浙江省宁波市2020年普通高中保送生模拟测试数学试卷
浙江省2020届高三高考模拟试题数学试卷及解析word版

浙江省2020届高三高考模拟试题数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U=R,集合A={x|x<32},集合B={y|y>1},则∁U(A∩B)=()A.[32,+∞)B.(−∞,1]∪[32,+∞)C.(1,32)D.(−∞,32)2.已知i是虚数单位,若z=3+i1−2i,则z的共轭复数z等于()A.1−7i3B.1+7i3C.1−7i5D.1+7i53.若双曲线x2m−y2=1的焦距为4,则其渐近线方程为()A.y=±√33x B.y=±√3x C.y=±√55x D.y=±√5x4.已知α,β是两个相交平面,其中l⊂α,则()A.β内一定能找到与l平行的直线B.β内一定能找到与l垂直的直线C.若β内有一条直线与l平行,则该直线与α平行D.若β内有无数条直线与l垂直,则β与α垂直5.等差数列{a n}的公差为d,a1≠0,S n为数列{a n}的前n项和,则“d=0”是“S2nS n∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.随机变量ξ的分布列如表:ξ﹣1012P13a b c其中a,b,c成等差数列,若E(ξ)=19,则D(ξ)=()A.181B.29C.89D.80817.若存在正实数y,使得xyy−x =15x+4y,则实数x的最大值为()A.15B.54C.1D.48.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85B .95C .2040D .22809.已知三棱锥P ﹣ABC 的所有棱长为1.M 是底面△ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,P AC 的距离h 1,h 2,h 3成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A .α=βB .β=γC .α<βD .β<γ10.已知|2a →+b →|=2,a →⋅b →∈[−4,0],则|a →|的取值范围是( ) A .[0,1]B .[12,1]C .[1,2]D .[0,2]二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.若α∈(0,π2),sinα=√63,则cosα= ,tan2α= .12.一个长方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体与原长方体的体积之比是 ,剩余部分表面积是 .13.若实数x ,y 满足{x +y −3≥02x −y +m ≤0y ≤4,若3x +y 的最大值为7,则m = .14.在二项式(√x +1ax 2)5(a >0)的展开式中x﹣5的系数与常数项相等,则a 的值是 .15.设数列{a n }的前n 项和为S n .若S 2=6,a n +1=3S n +2,n ∈N *,则a 2= ,S 5= . 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a cos B =b cos A ,∠A =π6,边BC 上的中线长为4.则c = ;AB →⋅BC →= .17.如图,过椭圆C:x2a2+y2b2=1的左、右焦点F1,F2分别作斜率为2√2的直线交椭圆C上半部分于A,B两点,记△AOF1,△BOF2的面积分别为S1,S2,若S1:S2=7:5,则椭圆C离心率为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数f(x)=sin(2x+π3)+sin(2x−π3)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[−π4,π2]上的最大值和最小值.19.(15分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.20.(15分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:S3=716,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.21.(15分)已知抛物线C:y=12x2与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.(1)证明:直线AB恒过定点Q;(2)试求△P AB面积的最小值.22.(15分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:f(x1)−f(x2)<12.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【详解详析】∵U=R,A={x|x<32},B={y|y>1},∴A∩B=(1,32),∴∁U(A∩B)=(−∞,1]∪[32,+∞).故选:B.2.【详解详析】∵z=3+i1−2i =(3+i)(1+2i)(1−2i)(1+2i)=15+75i,∴z=15−75i.故选:C.3.【详解详析】双曲线x2m−y2=1的焦距为4,可得m+1=4,所以m=3,所以双曲线的渐近线方程为:y=±√33x.故选:A.4.【详解详析】由α,β是两个相交平面,其中l⊂α,知:在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5.【详解详析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和, “d =0”⇒“S 2n S n∈Z ”,当S2nS n∈Z 时,d 不一定为0,例如,数列1,3,5,7,9,11中,S 6S 3=1+3+5+7+9+111+3+5=4,d =2,故d =0”是“S 2n S n∈Z ”的充分不必要条件.故选:A .6.【详解详析】∵a ,b ,c 成等差数列,E (ξ)=19, ∴由变量ξ的分布列,知:{a +b +c =232b =a +c (−1)×13+b +2c =19,解得a =13,b =29,c =19,∴D (ξ)=(﹣1−19)2×13+(0−19)2×13+(1−19)2×29+(2−19)2×19=8081.故选:D .7.【详解详析】∵xyy−x =15x+4y , ∴4xy 2+(5x 2﹣1)y +x =0, ∴y 1•y 2=14>0, ∴y 1+y 2=−5x 2−14x ≥0,∴{5x 2−1≥0x <0,或{5x 2−1≤0x >0, ∴0<x ≤√55或x ≤−√55①, △=(5x 2﹣1)2﹣16x 2≥0, ∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x , 解得:﹣1≤x ≤15②,综上x 的取值范围是:0<x ≤15;x的最大值是15,故选:A.8.【详解详析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A,B,D,E,F中选出2个字母,有C52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A44=24种情况,则一共有85×24=2040种不同排法;故选:C.9.【详解详析】依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=sinℎ1θ,其中θ是正四面体相邻两个面所成角,sinθ=2√23,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【详解详析】选择合适的基底.设m →=2a →+b →,则|m →|=2,b →=m →−2a →,a →⋅b →=a →⋅m →−2a →2∈[−4,0], ∴(a →−14m →)2=a →2−12a →•m →+116m →2≤8+116m →2 |m →|2=m →2=4,所以可得:m→28=12,配方可得12=18m →2≤2(a →−14m →)2≤4+18m →2=92,所以|a →−14m →|∈[12,32], 则|a →|∈[0,2]. 故选:D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【详解详析】∵α∈(0,π2),sinα=√63, ∴cosα=√1−sin 2α=√33,tanα=sinαcosα=√2,∴tan2α=2tanα1−tan 2α=√21−(√2)2=−2√2.故答案为:√33,﹣2√2.12.【详解详析】根据几何体的三视图转换为几何体为: 如图所示:该几何体为长方体切去一个角.故:V =2×1×1−13×12×2×1×1=53.所以:V 1V =532=56.S =2(1×2+1×2+1×1)−12(1×2+1×2+1×1)+12×√2×√2=9.故答案为:56,9.13.【详解详析】作出不等式组{x +y −3≥02x −y +m ≤0y ≤4对应的平面区域如图:(阴影部分).令z =3x +y 得y =﹣3x +z , 平移直线y =﹣3x +z , 由图象可知当3x +y =7.由 {3x +y =7y =4,解得 {x =1y =4,即B (1,4),同时A 也在2x ﹣y +m =0上, 解得m =﹣2x +y =﹣2×1+4=2. 故答案为:2.14.【详解详析】∵二项式(√x +1ax2)5(a >0)的展开式的通项公式为 T r +1=C 5r •(1a)r•x5−5r 2,令5−5r 2=−5,求得r =3,故展开式中x﹣5的系数为C 53•(1a )3;令5−5r 2=0,求得r =1,故展开式中的常数项为 C 51•1a =5a , 由为C 53•(1a )3=5•1a ,可得a =√2,故答案为:√2.15.【详解详析】∵数列{a n }的前n 项和为S n .S 2=6,a n +1=3S n +2,n ∈N *, ∴a 2=3a 1+2,且a 1+a 2=6,解得a 1=1,a 2=5,a 3=3S 2+2=3(1+5)+2=20, a 4=3S 3+2=3(1+5+20)+2=80, a 5=3(1+5+20+80)+2=320, ∴S 5=1+5+20+80+320=426. 故答案为:5,426.16.【详解详析】由a cos B =b cos A ,及正弦定理得sin A cos B =sin B cos A , 所以sin (A ﹣B )=0, 故B =A =π6,所以由正弦定理可得c =√3a ,由余弦定理得16=c 2+(a2)2﹣2c •a2•cos π6,解得c =8√217;可得a =8√77,可得AB →⋅BC →=−ac cos B =−8√77×8√217×√32=−967.故答案为:8√217,−967. 17.【详解详析】作点B 关于原点的对称点B 1,可得S △BOF 2=S△B′OF 1,则有S 1S2=|y A ||y B 1|=75,所以y A =−75y B 1.将直线AB 1方程x =√2y4−c ,代入椭圆方程后,{x =√24y −c x 2a 2+y 2b 2=1,整理可得:(b 2+8a 2)y 2﹣4√2b 2cy +8b 4=0, 由韦达定理解得y A +y B 1=4√2b 2cb 2+8a 2,y A y B 1=−8b 4b 2+8a 2,三式联立,可解得离心率e =ca =12. 故答案为:12.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【详解详析】(1)f (x )=sin2x +cos2x +1=√2sin(2x +π4)+1 所以最小正周期为π. 因为当π2+2kπ≤2x +π4≤3π2+2kπ时,f (x )单调递减.所以单调递减区间是[π8+kπ,5π8+kπ].(2)当x ∈[−π4,π2]时,2x +π4∈[−π4,5π4],当2x +π4=π2函数取得最大值为√2+1,当2x +π4=−π4或5π4时,函数取得最小值,最小值为−√22×√2+1=0.19.【详解详析】(1)在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1, 根据已知条件易得AB 1⊥A 1B ,由A 1C 1⊥面ABB 1A 1,得AB 1⊥A 1C 1, A 1B ∩A 1C 1=A 1,以AB 1⊥平面A 1BC 1;(2)以A 1B 1,A 1C 1,A 1A 为x ,y ,z 轴建立直角坐标系,设AB =a , 则A (0,0,a ),B (a ,0,a ),C 1(0,a ,0),D(a3,2a 3,0),所以AD →=(a3,2a 3,−a),设平面A 1BC 1的法向量为n →,则n →=(1,0,−1), 可计算得到cos <AD →,n →>=2√77,所以AD 与平面A 1BC 1所成的角的正弦值为2√77. 20.【详解详析】(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n +1=﹣1+log 2a n , ∴log 2a n+1−log 2a n =log 2a n+1a n=−1,∴q =a n+1a n =12.由S 3=716,得a 1[1−(12)3]1−12=716,解得a 1=14.∴数列{a n }的通项公式为a n =12n+1.(2)由题意,设b n =a n •log 2a n ,则b n =−n+12n+1. ∴T n =b 1+b 2+…+b n =−(222+323+⋯+n+12n+1) 故−T n =222+323+⋯+n+12n+1,−T n2=223+⋯+n2n+1+n+12n+2.两式相减,可得−T n2=12+123+⋯+12n+1−n+12n+2=34−n+32n+2.∴T n=n+32n+1−32.21.【详解详析】(1)由y=12x2求导得y′=x,设A(x1,y1),B(x2,y2),其中y1=12x12,y2=12x22则k P A=x1,P A:y﹣y1=x1(x﹣x1),设P(x0,kx0﹣1),代入P A直线方程得kx0﹣1+y1=x1x0,PB直线方程同理,代入可得kx0﹣1+y2=x2x0,所以直线AB:kx0﹣1+y=xx0,即x0(k﹣x)﹣1+y=0,所以过定点(k,1);(2)直线l方程与抛物线方程联立,得到x2﹣2kx+2=0,由于无交点解△可得k2<2.将AB:y=xx0﹣kx0+1代入y=12x2,得12x2−xx0+kx0−1=0,所以△=x02−2kx0+2>0,|AB|=2√1+x02√△,设点P到直线AB的距离是d,则d=02√1+x02,所以S△PAB=12|AB|d=(x02−2kx0+2)32=[(x0−k)2+2−k2]32,所以面积最小值为(2−k2)32.22.【详解详析】(1)求导得f′(x)=lnx+1﹣2ax(x>0),由题意可得函数g(x)=lnx+1﹣2ax有且只有两个零点.∵g′(x)=1x −2a=1−2axx.当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,舍去;当a>0时,令g′(x)=0,解得x=12a,所以x∈(0,12a ),g′(x)>0,g(x)单调递增,x∈(12a,+∞),g′(x)<0,g(x)单调递减.所以x=12a 是g(x)的极大值点,则g(12a)>0,解得0<a<12;(2)g(x)=0有两个根x1,x2,且x1<12a<x2,又g(1)=1﹣2a>0,所以x1<1<12a<x2,从而可知f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.所以f(x1)<f(1)=−a<0,f(x2)>f(1)=−a>−1,2.所以f(x1)−f(x2)<12。
2020年浙江省宁波市普通高中自主招生数学模拟试卷及答案解析

2020年浙江省宁波市普通高中自主招生数学模拟试卷一.选择题(共5小题,满分25分,每小题5分)1.(5分)希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .13782.(5分)在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取1个恰好是白球的概率为13,则放入的黄球总数为( ) A .5个 B .6个 C .8个 D .10个3.(5分)下列命题正确是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有两条边对应相等的两个直角三角形全等C .16的平方根是4D .对角线相等的平行四边形是矩形4.(5分)已知m >0,关于x 的一元二次方程(x +1)(x ﹣2)﹣m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( )A .x 1<﹣1<2<x 2B .﹣1<x 1<2<x 2C .﹣1<x 1<x 2<2D .x 1<﹣1<x 2<2 5.(5分)如图,点A 是函数y =−2x (x <0)在第二象限内图上一点,点B 是函数y =4x (x>0)在第一象限内图象上一点,直线AB 与y 轴交于点,且AC =BC ,连结OA ,OB ,则△AOB 的面积是( )A.2B.3C.4D.5二.填空题(共4小题,满分20分,每小题5分)6.(5分)关于x的不等式组{4a+3x>03a−4x≥0恰好只有三个整数解,则a的取值范围是7.(5分)如图,在△ABC中,AC=BC,∠C=90°,点D,E,F分别在边BC,AC,AB 上,四边形DCEF为矩形,P,Q分别为DE,AB的中点,若BD=1,DC=2,则PQ=.8.(5分)如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC=12,BC=13,则⊙O的半径是.9.(5分)如图,⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠P的值是.三.解答题(共2小题,满分30分,每小题15分)10.(15分)若一次函数y=mx+n与反比例函数y=kx同时经过点P(x,y)则称二次函数y=mx2+nx﹣k为一次函数与反比例函数的“共享函数”,称点P为共享点.(1)判断y=2x﹣1与y=3x是否存在“共享函数”,如果存在,请求出“共享点”.如果。
2020年浙江省宁波市中考数学模拟试卷(三) 解析版

2020年浙江省宁波市中考数学模拟试卷(三)一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.12.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10124.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2 6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.129.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣412.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二.填空题13.把多项式x2﹣3x因式分解,正确的结果是.14.已知扇形的面积为3π,圆心角为120°,则它的半径为.15.若分式的值为0,则x的值为.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为米(结果保留根号).18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2020年浙江省宁波市中考数学模拟试卷(三)参考答案与试题解析一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.2.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P(1,2)关于原点的对称点P'的坐标是(﹣1,﹣2),故选:D.3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150000000000=1.5×1011,故选:C.4.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【分析】根据各自的定义判断即可.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选:D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.12【分析】本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于12小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于6而小于10,看哪个符合就可以了.【解答】解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,12<三角形的周长<20,故6<中点三角形周长<10.故选:B.9.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【分析】分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(3﹣n)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(3﹣n)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣5,∵n是整数,∴2n﹣5是整数,∴y的整数值有(2n﹣4)个;故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<3时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,故④错误,故选:C.11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh =k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.12.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选:B.二.填空题13.把多项式x2﹣3x因式分解,正确的结果是x(x﹣3).【分析】直接提公因式x即可.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3).14.已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.15.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是6.【分析】利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.【解答】解:如图,设CD交y轴于E,AB交y轴于F.连接OD、OC.由题意知:DE•OE=﹣b,CE•OE=a,∴a﹣b=OE(DE+CE)=OE•CD=2OE,同法:a﹣b=3•OF,∴2OE=3OF,∴OE:OF=3:2,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.【分析】先用平方差公式和单项式乘以多项式的方法将代数式化简,然后将a的值代入化简的代数式即可求出代数式的值.【解答】解:(a+2)(a﹣2)+a(1﹣a)=a2﹣4+a﹣a2=a﹣4将a=5代入上式中计算得,原式=a﹣4=5﹣4=120.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【分析】(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.【解答】解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【分析】(1)首先设A种花木的数量为x棵,B种花木的数量为y棵,根据题意可得等量关系:①A、B两种花木共6600棵;②A花木数量=B花木数量的2倍﹣600棵,根据等量关系列出方程,再解即可;(2)首先设应安排a人种植A花木,则安排(26﹣a)人种植B花木,由题意可等量关系:种植A花木所用时间=种植B花木所用时间,根据等量关系列出方程,再解即可.【解答】解:(1)设A种花木的数量为x棵,B种花木的数量为y棵,由题意得:,解得:,答:A种花木的数量为4200棵,B种花木的数量为2400棵;(2)设应安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原方程的解,26﹣a=12,答:应安排14人种植A花木,应安排,12人种植B花木,才能确保同时完成各自的任务.25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD(SAS),∴AD=CD.(2)若EF⊥BC,则四边形ABFE是矩形,AE=BF=BC=4.5,∵AB=5,∴AE≠AB∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2﹣1中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×4×=.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×5×=,综上所述,四边形DPFC的面积为或.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD 为△P AB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR =,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ =90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ 的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH ⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG 的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴P A=PB,∴∠P AB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△P AB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,DE∥AB,∴四边形AMDE是平行四边形,四边形AMDF是等腰梯形,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴∠GMD=∠GDM,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.。
浙江省宁波市2020年数学中考仿真卷(六)及参考答案

(1) 第n行最后(最右边)一个数是________(用含n的代数式表示). (2) 5是第几行中的第几个数?
(3) 这串数列中的第32个数是多少?
(4) 是这串数列中的第________个. 25. 若两条线段将一个三角形分割成三个等腰三角形,则这两条线段称为三分线.
(1) 如图①,△ABC中,AB=AC,∠A=36°,请在图中画出两条三分线,并标出每个等腰三角形顶角的度数(画 出一种分割即可).
18. 请你写出一个关于a,b的代数式,使得这个代数式的值等于max{a,b}(a,b中较大的一个数),这个代数式可以 为________(写出一个即可).
三 、 解 答 题 ( 本 大 题 有 8小 题 , 共 78分 )
19. 求值或化简. (1) 计算:﹣32+(﹣4)×sin60°+ .
(2) 化简:
二 、 填 空 题 ( 每 小 题 4分 , 共 24分 )
13. 若使分式
有意义,则x的取值范围是________.
14. 若扇形的圆心角为 ,半径为 ,则该扇形的弧长为________. 15. 如图,矩形ABCD被分割成一个菱形和两个三角形,如果其中一个三角形的面积是菱形面积的
的值是________.
(2) 如图②,△ABC中,∠C=90°,∠A=60°,请在图中画出两条三分线,并标出每个等腰三角形顶角的度数(画 出一种分割即可).
(3) 如图③,△ABC中,∠BAC为钝角,AE,DE为三分线,BD=BE,DA=DE,CA=CE. ①求∠B和∠C的关系式. ②求∠BAC的取值范围. 26. 已知:如图,矩形ABCD中,点E,F分别在DC,AB边上,且点A,F,C在以点E为圆心,EC为半径的圆上,连 结CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.
2020年浙江省宁波市中考数学第三次模拟考试试卷附解析

2020年浙江省宁波市中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是()A.12B.14C.16D.182.已知⊙O 的半径为 5 cm,如果一条直线和圆心0的距离为 5 cm,那么这条直线和⊙O 的位置关系是()A.相交B.相切C.相离 D . 相交或相离3.圆心角为1000,弧长为20л的扇形的半径是()A.36 B. 720C. 6 D. 624.圆锥的底面半径为 1,全面积为4 ,则圆锥的母线长为()A.4 B.3 C.22D.3 25.抛物线y=(x-1)2+1的顶点坐标是()A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)6.某区的食品总消费为 a(kg)(a 为常数),设该区平均每人消费食品数为 y(kg),人口数为 x(人),则y与x 的函数图象为()A.B.C. D.7.等腰梯形的上、下底边分别为1和3,一条对角线长为4,则这个梯形的面积是()A.3B.3C.3D.38.口ABCD的周长为36 cm,AB=BC=2cm,则AD,CD的长度分别为()A.12 cm,6 cm B.8 cm,10 cm C.6 cm,12 cm D.10 cm,8 cm9.下列说法错误的是()A.三个角都相等的三角形是等边三角形B.有两个角是60°的三角形是等边三角形FGEDCBAC .有一个角是60°的等腰三角形是等边三角形D .有两个角相等的等腰三角形是等边三角形10.4a 7b 5c 3÷(-16a 3b 2c )÷81a 4b 3c 2等于( )A .aB .1C .-2D .-111.如果m 个人完成一项工作需d 天,那么(m n +)个人完成此项工作需要的天数是( ) A .(d b +)天B .()d n -天C .dm n+天 D .mdm n+天 12.若||a a >-,则a 的取值范围是( ) A .0a >B .0a ≥C .0a <D .D. 自然数二、填空题13.如图,在这三张扑克牌中任意抽取一张,抽到“黑红桃7”的概率是 . 14.已知直线y=2x ,则该直线与x 轴正方向夹角的正切值是 .15.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .16.已知平行四边形的两邻边之比为2:3,周长为20cm ,•则这个平行四边形的两条邻边长分别为 .17.已知直线y=kx+2(k 为常数,且k≠0),则k= 时,该直线与坐标轴所围成的三角形的面积等于1.18.在“222a ab b □□”方框中,任意填上“+”或“-”.能够构成完全平方式的概率是 .19.在一个班的40名学生中,14岁的有15人,15岁的有14人,l6岁的有7人,l7岁的有4人,则这个班的学生年龄的中位数是 岁,众数是 岁.20.已知一个三角形的三边长分别为3k ,4k ,5k (k 是为自然数),则这个三角形为 ,理由是 .21. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是 .22.若22(3)16x m x +-+是完全平方式,则m 的值等于 .23.从l2:40到13:10,钟表的分针转动的角度是 ,时针转动的角度是 . 24.“两直线平行,同位角相等”的逆命题是 .三、解答题25.如图EG ∥AF.请你从下面三个条件中,选择两个作为已知条件,另一个作为结论,推出一个正确的命题(只需要写出一种情况). ①AB = AC ;②DE = DF ;③BE = CF. 已知:EG ∥AF , = , = . 求证: .请证明上述命题.26.已知 c 为实数,并且方程230x x c-+=一个根的相反数是方程230x x c+-=一个根,求方程230x x c+-=的根和 c的值.27.如图所示,一次函数632yχ=-+的图象与 x轴,y 轴分别交于A,B 两点,求坐标原点 0 到直线 AB 的距离.28.某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?DCB AO29.在下列图形中,分别画出△ABC 的三条高.30.如图所示,已知∠COB=2∠AOC ,OD 平分∠AOB ,且∠COD=20º,求∠AOB 的度数。
2020年浙江省宁波市普通高中保送生模拟测试数学试卷(含答案)

2020年宁波市普通高中保送生模拟测试数学试卷一.选择题(每小题5分)1.设x 是有理数,11++-=x x y ,则正确的是( )A .y 没有最小值B .只有一个x 使y 取到最小值C .有有限多个x (不止一个)使y 取到最小值D .有无穷多个x 使y 取到最小值 2.如图,点A 在双曲线xy 6=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) B.5 C.72A.43.点D 、E 分别在AB 、AC 上,且AD=2BD ,CE=2AE ,若1BDF S ∆=,ADC S ∆=( ).A.12B.13C. 14D.154.如图所示,二次函数2y ax bx c =++的图象与x 轴负半轴相交与A 、B 两点,1(,)2Q n 是二次函数2y ax bx c =++图象上的一点,且AQ BQ ⊥,则a 的值为( )A 、1-B 、2-C 、13-D 、12-5.如图,在△ABC 中,AC=BC =2,D 是BC 的中点,过A ,C ,D 三点的⊙O 与AB 边相切于点A ,则⊙O 的半径为 ( ) A..1 D二.填空题(每小题5分) 6. 若关于 的分式方程的解为非负数,则 的取值范围为________________. . 7. 设2a 0=,{}n n n a a a 1][1+=+(n 为自然数),其中][n a 与{}n a 分别表示n a 的整数部分和小数部分,如[2.5]=2, {}5.2=0.5;-3[-2.6]=, {}6.2-=0.4;则2019a =________ 8.已知:如图,矩形OABC 中,点B 的坐标为(,双曲线 (0)ky k x=≠ 的一支与矩形两边AB ,BC 分别交于点E ,F . 若将△BEF 沿直线EF 对折,B 点落在y 轴上的点D 处,则点D 的坐标是9.如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,交BC 于点D ,过点E 做直线l ∥BC . 若∠ABC 的平分线BF 交AD 于点F , DE=4,DF=3,则AF 的长为________.三、解答题(共30分,每题15分)10.已知,在平面直角坐标系xOy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线上的一个动点.(1)如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,请通过测量或计算,比较PA 与PB 的大小关系:PA______PB (直接填写“>”“<”或“=”,不需解题过程); (2)请利用(1)的结论解决下列问题:①如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,简单说明理由; ②如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.11.对于平面直角坐标系xOy 中的点P 和⊙M ,给出如下定义:若⊙M 上存在两个点A ,B ,使AB =2PM ,则称点P 为⊙M 的“美好点”. (1)当⊙M 半径为2,点M 和点O 重合时,○1点()120P -, ,()211P ,,()322P ,中,⊙O 的“美好点”是 ; ○2点P 为直线y=x+b 上一动点,点P 为⊙O 的“美好点”,求b 的取值范围; (2)点M 为直线y=x 上一动点,以2为半径作⊙M ,点P 为直线y =4上一动点,点P 为⊙M 的“美好点”,求点M 的横坐标m 的取值范围.保送生模拟数学答案10.解:(1)PA___=____PB (2)①P (2,2)②-44y x y x ==或11. 解:(1)○11P ,2P ; ○2当直线y=x+b 与O 相切时,b =或-;∴b -≤≤(2)当直线y=4与M 相切时,m =2或6. ∴2≤m ≤6.。
【精品推荐】最新浙江省宁波市2020年高考模拟考试数学试卷及答案

宁波市2020年高考模拟考试高三数学试卷说明:本试题卷分选择题和非选择题两部分。
全卷共4页,满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:如果事件A , B 互斥, 那么 柱体的体积公式P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示柱体的底面积, h 表示柱体的高 P (A ·B )=P (A )·P (B )锥体的体积公式 如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积, h 表示锥体的高 P n (k )=k n C p k(1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式 台体的体积公式S = 4πR 212()13V h S S =球的体积公式 其中S 1, S 2分别表示台体的上、下底面积,V =43πR 3h 表示台体的高 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{|06}U A B x Z x ==∈≤≤U ,(){1,3,5}U A C B =I ,则B =(▲)A .{2,4,6}B .{1,3,5}C .{0,2,4,6}D .{|06}x Z x ∈≤≤ 2.把复数z 的共轭复数记作z ,若(1+)1i z i =-,i 为虚数单位,则z =(▲)A .iB .i -C .1i -D .1i + 3.()612x +展开式中含2x 项的系数为(▲)A .15B .30C .60D .120 4.随机变量X 的取值为0,1,2,若1(0)5P X ==,()1E X =,则()D X =(▲) A .15 B .25CD5.已知平面,αβ和直线12,l l ,且2l αβ=I ,则“12//l l ”是“1//l α,且1//l β” 的(▲)A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 6.设2,0()log ,0x x f x x x -≤⎧=⎨>⎩,.则函数(())y f f x =的零点之和为(▲)A .0B .1C .2D .47.从1,2,3,4,5这五个数字中选出三个不相同数组成一个三位数,则奇数位上必须 是奇数的三位数个数为(▲)A .12B .18C .24D .8.如图,12,F F 是椭圆1C 与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若11AF BF ⊥,且13AF O π∠=,则1C 与2C 的离心率之和为(▲)A .B .4C .D .9.已知函数()=sin cos 2f x x x ,则下列关于函数()f x A .最大值为1 B .图象关于直线2x π=-对称C .既是奇函数又是周期函数 D .图象关于点3,04π⎛⎫⎪⎝⎭中心对称 10.如图,在直二面角A BD C --中,ABD ∆,CBD ∆均是以BD 为斜边的等腰直角三角形,取AD 中点E ,将ABE ∆沿BE 翻折到 1A BE ∆,在ABE ∆的翻折过程中,下列不可能...成立的是(▲) A .BC 与平面1A BE 内某直线平行 B .//CD 平面1A BE C .BC 与平面1A BE 内某直线垂直 D .1BC A B ⊥非选择题部分(共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分。
2020年浙江省宁波市普通高中自主招生数学押题试卷及答案解析

第 1 页 共 14 页
2020年浙江省宁波市普通高中自主招生数学押题试卷
一.选择题(共5小题,满分25分)
1.(5分)希腊人常用小石子在沙滩上摆成各种形状来研究数. 例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是( )
A .289
B .1024
C .1225
D .1378
2.(5分)小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( ) A .1
3
B .1
6
C .
1
12
D .
1
27
3.(5分)下面命题正确的是( ) A .矩形对角线互相垂直
B .方程x 2=14x 的解为x =14
C .六边形内角和为540°
D .一条斜边和一条直角边分别相等的两个直角三角形全等 4.(5分)二次函数y =ax 2+bx +c 的x ,y 的对应值如下表:
x … ﹣1 −1
2
0 12 1 32 2 … y
…
﹣1
14
m
54
1
14
n
…
下列关于该函数性质的判断
①该二次函数有最大值;②当x >0时,函数y 随x 的增大而减小;③不等式y <﹣1
的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省宁波市2020年普通高中保送生模拟测试数学试卷一、选择题(每小题5分,共25分)(共5题;共25分)1.设a,b为整数,方程的一根是,则的值为()A. 2B. 0C. -2D. -12.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=40°,则∠CAD的度数是()A. 50°B. 80°C. 90°D. 70°3.已知△ABC的三边长为8,12,18,又知△A1B1C1也有一边长为12,且与△ABC相似而不全等,则这样的△A1B1C1的个数为()A. 0B. 1C. 2D. 34.边长为1的正方形OABC的顶点A在x轴正半轴上,点C在y轴正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,点B恰好落在函数的图象上,则a的值为()A. B. -1 C. D.5.如图,圆内接四边形ABCD中,∠A、∠D的角平分线交于点E,过点E作线段MN∥BC,与AB,CD分别交于点M,N,则总有MN等于().A. BM+DNB. AM+CNC. BM+CND. AM+DN二、填空题(每小题5分,共20分)(共4题;共20分)6.若关于x的不等式|x+a|<b的解集为2<x<4,则ab的值是________。
7.如果函数y=b与函数的图象恰好有三个交点,则b=________。
8.如图,已知点(1,3)在函数的图象上。
正方形ABCD的边BC在x轴上,点E是对角线BD的中点,函数的图象又经过A、E两点,则点E的坐标为________。
9.如图,△ABC中,则△BED的最大面积为________.三、解答题(每小题15分,共30分)(共2题;共30分)10.如图所示,已知P(2,3)是反比例函数图象上的一点。
(1)求过点P且与双曲线只有一个公共点的一次函数解析式;(2)Q是第三象限内双曲线上一动点,过点Q的直线与双曲线只有一个公共点,且与x轴、y轴分别交于C、D两点,设(1)中求得的一直线与x轴、y轴分别交于A、B两点,试证:OC·OD=OA·OB;(3)由(2),试分析当四边形ABCD面积最小时的形状。
11.在平面直角坐标系xOy中,点A是x轴外一点,若平面内的点B满足:线段AB的长度与点A到x轴的距离相等,则称点B是点A的“等距点”。
(1)若点A的坐标为(0,2),点P1(2,2)、P2(1,-4)、P3(- ,1)中,点A的“等距点”是________。
(2)若点M(1,2)和点N(1,8)是点A的两个“等距点”,求点A的坐标。
(3)记函数的图像为L,⊙T的半径为2,圆心为T(0,t),若在L上存在点M,⊙T 上存在点N,满足点N是点M的“等距点”,直接写出t的取值范围。
答案解析部分一、选择题(每小题5分,共25分)1.【答案】C【解析】【解答】解:∴∴∵a,b是整数,∴解之:a=2,b=-2∴原式=.故答案为:C【分析】将已知方程的根化简,再将其根代入方程求出a,b的值,然后将a,b的值代入代数式进行计算。
2.【答案】B【解析】【解答】解:如图∵AB=AC=AD∴点B、C、D在以点A为圆心,AB为半径的圆上,∵弧BC=弧BC,弧CD=弧CD∴∠CAD=2∠CBD,∠BAC=2∠BDC=40°,∴∠BDC=20°,∵∠CBD=2∠BDC=2×20°=40°∴∠CAD=2∠CBD=2×40°=80°.故答案为:B.【分析】由已知AB=AC=AD可证得点B、C、D在以点A为圆心,AB为半径的圆上,由圆周角定理可证得∠CAD=2∠CBD,∠BAC=2∠BDC,就可求出∠BDC,∠CBD的度数,从而可求出∠CAD的度数。
3.【答案】C【解析】【解答】解:∵△ABC的三边长为8,12,18,又知△A1B1C1也有一边长为12,且与△ABC相似而不全等,∴△A1B1C1中边长为12的一边与△ABC中边长为8的边为对应边或△A1B1C1中边长为12的一边与△ABC 中边长为18的边为对应边.∴这样的△A1B1C1有2个.故答案为:C.【分析】抓住已知条件中的△ABC与△A1B1C1不全等,就可得到△A1B1C1中边长为12的一边与△ABC中边长为8的边为对应边或△A1B1C1中边长为12的一边与△ABC中边长为18的边为对应边,即可得到满足条件的△A1B1C1的个数。
4.【答案】D【解析】【解答】解:过点B作BE⊥x轴于点E,连接OB,∵将正方形OABC绕顶点O顺时针旋转75°,∴∠AOE=75°,∠AOB=45°∴∠BOE=75°-45°=30°,在Rt△AOB中∴OB=在Rt△BOE中,BE=OBsin∠BOE=sin30°=.OE=OBcos∠BOE=∴点B∴解之:a=.故答案为:D.【分析】过点B作BE⊥x轴于点E,连接OB,利用旋转的性质和正方形的性质可求出∠BOE的度数,在Rt△AOB中,利用解直角三角形求出OB的长,在Rt△BOE中,利用解直角三角形求出BE,OE的长,据此可求出点B的坐标,然后利用待定系数法可求出a的值。
5.【答案】D【解析】【解答】解:在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADN+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°−∠DAF−∠MND=180°−∠DEN−∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故答案为:D.【分析】在NM上截取NF=ND,连结DF,AF,利用等边对等角可得到∠NFD=∠NDF,再利用圆周角定理可证得∠ADN+∠B=180°,由此可推出∠AMN+∠ADN=180°,就可得到A,D,N,M四点共圆,利用角平分线的定义去证明∠DFN=∠DAE,因此可得到A,F,E,D四点共圆,就可推出∠DEN=∠DAF,∠AFM=∠ADE,然后证明∠MAF=∠AFM,可得到MA=MF,据此可推出MN=AM+DN。
二、填空题(每小题5分,共20分)6.【答案】-3【解析】【解答】解:∵关于x的不等式|x+a|<b的解集为2<x<4,∴-b<x+a<b∴-b-a<x<b-a∴解之:∴ab=-3×1=-3.故答案为:-3.【分析】利用已知条件可知-b-a<x<b-a,再根据不等式的解集建立关于a,b的方程组,解方程组求出a,b的值,然后求出ab的值。
7.【答案】-6或【解析】【解答】解:当x≥1时,∴y=x2-3(x-1)-4x-3=x2-7x=当x=1时,y=-6∴此函数图像的一个交点为(1,-6)顶点坐标为;当x<1时,y==x2-3(1-x)-4x-3=x2-x-6=∴顶点坐标为∴当b=-6和b=时,两图像恰好有三个交点.故答案为:-6或.【分析】分情况讨论:当x≥1时可得到函数解析式,将函数解析式转化为顶点式,同时求出x=1时y的值;当x<1时,可得到函数解析式,将函数解析式转化为顶点式,根据题意可得到符合题意的b的值。
8.【答案】【解析】【解答】解:∵点(1,3)在函数的图象上,∴k=1×3=3.∴函数解析式为;设点A(m>0)∵正方形ABCD,∴BC=AB=,AE=CE过点E作EF⊥x轴于点F,∵AB∥EF∴点F是BC的中点,∴∴OF=∴点E将点E的代入函数解析式得解之:(不符合题意,舍去).∴∴∴点故答案为:.【分析】过点E作EF⊥x轴于点F, 利用待定系数法求出函数解析式,利用函数解析式设点A(m >0),利用正方形的性质用含m的代数式表示出EF,OF的长,由此可得到点E的坐标,然后将点E的坐标代入函数解析式,建立关于m的方程,解方程求出符合题意的m的值,然后代入计算可得到点E的坐标。
9.【答案】【解析】【解答】解:∵∴∴S△ABE=2y;∴S△ADE=2xy,∵S△BDE=S△ABE-S△ADE=2y-2xy=2y(1-x)∵∴y=∴S△BDE==∴当x=时,△BDE的最大面积为.故答案为:.【分析】利用三角形的面积公式及已知条件可得到S△ABE=2y,S△ADE=2xy,再根据S△BDE=S△ABE-S△ADE,结合已知可建立S△BDE与x的函数解析式,然后将函数解析式转化为顶点式,然后利用二次函数的性质可求解。
三、解答题(每小题15分,共30分)10.【答案】(1)解:∵P(2,3)是反比例函数图象上的一点,∴k=2×3=6∴此反比例函数解析式为;∵直线x=2与直线y=3与反比例函数图像只有一个交点,符合题意,设过点P的直线的解析式为y=ax+b,∴2a+b=3b=3-2a,∴y=ax+3-2a,∵∴ax2+(3-2a)x-6=0,∵两函数图像只有一个公共点,∴b2-4ac=0(3-2a)2+24a=0解之:∴3-2a=6∴一次函数解析式为(2)解:∵过Q的直线与∴,∴△=0,∴,又∵OA·OB=24,∴OA·OB=OC·OD(3)解:.而= .∴当时,。
此时【解析】【分析】(1)利用待定系数法求出反比例函数解析式,设过点P的直线的解析式为y=ax+b,将点P的坐标代入可得到b=3-2a,由此可得函数解析式y=ax+3-2a,再将两函数联立方程组,然后根据两函数图像只有一个公共点可知ax2+(3-2a)x-6=0有两个相等的实数根,由此建立关于a的方程,解方程求出a的值,即可得到函数解析式。
(2)根据两函数图像只有一个公共点,可得出OC·OD的值,从而可求出OC·OD的值,再求出OA·OB的值,即可证得结论。
(3)利用点的坐标可得到四边形ABCD的面积,由此可得到m与n的关系式,再建立S与n的函数解析式,利用二次函数的性质,可得到四边形ABCD的最小面积为48时的n,m的值,由此可求出OC,OD的长,利用菱形的判定定理可得到四边形ABCD的形状。
11.【答案】(1)P1、P3(2)点A的坐标为(5,5)或(-3,5)(3)【解析】【解答】解:(1)∵点A(0,2)到x轴的距离为2,点P1(2,2)、P2(1,-4)、P3(- ,1)∴AP1=|0-2|=2,∴点A的“等距点”是P1、P3;(2)如图,∵点M(1,2)和点N(1,8)是点A的两个“等距点”,∴AM=AN,∴点A在线段MN的垂直平分线上,设MN与其垂直平分线交于点B,点A的坐标为(m,n),∵点M(1,2),点N(1,8),∴MN的中点B的坐标为(1,5),∵AB∥x轴∴点A(m,5)∴点A到x轴的距离为5AM=AN=5,∴BM=NB=(8-2)÷2=3,∴m=1−4=−3或m=1+4=5,∴点A的坐标为(−3,5)或(5,5).(3)如图,∵函数的图像为L,点M在L上,∴设点M∵点T(0,t)∴MD=,∵MD=MN∴即∵关于a的一元二次方程有解,∴b2-4ac≥0∴整理得:t2-2t-8≤0解之:-2≤t≤4,当t=2时,a2=0,∴t≠2∴-2<t≤4,【分析】(1)由点A的坐标可得到点A到x轴的距离,再利用两点之间的距离公式分别求出AP1,AP2,AP3的长,然后根据“等距点”的定义可求解。