植被指数
常用植被指数

常用植被指数
植被指数是用来描述植被生长状况的指标,常用的植被指数有以下几种:
1. 植被指数(NDVI):NDVI是最常用的植被指数,通过计算红外波段和可见光波段的反射率之间的比值,反映出植被的生长状况。
NDVI值越高,表示植被生长越旺盛。
2. 归一化差异植被指数(NDVI):NDVI是在NDVI的基础上,对植被指数进行归一化处理所得到的指数。
NDVI值越高,表示植被生长越旺盛。
3. 植被水分指数(VSWI):VSWI是通过计算近红外波段和中红外波段的反射率之间的比值,反映出植被受到的水分供应状况。
VSWI 值越高,表示植被水分供应越充足。
4. 综合植被指数(EVI):EVI是在NDVI的基础上,对大气影响和土壤背景影响进行了修正所得到的指数,可以更准确地反映出植被生长状况。
EVI值越高,表示植被生长越旺盛。
以上几种常用的植被指数,可以通过遥感技术获取相应的遥感数据,用于植被生长监测、土地利用变化分析等方面的研究。
- 1 -。
几种常见植被指数

常用的植被指数,土壤指数,水体指数有哪些?植被指数与土壤指数一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。
1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。
1、对土壤背景的变化极为敏感;四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。
1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。
与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。
植被指数计算公式

植被指数计算公式
1. 什么是植被指数?
植被指数(vegetation index)是用来描述植被覆盖程度的指数,通常是由植被反射和吸收辐射的比值,比如最常用的归一化植被指数NDVI(Normalized Difference Vegetation Index)。
2. 植被指数的作用和意义
植被指数是研究植被动态、生长状态和生产力的重要工具,广泛
应用于农业、林业、生态环境等领域。
它可以反映出植被覆盖程度、
叶面积指数、光合活动强度等信息。
3. 归一化植被指数NDVI的计算公式
归一化植被指数NDVI的计算公式如下:
NDVI=(NIR-RED)/(NIR+RED)
其中,NIR代表近红外波段反射率,RED代表红光波段反射率。
4. 归一化植被指数NDVI的解释
归一化植被指数NDVI的取值范围为-1到1之间,数值越接近1表明植被覆盖度越高,而数值越接近-1表明植被稀疏程度越高。
如果NDVI等于0,则表示没有植被覆盖。
5. 归一化植被指数NDVI的优势
归一化植被指数NDVI是反映植被变化最敏感、最广泛应用的指数之一。
它具有以下几个优势:
(1)NDVI可以从遥感图像中提取植被信息,避免了根据人工采样数据进行测量的不足。
(2)NDVI可以利用遥感数据中不可见的红外波段反射信息,使得植被覆盖率的测量更加准确。
(3)NDVI对于绿色和枯黄色的植被具有较强的差异性,可以很好的反映植被的生长状况。
总之,归一化植被指数NDVI是目前研究植被覆盖和生长状况的重要工具之一,可以应用于数个领域,例如生态环境监测、气象预测、农业生产等。
几种常用植被指数介绍

对几种常用植被指数的认识植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。
在学习和使用植被指数时必须由一些基本的认识:1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。
1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;~4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。
对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。
植被指数

4) 正交植被指数(Perpendicular Vegetation Index,PVI) 对于NOAA卫星的AVHRR:PVI = 1.6225(IR) – 2.2978(R) + 11.0656 对于Landsat:PVI = 0.939(IR) – 0.344(R) + 0.09
5)归一化建筑物指数(Normalized Difference Built-upIndex,NDBI)
GARSS
= G − 0 . 09178 B + 5 . 58959
MSI =
MidIR NIR
TM 5
TM 4
部分遥感植被指数( 部分遥感植被指数(续)
植被指数
叶片相对含水量指数 (LWCI)
方程
− log 1− NIRTM 4 − MidIR TM 5 ft = − log 1− NIRTM 4 − MidIR TM 5
K-T K-T变换(缨帽变换) Landsat MSS 亮度 绿度 黄度 其他
Kauth Thomas,1976 Kauth和Thomas,1976 Kauth等,1979
B=0.332MSS1+0.603MSS2+0.675MSS3+0.262MSS4 G=-0.283MSS1-0.660MSS2+0.577MSS3+0.388MSS4 Y=-0.899MSS1+0.428MSS2+0.076MSS3-0.041MSS4 N=-0.016MSS1+0.131MSS2-0.452MSS3+0.882MSS4
NDVI 结果
NDVI 取值范围 0~255; 值大图像亮, 植被覆盖好。
参考文献
几种常用植被指数介绍

几种常用植被指数介绍植被指数是通过遥感技术获取的植被信息量化指标,包括植被覆盖度、生长状态、植被类型等信息,广泛应用于土地利用、资源管理、环境监测等领域。
在本文中,将介绍几种常用的植被指数,包括归一化植被指数(NDVI)、广域植被指数(EVI)、归一化差值水体指数(NDWI)、颜色指数(CI)、土地覆盖指数(LCI)等。
1. 归一化植被指数(NDVI)归一化植被指数(Normalized Difference Vegetation Index,NDVI)是最早被广泛应用的植被指数,由罗浮(Rouse)等人于1974年提出。
它以红光波段和近红外波段的反射率之差的比值来度量植被状况,公式为:NDVI = (NIR - RED) / (NIR + RED)其中,NIR为近红外波段的反射率,RED为红光波段的反射率。
NDVI取值范围为-1到1之间,数值越大代表植被覆盖度越高,生长状况越好。
广域植被指数(Enhanced Vegetation Index,EVI)是对NDVI的一种改进,由胡侃(Huete)等人于1994年提出。
EVI在NDVI的基础上增加了大气校正、背景亮度校正等,公式为:其中,NIR、RED和BLUE分别为近红外波段、红光波段和蓝光波段的反射率。
EVI相比NDVI具有更好的大气校正能力和对土壤、雪等因素的较好抵抗能力,能够更准确地反映植被状况。
其中,Green为绿光波段的反射率。
NDWI值越低代表水体覆盖度越高,可以用于监测水体的位置和面积变化,以及水资源的管理和保护。
4. 颜色指数(CI)颜色指数(Color Index,CI)是一种基于色彩特征的植被指数,由Stiles于1954年提出。
它使用波段之间的差值来计算颜色特征,公式为:其中,GREEN、RED和BLUE分别为绿光波段、红光波段和蓝光波段的反射率。
CI能够反映植被的颜色特征,可以用于识别植被类型、估算植被生物量等。
土地覆盖指数(Land Cover Index,LCI)是一种基于土地覆盖类型的指数,由Gao和Ji于2008年提出。
植被指数

DVI=NIR-R,或两个波段反射率的计算。 1.对土壤背景的变化极为敏感 SAVITSAVIMSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1.目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2.SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。 小结:上述几种VI均受土壤背景的影响大。植被非完全覆盖时,土壤背景影响较大
编辑本段GVI——绿度植被指数
k-t变换后表示绿度的分量。 1.通过k-t变换使植被与土壤的光谱特性分离。植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。 2.kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。 3.第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好地反映出植被和土壤光谱特征的差异。 4.GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。
利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。差值植被指数又称农业植被指数,为二通道反射率之差,它对土壤背景变化敏感,能较好地识别植被和水体。
植被指数

植被指数(Vegetable Index)植被指数是不同遥感光谱波段间的线性或非线性组合,被认为能作为反映绿色植被的相对丰度和活性的辐射量值(无量纲)的标志,是绿色植被的叶面积指数(LAI)、盖度、叶绿素含量、绿色生物量以及被吸收的光合有效辐射(APAR)的综合体现。
目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。
植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。
1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响几种常用的植被指数及其应用(一)比值植被指数(RVI)公式:RVI=ρNIR/ρRED(近红外波段反射率/红光波段反射率)特征:植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;值的范围是0-30+,一般绿色植被区的范围是2-8。
RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
应用:①利用比值植被指数研究城市建设用地扩张速率,预测或规划城市未来今年的发展前景。
不同用地的地表温度由高到低排序是城镇用地、工矿与交通用地、农村宅基地、林地、旱地,说明建设用地的地表温度较高,其比值植被指数较非建设用地小。
RVI的平均值M和标准差D可以作为定量指标来提取建设用地:RVI ≤M-D/2为建设用地;RVI>M-D/2为非建设用地。
②可用于实时、快速、无损监测作物氮素状况,这对于精确氮肥管理有重要意义。
利用高光谱比值指数RSI(990,720)来估算小麦叶片氮积累量为便携式小麦氮素监测仪的研制开发及遥感信息的快速提取提供了适用可行的波段选择与技术依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.用ETM+图像计算植被指数并分析。
数据来源:地理空间数据云平台
Landsat 7 ETM SLC-on 卫星数字产品(1999-2003)
数据标识LE71190432002338EDC01卫星名称LANDSAT7
数据类型L7slc-on传感器ETM+
接收站EDC白天/晚上DAY
条带号119 行编号43
太阳高度角37.8951 太阳方位角151.8815
获取时间2002-12-04 平均云量 1.0
开始时间2002-12-04 02:21:12.0 结束时间2002-12-04 02:21:12.0
中心经度118.4915 中心纬度24.5531
Landsat 7 ETM SLC-on 卫星数字产品(1999-2003)
数据标识LE71190432002066SGS00卫星名称LANDSAT7
数据类型L7slc-on传感器ETM+
接收站SGS白天/晚上DAY
条带号119 行编号43
太阳高度角49.0019 太阳方位角133.0889
获取时间2002-03-07 平均云量0.0
开始时间2002-03-07 02:21:52.0 结束时间2002-03-07 02:21:52.0
中心经度118.4993 中心纬度24.5482
(1)由于这两个数据的空间投影与厦门市矢量图层的投影都是GCS_WGS_1984,所以不用进行重投影。
(2)利用厦门市矢量图层对这两个卫星数字产品中的B30、B40波段进行剪裁。
如图1.
L71119043_0432*******_B30 L71119043_0432*******_B40
L71119043_0432*******B-30 L71119043_0432*******B-40 (3)利用ARCGIS中Spatial Anaiyst---Raster Calculator进行植被指数的计算。
计算公式为NDVI=(band4-band3)/(band4+band3)。
得到图2.
20020307NDVI
20021204NDVI
(4)利用ARCGIS中Spatial Anaiyst---Raster Calculator探究植被变化的计算。
计算公式为:20021204NDVI-20020307NDVI 。
得到图3.
植被覆盖率变化图
厦门市行政区划图
(5)分析:
从图中可以看出,从20020307到20021204厦门市大部分地区植被覆盖率都有所增加,只有少数地区植被覆盖率减少,这些减少的地区分布在厦门市西北方向的边缘地区,位于同安区和集美区局部地区。