3。

2.4冠层氮——Canopy Nitrogen (1种)

冠层氮指数提供一种用遥感度量氮浓度的方法。氮是叶绿素的重要组成部分,具有高浓度氮的植被生长速度较快,

冠层氮指数使用短波红外测量植被冠层中氮的相对含量。

归一化氮指数(Normaliz ed Difference Nitrogen Index——NDNI)

NDNI是用于估算植被冠层中氮的相对含量。在1510nm的反射率主要取决于叶片氮的含量,以及冠层总体叶生物量。结合叶片氮含量和冠层叶生物量在1520nm范围内预测叶片氮的含量,在1680nm波长范围作为参考反射率,冠层叶生物量这个波长范围具有与1520nm波长范围类似的反射特性,而且1680nm波长范围内没有氮吸收影响。NDNI在植被还是绿色以及覆盖浓密时候,对氮含量的变化非常敏感,它用于精细农业、生态系统分析和森林管理。其计算公式为:

NDNI=

(式13)

值的范围是0~1,一般绿色植被区的范围是0.02~0.1。

2.5干旱或碳衰减——Dry or Senescent Carbon (3种)

干旱或碳衰减指数是用来估算纤维素和木质素干燥状态的碳含量。干碳分子大量存在于木质材料和衰老、死亡、或休眠的植被,可以使用这些指数可以做植被着火性分析和检测森林的枯枝落叶层。干旱或碳衰减指数是基于纤维素和木

质素在短波红外波段吸收特性而计算。

表4干旱或碳衰减指数

1)归一化木质素指数(Normaliz ed Difference Lignin Index——NDLI)

NDLI是用来估算植被冠层木质素的相对含量,应用生态系统分析和检测森林的枯枝落叶层。其计算公式为:

NDLI=

(式14)

值的范围是0~1,一般绿色植被区的范围是0.005~0.05。

2)纤维素吸收指数(Cellulos e Absorption Index——CAI)

CAI可以指示地表含有干燥植被,纤维素在2000 nm~ 2200 nm范围内吸收特征非常敏感。应用于农作物残留监测,植物冠层衰老,生态系统中的着火条件和放牧管理。其计算公式为:

NDLI=

(式15)

值的范围是-3~4+,一般绿色植被区的范围是-2~4。

3)植被衰减指数(Plant Senescence Reflectance Index——PSRI)

PSRI用来最大限度地提高类胡萝卜素(例如α-胡萝卜素和β-胡萝卜素)与叶绿素比率的灵敏度,PSRI的增加预示冠层胁迫性的增加、植被衰老的开始和植物果实的成熟。可用于植被健康监测、植物生理胁迫性检测和作物生产和产量

分析。其计算公式为:

PSRI=

(式16)

值的范围是-1~1,一般绿色植被区的范围是-0.1~0.2。

2.6叶色素——Leaf Pigments (4种)

叶色素指数用于度量植被中与胁迫性相关的色素。胁迫性相关的色素包括类胡萝卜素和花青素,这些色素大量存在衰减植被中,这些指数不能度量叶绿素。叶色素指数应用于农作物监测、生态系统研究、冠层胁迫性分析和精细农业。

叶色素指数要求反射率数据范围在0~1。

表5叶色素指数

1)类胡萝卜素反射指数1(Carotenoid Reflectance Index 1——CRI1)

CRI1对叶片中的类胡萝卜素非常敏感,高的CRI1值意味类胡萝卜素含量相比叶绿素含量多。其计算公式为:

CRI1=

(式17)

值的范围是0~15+,一般绿色植被区的范围是1~12。

2)类胡萝卜素反射指数2(Carotenoid Reflectance Index 2——CRI2)

CRI2是CRI1的改进型,在类胡萝卜素浓度高时更加有效,高的CRI2值意味类胡萝卜素含量相比叶绿素含量多。其计

算公式为:

CRI2=

(式18)

值的范围是0~15+,一般绿色植被区的范围是1~11。

3)花青素反射指数1(Anthocyanin Reflectance Index 1——ARI1)

ARI1对叶片中的花青素非常敏感,ARI1值越大表明植被冠层增长或者死亡。其计算公式为:

ARI1=

(式19)

值的范围是0~0.2+,一般绿色植被区的范围是0.001~0.1。

4)花青素反射指数2(Anthocyanin Reflectance Index 2——ARI2)

ARI2对叶片中的花青素非常敏感,ARI2值越大表明植被冠层增长或者死亡。ARI2 是ARI1的改进,当花青素浓度高

时更加有效。其计算公式为:

ARI2=

(式20)

值的范围是0~0.2+,一般绿色植被区的范围是0.001~0.1。

2.7冠层水分含量——Canopy Water Content (4种)

冠层水分含量指数用于度量植被冠层中水分含量。水分含量是一个重要的植物指标,较高的水含量表明健康植被、生长快及不易着火。冠层水分含量指数基于水在近红外和短波红外范围内的吸收特征,以及光在近红外范围的穿透性,

综合起来度量总的水柱含量。

表6冠层水分含量指数

1)水波段指数(Wa ter Band Index——WBI)

WBI对冠层水分状态的变化非常敏感,随着植被冠层水分的增加,970nm附近吸收强度相比900nm处有所增强。应用包括冠层胁迫性分析,生产力预测与建模,着火威胁条件分析,农作物管理,以及生态系统生理机能研究。其计算公

式为:

WBI=

(式21)

一般绿色植被区的范围是0.8~1.2。

2)归一化水指数(Normalized Difference Water Index——NDWI)

NDWI对冠层水分含量的变化非常敏感,因为在857 nm 和1241 nm具有相似的反射率,但是又不同于液态水的吸收特性。应用于冠层胁迫性分析,在浓密叶型植被的叶面积指数的研究,植被生产力模型,着火性研究。其计算公式为:

NDWI=

(式22)

值的范围是-1~1,一般绿色植被区的范围是-0.1~0.4。

3)水分胁迫指数(Moisture Stress Index——MSI)

MSI对叶片水分含量的增加非常敏感。当叶片水分含量的增加,在1599nm处的吸收强度也增加,而在819nm处的吸收强度没有影响。应用于冠层胁迫性分析,生产力预测与建模,着火威胁条件分析,以及生态系统生理机能研究。与其他水指数相反,MSI值越大,水分胁迫性越严重和水分含量越少。其计算公式为:

MSI=

(式23)

值的范围是0~3+,一般绿色植被区的范围是0.4~2。

4)归一化红外指数(Normalized Difference Infrared Index——NDII)

NDII对农作物冠层的水分含量变化非常敏感,NDII的值越大表示水分含量越多。应用于农作物管理,森林冠层监测,植

被胁迫性探测。其计算公式为:

NDII=

(式24)

值的范围是-1~1,一般绿色植被区的范围是0.02~0.6。

3.环境小卫星高光谱成像仪的植被指数计算

环境与灾害监测预报小卫星星座A、B星(HJ-1A /1B星)于2008年9月6日上午11点25分成功发射,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B星搭载了CCD相机和红外相机(IRS)。在HJ-1-A卫星装载有一台超光谱成像仪,完成对地刈宽为50公里、地面像元分辨率为100米、110~128个光谱谱段的推扫成像,回访周期约为96h。该

数据可免费下载:https://www.360docs.net/doc/0012767833.html,。

ENVI提供植被指数计算器,包括了上述27种植被指数。它可以根据输入图像波段情况,自动从27种中列出能计算的植被指数。并提供了还提供了生物物理学交叉检验功能,能够提高植被指数的计算精度。

我们使用的HJ-1-A-HIS数据包含115个波段,波长覆盖459.00~ 956.00 nm,图像以HDF5格式储存, HDF5图像格式中除了图像文件外,还包括了中心波长、定标文件、成像参数等信息。下面我们实验在ENVI中能计算几种植被指数。

直接利用ENVI_HJ1A1B_Tools环境卫星数据读取扩展工具读取HSI数据。(扩展工具下载地址:

https://www.360docs.net/doc/0012767833.html,/ESRI/thread-75575-1-1.html),利用FLAASH进行精确大气校正得到地物真实反射率数据。

(1)在ENVI主菜单中,选择Spectral→Vegetation Analysis→Vegetation Index Calculator,在数据输入对话框中选择HJ-1-A-HSI的反射率数据。单击OK,打开Vegetation Indices Parameters面板(图6)。

(2)在Vegetation Indices Parameters面板中,“Select Vegetation Indices”列表中显示这个数据能够计算16种植被指数。

(3)生物物理学交叉检验功能(Biophysical Cross Checking):

? ? ●On:执行此功能(默认)。当植被指数的值发生冲突时,这些值会被忽略。

? ? ●Off:不执行此功能。

注:如果要将计算得到植被指数用于植被分析工具(vegetation a nalysis tools),则要选择Off。

(4)选择输出路径及文件名,单击OK按钮执行植被指数计算。

图6 能获取的16种植被指数

这16中植被指数涵盖了宽带绿度类指数、窄带绿度类指数、光利用率类指数、干旱或碳衰减类指数、叶色素类指数。由于缺少中远红外波段,冠层水分含量类指数未能获取。但这不影响环境小卫星高光谱数据在植被领域的运用。

值的注意的是,由于阴影区域没有足够光能量,阴影区域的植被指数往往是不准确的,需要将阴影区进行掩膜。

4.总结

通过植被光谱特征,我们可以分析并得到一些使用性很高的植被指数。这些植被指数分别对植被的叶绿素含量、冠层氮含量、叶色素、冠层水分含量、碳含量等非常敏感,对于植被参数的反演具有一定的参考作用。同时我们也看到环境小卫星高光谱数据对植被的绿度、光利用率、干旱或碳衰减以及叶色素还是有一定的敏感度,这对于研究植被提供了一种非常好的数据源,而且它还是免费提供。

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算 在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation i ndices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁 迫性相关的色素、植被冠层中水分含量等。 包括以下内容: ? ?●植被光谱特征 ? ?●植被指数 ? ?●HJ-1-HSI植被指数计算 1.植被光谱特征 植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。 研究植被的波长范围一般为400 nm t o 2500 nm,这也是传感器设计选择的波长范围。这个波长范围可范围以下四个部分: ??●可见光(Visible):400 nm to 700 nm ??●近红外(Near-infrared——NIR):700 nm to 1300 nm ??●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm ??●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm 其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。 SWIR-1 和SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。 植被可分为三个部分组成: ??●植物叶片(Plant Foliage) ??●植被冠层(Plant Canopies) ??●非光合作用植被(Non-Photosynthetic Vegetation) 这三个部分是植被分析的基础,下面对他们详细介绍。 1.1植物叶片(Plant Foliage) 植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。对波谱特征产生重要影响

ENVI下植被覆盖度的遥感估算

ENVI下植被覆盖度的遥感估算 植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。两个概念主要区别就是分母不一样。植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。 植被覆盖度的测量可分为地面测量和遥感估算两种方法。地面测量常用于田间尺度,遥感估算常用于区域尺度。目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。 估算模型 目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。下面是李苗苗等在 像元二分模型的基础上研究的模型: VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1) 其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。两个值的计算公式为: NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2) NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3) 利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。这里有两种假设: 1)当区域内可以近似取VFCmax=100%,VFCmin=0%。 公式(1)可变为: VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4) NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。 2)当区域内不能近似取VFCmax=100%,VFCmin=0%

基于GIS的ndvi植被覆盖度的估算

1.绪论 1.1 课题研究的目的与意义 植被,包括森林、灌丛、草地和农作物,既是生态系统的主要组成部分,也是生态系统存在的基础,具有截流降雨、减缓径流、防沙治沙、保持水土等功能,联结着土壤、大气和水分等自然过程,在陆地表面的能量交换、生物地球化学循环和水文循环等过程中扮演着重要角色,是全球变化研究中的“指示器”[1]。植被根据生态系统中水、气等的状况,调控其内部与外部的物质、能量交换。植被覆盖与气候因子关系极为密切,研究植被覆盖变化 对气候的影响是气候变化研究的主要内容之一,它影响着土壤湿度、地表温度和地表能量与水的循环(李苗苗,2004)。

植被覆盖度(vegetation fractional cover,简称FC)是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比[2]。它是植被对地面的垂直投影比例, 对于山坡进行植被覆盖度测量时,应该采用垂直于坡面的角度。植被覆盖度具有强烈的尺度效应,同一片植被,因被纳入统计的范围不同而表现为不同的植被覆盖度。如一个地区的植被覆盖度很高,但平均到全国水平就大大降低了[3]。植被覆盖度在提示地表植被分布规律, 探讨植被分布影响因子, 分析评价区域生态环境, 及时准确地掌握其动态变化, 分析其发展趋势对维护区域生态平衡等方面都具有重要意义。[4]而城市植被则是城市生态系统重要的还原组织和最重要的元素,对于保护城市生态环境具有不可忽视的作用[5] ,如有效缓解城市

“热岛效应”,改善城市区域小气候[5~7] 等。 城市化的迅速推进,带来了多样化的生态足迹,植被覆盖度,土壤污染率,地表侵蚀率,逐渐成为生态研究的热点,也成为环境保护的重点。借助于高速发展的RS与GIS技术来进行植被覆盖度的估算,将是当前环境监测的必要步骤。 徐州是由矿区发展起来的城市,由于长期开采矿产,导致了一系列严重的生态问题,如塌陷地广布,植被破坏率严重,土地侵蚀率增大,等。在此背景下,研究徐州市整体的土地覆盖情况,即是现实需要,也是未来生态城市规划的重要步骤。研究的最终结果也会给徐州市的城市规划提供信息支持与技术保障。 1.2 国内外植被覆盖度研究现状 由于植被覆盖度是许多学科的重要参数,为

几种常见植被指数

常用的植被指数,土壤指数,水体指数有哪些? 植被指数与土壤指数 一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。 1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2; 2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量; 3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低; 4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。 二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; 2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;

3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度; 4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。 1、对土壤背景的变化极为敏感; 四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数: SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI 3、SAVI4等改进模型。 五、GVI——绿度植被指数,k-t变换后表示绿度的分量。

植被覆盖度反演

题目:植被遥感监测具有很长的历史,植被遥感中植被覆盖反演是主要内容之一,线性分解模型是混合像元分解法的一种,根据混合像元分解及线性分解模型的原理,利用红碱淖2016年6月17日Landsat8 OLI数据,求取研究区植被覆盖度(写出详细计算过程和步骤)。 一、操作思路: 端元代表影像中的纯净像元,求取植被覆盖度即求取端元的丰度,因此采用混合像元分解及线性分解模型进行混合像元分解,得到端元以及相应的丰度影像,即为植被覆盖度影像。 二、操作步骤: 1.影像预处理 由于操作时间的限制和硬件设备的不允许,将影像选取一定的区域进行裁剪,感兴趣区域为roi1文件,得到裁剪后影像2016new文件,导入影像,进行影像的预处理,包括辐射定标和大气校正步骤,辐射定标采用Radiometric Calibration 工具,大气校正采用FLAASH工具,分别得到辐射定标结果2016_rad1和2016_ref 文件。 2.MNF变换 采用MNF变换工具,可将数据波段进行“降维”,提取出有用信息集中的波段,去除噪声信息集中的波段,利用Forward MNF Estimate Noise Statistic将数据进行MNF变换,得到MNF变换结果2016_MNF和噪声文件MNF_Noise和统计文件MNF_Statistic文件。 3.PPI变换 纯净像元指数法指像元被标记为纯净像元的次数,可以将混合像元进行分解,有效的提取出端元。 由于操作时间的限制和硬件设备的不允许,将MNF变换后影像与原影像选取一定的同样区域进行裁剪,感兴趣区域选择ROI2文件,得到裁剪结果为2016_MNF_sub和2016new_sub文件。 在MNF变换后发现有用信息集中在1、2、3波段,因此利用Pixel Purity Index 工具,将MNF变换后影像选择1、2、3波段进行端元提取,阈值设为3.00,操作的结果为2016_PPI文件。 4.N维可视化 利用N维可视化工具可以将端元更好的显示,有利于更加直观的确定端元,在N维可视化窗口中,选中1、2、3波段,在显示窗口中将较为集中的区域定为端元,进行类(class)的划定,一共确定三类,利用mean all工具将三类端元的波谱显示出来,并保存为波谱库2016_sli文件。 5.端元识别

ENVI中常见植被指数介绍

作业9 植被指数 植被指数 概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。 植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。 不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。 Broadband Greenness(5 indices)(宽带绿色指标(5)) 宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些 波段。下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。 1. Normalized Difference Vegetation Index归一化植被指数 增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。 简称NDVI: NDVI=(NIR-R)/(NIR+R) (1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; (2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大; (3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度; (4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 2.Simple Ratio Index比值植被指数 在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。 简称SR:SR=ρNIR/ρRED 在LAI 值很高,即植被茂密时其灵敏度会降低.SR值的范围是0~30,一般绿色植被区的范围是2~8 3.Enhanced Vegetation Index 增强植被指数 增强NDVI,解决土壤背景和大气气溶胶对茂密植被的影响。 简称:EVI

ENVI下植被覆盖度的估算

ENVI下植被覆盖度的遥感估算 2013-05-30 | 阅:1 转:17 | 分享 修改 植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。两个概念主要区别就是分母不一样。植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。 植被覆盖度的测量可分为地面测量和遥感估算两种方法。地面测量常用于田间尺度,遥感估算常用于区域尺度。 估算模型 目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。下面是李苗苗等在像元二分模型的基础上研究 的模型: VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1) 其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。两个值的计算公式为: NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2) NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3) 利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。这里有两种假设: 1)当区域内可以近似取VFCmax=100%,VFCmin=0%。 公式(1)可变为: VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4) NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图 像实际情况来定。 2)当区域内不能近似取VFCmax=100%,VFCmin=0% 当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax和VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。 当没有实测数据的情况下,取一定置信度范围内的NDVImax 和NDVImin。VFCmax和

植被覆盖度计算经验教程

ENVI5.1(5.0版本以上)计算植被覆盖度 1.加载用矢量边界裁剪过的ROI(经几何校正-辐射校正处理) 2.计算NDVI,利用ENVI5.1 Toolbox 提供的搜索功能查找NDVI模块,然 后进行NDVI计算。本例中影像数据为landsat8 影像,因此Input File Type 选项为Landsat OLI,红色波段为4,近红外为5(TM和ETM+影像的NDVI Band:Red 3 Near IR 4)

3.对计算的NDVI进行DN二值化处理,选择Toolbox 中的Band Ratio/Band Math模块,在band math 对话框中进行参数设置。首先,在Enter an expression 对话框下输入NDVI二值化公式: ((b1 lt -1)*0+((b1 ge -1) and (b1 le 1))*b1+(b1 gt 1)*1) (切记,括号为英文半角),然后单击Add to List,将波段运算表达式添加至Previous Band Math Expressions 对话框,然后OK。在新弹出的Variables to Bands Parings 对话框Avilable Bands List 对话框中选择上一步计算的NDVI,然后输出至特定位置(切记,如果电脑内存不足2G,请输出结果为File)。

4.对二值化的NDVI进行概率统计。选择Toolbox 中Statistics/Compute Statistics模块,选择二值化处理的结果(本例中,NDVI_20131119为计算得到的NDVI结果,NDVI为二值化后的结果),同时在Mask Options 下拉菜单中选择Build Mask..选项,在弹出的Mask Definition对话框中选择Import EVFs选项,创建一个mask。然后查看统计结果。详细理论请参考https://www.360docs.net/doc/0012767833.html,/s/blog_764b1e9d0100u29i.html

植被光谱分析与植被指数计算教学提纲

植被光谱分析与植被 指数计算

植被光谱分析与植被指数计算 在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。 包括以下内容: ? ?●植被光谱特征 ? ?●植被指数 ? ?●HJ-1-HSI植被指数计算 1.植被光谱特征 植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。 研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。这个波长范围可范围以下四个部分: ??●可见光(Visible):400 nm to 700 nm ??●近红外(Near-infrared——NIR):700 nm to 1300 nm ??●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm ??●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm 其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。SWIR-1 和 SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。 植被可分为三个部分组成: ??●植物叶片(Plant Foliage) ??●植被冠层(Plant Canopies) ??●非光合作用植被(Non-Photosynthetic Vegetation) 这三个部分是植被分析的基础,下面对他们详细介绍。 1.1植物叶片(Plant Foliage) 植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。对波谱特征产生重要影响的主要化学成份包括:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),这也是遥感反演的基础,如用植被指数来估算叶子的化学成份。 ●色素(Pigments) 叶色素主要包括叶绿素、叶黄素和花青素。这些都是植被的健康的指标,比如含高浓度叶绿素的植被一般很健康,相反,叶黄素和花青素常常出现在健康较差的植被,濒临死亡的植被出现红色、黄色或棕色。 叶色素只影响可见光部分(400nm~700nm),图1为几种叶色素在可见光范围的相对光谱吸收特征。

植被覆盖率

植被覆盖率估算模型 一:研究区域数据获取 本次实验主要是对植被覆盖率估算,因此实验区域的影像因尽量选择植被茂盛的季节。在数据源选取上,我在马里兰大学的网站下了Landsat 5 1T级数据,包够了红,绿,蓝,近红外,热红外7个波段。下载的地区是覆盖了福建省中部地区2009年6月6日的影像。 下图(图1)为原始数据的假彩色合成 图一:原始数据假彩色合成 二:数据预处理 进行植被覆盖率估算,需要用到归一化植被指数(NDVI)。NDVI的物理依据是地物反射率的差异变化,所以用反射率来计算是比较客观准确的。TM原始数据就是DN值,不能用来直接计算NDVI,必须通过辐射定标计算成反射率,才能用来计算NDVI。因此,要对对实验数据先进行辐射校正和大气校正。下载的L1T级数据,头文件()有详细影像参数,控制点文件()中有控制点高程信息用于大气校正的地形参数,可以利用这两个文件做辐射校正和大气校正。 (1)辐射定标 实验使用数据为L1T级数据,经过系统辐射校正的数据。由于1级产品的DN值是由辐射亮度线性变换得到的,因此从1级产品计算辐射亮度只需利用相关参数(Gain和Bias)进行线性反变换即可,计算过程比较简单。各参数可在影像头文件中找到,Calibration Type 注

意选择为Radiance。 图2:辐射定标参数设置 (2)大气校正 大气校正是采用ENVI的FLAASH模块,FLAASH模块要求输入辐亮度图像,输出反射率图像。之前对进行了辐射定标,得到辐亮度图像,在这里要把BSQ 格式的图像转换为BIL 或者BIP 格式的图像。FLAASH 校正输入图像后,程序会让你选择Scale Factor,即原始辐亮度单位与ENVI 默认辐亮度单位之间的比例。ENVI 默认的辐亮度单位是μW/cm2 ?sr?nm,而之前我们做辐射定标时单位是W/m2 ?sr?μm,二者之间转换的比例是10,因此在下图中选择Single scale factor,填写10.000。其中参数中心坐标,影像获取时间,都可以在头文件中获取,大气参数可以查看ENVI help来确定,还有研究区域的平均高程,可以通过GCP文件大致估算。FLAASH的参数设置如下图(图3)。 图3:FLAASH参数设置 三:研究区域裁剪 本来想以福建省为研究区域,但是这景影像覆盖了福建省中部百分之90左右的距离,但并没有覆盖完整,所以无法用矢量边界裁剪,我就规则裁剪了一块区域做研究 图5:裁剪区域 四:分类 这里我选择了用最大似然法进行监督分类 (1)训练区选择

多光谱遥感卫星影像植被指数种类

遥感植被指数的种类、适用性和优缺点分析 摘要:遥感是现代科学技术中的一种远距离观测、分析目标地物的理论和方法,它在现代环境监测中具有广泛的应用。遥感植被指数是指利用遥感图像进行植被长势、生物量生产潜能等监测的重要指标。本文将在对植物的光谱特征分析的基础上,总结相关研究,对植被指数的种类以及它们的适用性和优缺点进行分析。 1、引言 遥感是指利用不同地物波谱特征不同这一特性,通过传感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息,进行处理、分析与应用的一门科学和技术。而植被指数则是利用遥感图像获取多光谱遥感数据,经过分析得到植被分布、种类等数值,对某些植被的长势、生物量等有一定应用价值。 目前,国内外学者已研究发展了几十种不同的植被指数模型,常用的有以下几类: 1、比值植被指数(RVI); 2、归一化植被指数(NDVI); 3、差值植被指数(DVI); 4、缨帽变换中的绿度植被指数(GVI); 5、垂直植被指数(PVI); 6、土壤调整植被指数(SAVI)等, 这几类植被指数对植被的敏感性、抗土壤和大气的干扰性等不尽相同。一般情况下由于归一化植被指数(NDVI)与一些重要的生物物理参数如生物量、叶面积指数和光有效辐射等有密切的联系[1],所以NDVI被广泛用于植被研究。 遥感植被指数是预测生物量、作物生产潜能以及评价一个生态系统结构与功能特征的重要指标[2],然而遥感的植被指数不仅取决于植被的种类,还要受到其他环境条件的干扰,如土壤湿度、土壤的物理化学属性、大气条件以及季节等的影响。于是如何在不同的条件下选择不同的植被指数对更好的进行植被监测、农作物估产等有着较大的影响。本文正是通过对植被遥感的原理、植物光谱特征分析研究等的基础上,总结有关资料数据,对各类遥感植被指数的适用性和优缺点进行了分析,作为今后相关研究的参考。 2、植被遥感的原理 植物遥感依赖于植物本身的特征,主要是叶片结构特点和植被冠层光谱特性。我们都知道,植物叶片能进行光合作用,但所利用的仅是太阳光的可见光部分(0.4~0.76μm),即称之为光合有效辐射(PAR),约占太阳辐射的47%~50%,其强度随着时间、地点、大气条件等变化。 植物的光谱特征可使其在遥感影像上有效地与其他地物相区别。同时,不同

植被覆盖度分布图制作

作业1: 用TM/ETM图像制作一个地区植被覆盖度分布图(要求如图所示),描述该地区的 区域概况,并分析植被分布空间差异。所用公式如下: NDVI=(B4-B3)/(B4+B3) Vr=(NDVI-NDVIb)/(NDVIv-NDVIb) 式中:NDVI是归一化植被指数。B3和B4是TM第3和4波段的图像亮度值。 NDVIb和NDVIv是裸土和植被的NDVI值,可分别取0.15和0.75。Vr是植被覆盖度(0-1)。 要求:用WORD把制作过程和分析结果记录下来。>2000字 目的:学会图像处理软件,进行图像信息提取,用各种软件共同制作有实际意 义的图像 原理与方法: NDVI——归一化植被指数NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1.NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; 2.-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示 有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大 而增大 3.NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比 度。对于同一幅图像,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI 增加速度,即NDVI对高植被区具有较低的灵敏度; 4.NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯 叶、粗糙度等,且与植被覆盖有关。 操作步骤如下: 一.从地理空间数据云网站下载山西省吕梁地区文水县的ETM影像,对应地区的数据如下: 表:Landsat8数据波段参数 波段波长范围(μm)空间分辨率(m) 名称 1-海岸波段0.433–0.453 30 LC81260342015159LGN00_B1 2-蓝波段0.450–0.515 30 LC81260342015159LGN00_B2 3-绿波段0.525–0.600 30 LC81260342015159LGN00_B3

长时间序列中国植被指数数据集介绍--GIMMS AVHRR NDVI

长时间 序列中国植被指数数据集介绍 ――GIMMS AVHRR NDVI
中国西部环境与生态科学数据中心 https://www.360docs.net/doc/0012767833.html, 2007年10月

中国西部环境与生态科学数据中心——长时间序列中国植被指数数据集介绍
目 录 目 录
1、 数据集名称..................................................................................................................................... 2 2、 概况................................................................................................................................................. 2 3、 数据集介绍及使用说明................................................................................................................. 2 3.1. 数据集整理者................................................................................................................................. 2 3.2. 文档编撰人..................................................................................................................................... 2 3.3. 项目支持......................................................................................................................................... 3 3.4. 背景................................................................................................................................................. 3 3.5. 资料准备......................................................................................................................................... 3 3.6. 植被指数 NDVI 的制备过程......................................................................................................... 4 3.7. 数据集属性..................................................................................................................................... 4 3.8. 数据读取......................................................................................................................................... 5 3.9. 数据应用......................................................................................................................................... 6 3.10. 数据引用....................................................................................................................................... 6 参考文献................................................................................................................................................. 6 中国西部环境与生态数据中心............................................................................................................. 8
图表目录 图表目录
图 2 GIMMS NOAA/AVHRR-NDVI 数据的空间范围 ....................................................................... 5
表 1 GIMMS 数据集遥感平台的对应起止时间表 ............................................................................. 4
1

植被覆盖度计算

植被覆盖度计算 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

ENVI下植被覆盖度的遥感估算 (植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。两个概念主要区别就是分母不一样。植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。 植被覆盖度的测量可分为地面测量和遥感估算两种方法。地面测量常用于田间尺度,遥感估算常用于区域尺度。 估算模型 目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。下面是李苗苗等在像元二分模型的基础上研究的模型: VFC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)(1) 其中,NDVIsoil为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。两个值的计算公式为: NDVIsoil=(VFCmax*NDVImin-VFCmin*NDVImax)/(VFCmax-VFCmin)(2) NDVIveg=((1-VFCmin)*NDVImax-(1-VFCmax)*NDVImin)/(VFCmax-VFCmin)(3) 利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。这里有两种假设: 1)当区域内可以近似取VFCmax=100%,VFCmin=0%。 公式(1)可变为: VFC=(NDVI-NDVImin)/(NDVImax-NDVImin)(4) NDVImax和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。 2)当区域内不能近似取VFCmax=100%,VFCmin=0%

数字图像处理期末复习经典.doc

遥感与数字图像处理基础知识 一、名词解释: 数字影像图像采样灰度量化像素 数字影像:数字影像又称数字图像,即数字化的影像。基本上是一个二维矩阵,每个点称为像元。像元空间坐标和灰度值均已离散化,且灰度值随其点位坐标而异。 图像采样:指将在空间上连续的图像转换成离散的采样点集的操作。 灰度量化:将各个像素所含的明暗信息离散化后,用数字来表示。 像素:像素是A/D转换中的取样点,是计算机图像处理的最小单元 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个_离散的光密度_函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,才能产生数字图像。数字化包括两个过程:___采样___和__量化___。 4、一般来说,采样间距越大,图像数据量____小____,质量____低_____;反之亦然。 5、一幅数字图像为8位量化,量化后的像素灰度级取值范围是________的整数。设该数字图像为600行600列,则图像所需要的存储空间为________字节。 6、设有图像文件为200行,200列,8位量化,共7个波段,则该图像文件的大小为________。 三、不定项选择题:(单项或多项选择) 1、数字图像的________。 ①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的 ③两者都是连续的④两者都是离散的 2、采样是对图像________。 ①取地类的样本②空间坐标离散化③灰度离散化 3、量化是对图像________。 ①空间坐标离散化②灰度离散化③以上两者。 4、图像灰度量化用6比特编码时,量化等级为________。 ①32个②64个③128个④256个 5、数字图像的优点包括________。 ①便于计算机处理与分析②不会因为保存、运输而造成图像信息的损失 ③空间坐标和灰度是连续的

几种常用植被指数介绍

对几种常用植被指数的认识 植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。在学习和使用植被指数时必须由一些基本的认识: 1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的; 2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息 3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响 一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。 1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2; 2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量; 3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低; 4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。 二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; 2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大; 3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度; 4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。 1、对土壤背景的变化极为敏感; 四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI 3、SAVI4等改进模型。 小结:上述几种VI均受土壤背景的影响大。植被非完全覆盖时,土壤背景影响较大 五、GVI——绿度植被指数,k-t变换后表示绿度的分量。

基于GIS的植被覆盖度估算

基于GIS的植被覆盖度估算 1.绪论 1.1 课题研究的目的与意义 植被,包括森林、灌丛、草地和农作物,既是生态系统的主要组成部分,也是生态系统存在的基础,具有截流降雨、减缓径流、防沙治沙、保持水土等功能,联结着土壤、大气和水分等自然过程,在陆地表面的能量交换、生物地球化学循环和水文循环等过程中扮演着重要角色,是全球变化研究中的“指示器”[1]。植被根据生态系统中水、气等的状况,调控其内部与外部的物质、能量交换。植被覆盖与气候因子关系极为密切,研究植被覆盖变化 对气候的影响是气候变化研究的主要内容之一,它影响着土壤湿度、地表温度和地表能量与水的循环(李苗苗,2004)。 植被覆盖度(vegetation fractional cover,简称FC)是指植被(包括叶、茎、枝)在 地面的垂直投影面积占统计区总面积的百分比[2]。它是植被对地面的垂直投影比例,对于山坡进行植被覆盖度测量时,应该采用垂直于坡面的角度。植被覆盖度具有强烈的尺度效应,同一片植被,因被纳入统计的范围不同而表现为不同的植被覆盖度。如一个地区的植被覆盖度很高,但平均到全国水平就大大降低了[3]。植被覆盖度在提示地表植被分布规律, 探讨植被分布影响因子, 分析评价区域生态环境, 及时准确地掌握其动态变化, 分析其发展趋势对维护区域生态平衡等方面都具有重要意义。[4]而城市植被则是城市生态系统重要的还原组织和最重要的元素,对于保护城市生态环境具有不可忽视的作用[5] ,如有效缓解城市“热岛效应”,改善城市区域小气候[5,7] 等。

城市化的迅速推进,带来了多样化的生态足迹,植被覆盖度,土壤污染率,地表侵蚀率,逐渐成为生态研究的热点,也成为环境保护的重点。借助于高速发展的RS与GIS技术来进行植被覆盖度的估算,将是当前环境监测的必要步骤。 徐州是由矿区发展起来的城市,由于长期开采矿产,导致了一系列严重的生态问题,如塌陷地广布,植被破坏率严重,土地侵蚀率增大,等。在此背景下,研究徐州市整体的土地覆盖情况,即是现实需要,也是未来生态城市规划的重要步骤。研究的最终结果也会给徐州市的城市规划提供信息支持与技术保障。 1.2 国内外植被覆盖度研究现状 由于植被覆盖度是许多学科的重要参数,为了得到准确的植被覆盖度信息,植被覆盖度监测技术的提高,就成了多个领域发展的需要。根据检测手段,测量植被覆盖度的方法可分为传统的地面测量和新兴的遥感测量两大类。其中,地面测量又可以根据测量原理,分为目估法、采样法、仪器法和模型法;遥感测量依据对植被光谱信息与植被覆盖度所建立的关系不同,可分为物理模型法和统计模型法。统计模型法中使用较多的有植被指数法、回归模型法、像元分解法、分类决策树和人工神经网络法;物理模型法中模型反演法使用最多。 地面测量曾经一度是植被覆盖度监测的最主要方法。主要包括目估法、采样法、仪器法和模型法。虽然遥感技术的发展使地面测量的主导性地位有所降低,但地面测量依然具有其重要性,它不仅是最精确的测量方法,也为遥感测量提供了基础标定数据,是无可替代的。 遥感技术的发展,为大范围植被覆盖信息的获取提供了一个新的发展方向。常用于植被覆盖信息提取的遥感数据有NOA内叭vHRR数据、MODIs数据、LandsatTM与 MSS数据、SPOT数据、ATSER数据、航片、IEOS一SAR雷达数据以及AVIRIS高光谱数据等。

相关文档
最新文档