关于细胞衰老原因的假说
高中生物第6章“细胞的生命历程”多选题精选

必修一《分子与细胞》第六章“细胞的生命历程”多选题精选一、细胞增殖1.真核细胞的直径一般在10~100微米之间。
生物体细胞体积趋向于小的原因是(CD)A.受细胞所能容纳的物质制约B.相对面积小,有利于物质的快速转运和交换C.受细胞核所能控制的X围制约D.相对面积大,有利于物质的快速转运和交换2.下列关于细胞周期的叙述中,正确的是(ABC)A.不是生物体的所有细胞都处于细胞周期中B.无论什么生物,在细胞周期中,都是分裂间期比分裂期时间长C.利用药物抑制DNA合成,细胞将停留在分裂间期D.细胞周期可分为前、中、后、末四个时期3.下面有关植物细胞有丝分裂中细胞器的作用,正确的是(ABD)A.在间期的核糖体上合成DNA聚合酶和RNA聚合酶B.在间期,线粒体为蛋白质的合成提供能量C.在前期,两组中心粒之间星射线形成纺缍体D.在末期,高尔基体为细胞壁形成合成多糖4.在有丝分裂过程中,属于着丝点分裂结果的是(BC)A.中心体数目加倍B.染色体组数加倍C.着丝点数目加倍D.DNA含量加倍5.在细胞有丝分裂过程中,能保证两个子细胞中染色体的形态和数目与亲代细胞完全相同的机制是(ABCD)A.染色体复制B.着丝点分裂C.纺锤丝牵引D.纺锤体的形成6.在高倍显微镜下观察处于有丝分裂中期的植物细胞,都能看到的结构是(ABD)A.细胞壁B.染色体C.赤道板D.纺缍体7.下图是细胞有丝分裂几个时期的示意图,据图分析,以下正确的叙述是(BCD)甲己丙丁A .甲、乙、丁时期细胞所含的染色单体数相同B .甲、乙、丁时期细胞内所含有的DNA 个数相同C .丁时期细胞所含的同源染色体对数是甲、乙、丙的两倍D .甲、丁时划的母细胞均含有四个染色体8.右图表示某生物细胞有丝分裂过程中细胞核内DNA 含量变化的曲线。
下列叙述不正确是(ABC )A .O ~A 段表示染色体复制,含量加倍B .细菌与B ~C 段细胞相比主要区别是没有核膜和核仁C .C ~D 段细胞核中染色体∶染色单体∶DNA 为1∶2∶2D .B ~D 段的团藻细胞中含有两组中心粒9.(08南师附中期中)如图所示细胞分裂的不同时期与每条染色体DNA 含量变化的关系,下列有关说法正确的是(ABD )A .AB 段可以表示在有丝分裂或者减数分裂过程中DNA 分子的复制B .BC 段可以表示有丝分裂过程中的前期、中期C .CD 段可以表示同源染色体分离,非同源染色体自由组合D .此曲线可表示有丝分裂过程中核DNA 数量变化10.(08某某二调)右图表示洋葱根尖细胞有丝分裂各阶段细胞核中DNA 和细胞质中mRNA 含量变化。
衰老的自由基假说

衰老的自由基假说衰老的自由基假说是目前衰老领域中广为接受的一种理论。
该理论认为,衰老的原因主要是自由基的损伤以及细胞对它的反应不足。
那么,什么是自由基呢?自由基是一种具有不成对电子的分子或原子。
由于电子不成对,它们具有高度的活性,容易与其它分子发生反应,从而对细胞和身体造成损伤。
自由基的产生可以来自体内外的环境因素,如辐射、污染、烟草、紫外线等等。
自由基可以损伤细胞内的蛋白质、脂肪和DNA等重要分子,从而导致细胞功能的下降和死亡。
当自由基产生过多时,细胞几乎无法应对这些损伤,从而导致身体的老化和疾病。
因此,人们提出了自由基假说,即衰老主要是由于自由基的损伤。
这一假说得到了越来越多的科学家的支持。
许多研究表明,自由基可以引起多种疾病,如心血管疾病、癌症和糖尿病等等。
同时,研究还表明,通过补充抗氧化剂可以减少自由基的损伤,从而延缓衰老的过程。
抗氧化剂是一种可以中和自由基的物质。
它们可以捐赠电子给自由基,从而使它们变得不再具有高度的活性,或者把它们变为不活性的分子。
抗氧化剂可以来自于食物和保健品。
一些常见的抗氧化剂包括维生素C、维生素E、类胡萝卜素和硒等。
虽然自由基假说得到了广泛的认可,但是也有一些科学家对其提出了质疑。
他们认为,自由基的损伤并不是唯一的衰老原因,还有很多其它的因素,如基因和环境因素等等,也会影响衰老的过程。
在未来,科学家将继续探索衰老的机制以及如何对抗自由基的损伤。
虽然自由基假说不是万能的,但它为我们提供了一个理论框架,帮助我们更好地理解衰老的过程。
在生活中,我们也可以通过改变饮食、减少烟草和酒精等不良生活习惯,来减少自由基的损伤,从而延缓衰老的过程。
高中生物必修1教学课件知识点-细胞衰老的原因

清除 ROS ,就可以延长寿命。正常细胞内存在清除自由基的防御系统, 包括酶系统和非酶系统: – 酶系统:SOD,CAT,GR等;
– 非酶系统:维生素E,醌类等电子受体。
(二)端粒与衰老:
细胞增殖次数与端粒DNA长度有关。 体细胞染色体的端粒DNA会随细胞分裂次数增加而不断缩短。细胞 DNA每复制一次端粒就缩短启动DNA损伤检测点(DNA damage checkpoint),激活p53,引起p21表 达,导致不可逆地退出细胞周期,走向衰亡。资料表明人的成纤维细胞端粒 每年缩短14-18bp,可见染色体的端粒有细胞分裂计数器的功能,能记忆细 胞分裂的次数。
知识点——细胞衰老
的原因
细胞衰老的原因
(一)自由基学说:
该理论认为,代谢过程中产生的活性氧基团或分子( reactive oxygen
species,ROS)引发的氧化性损伤的积累,最终导致衰老。
自由基:是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在 于生物系统。具有高度反应活性,可引发链式自由基反应,引起DNA 、
端粒的长度与端粒酶(telomerase)的活性有关。 端粒酶是一种反转录酶,能以自身的RNA为模板合成端粒DNA,在精
原细胞、干细胞和肿瘤细胞(如Hela细胞)中有较高的端粒酶活性,而正常 体细胞中端粒酶的活性很低,呈抑制状态。
成人早衰症(Werner's syndrome)病人平均39岁时出现衰老,47岁左右生命结束,
患婴幼儿早衰症 (Hutchinson-Gilford syndrome,图15-2) 的小孩在1岁时出现 明显的衰老,12-18 岁即过早夭折。
1.细胞衰老的原因中,被大家普遍接受的是 ①生物体生命活动中产生了大量自由基造成 的 ②细胞中的营养物质无法正常供应造成 的 ③细胞中产生的代谢废物大量积累所致 ④染色体上的端粒不断被“截短”造成的 A.①③ B.②④ C.①④ D.①③④
为什么人会衰老

为什么人会衰老目前追求永生似乎遥不可及,人们开始转而期望能够活得更健康、更长久。
为了实现这个目标,我们首先需要回答一个问题——为什么人会衰老?最早在细胞层面为衰老问题提供解释的是端粒假说。
端粒是染色体两端的特殊区域,具有保护染色体的功能。
每当细胞分裂一次,染色体也会复制一次。
研究发现,每次复制后,染色体的端粒会缩短一点,当端粒缩短到一定程度时,染色体就会停止复制,从而阻止母细胞分裂产生新的子代细胞。
当没有年轻细胞补充时,机体会逐渐老去。
端粒假说在克隆羊多利的实验中得到了部分证实。
然而,近年来的其他克隆研究发现,克隆动物的寿命与所选用的细胞的年轻程度并没有直接关系,可见,该假说存在一定局限性。
目前,表观遗传学能更好地解释细胞寿命问题。
表观遗传学是指在基因序列不变的情况下,通过对碱基的甲基化或乙酰化来影响基因的表达,从而调控生物的性状。
简单来说,基因组就像电脑的硬件,而表观遗传则是软件,它指示基因组在什么时候表达、什么时候关闭。
例如,除了生殖细胞,人体中其他细胞的基因是完全相同的,但脑细胞和胰腺细胞的形态和功能截然不同,这是因为基因在不同时间和不同位点发生了甲基化修饰。
然而,基因在表达过程中很容易受到损伤,并导致断裂。
此时,DNA(脱氧核糖核酸)和蛋白质组成的核小体(染色质的基本组织单位,也被称为染色质颗粒)会变得松弛,细胞中的修复蛋白就会移动到断裂处将两段DNA连接起来,实现基因修复。
人体中有上万亿个细胞,每分钟会发生数千次这样的基因断裂和修复事件。
随着修复次数的增加,一些修复蛋白可能会出现偏差,导致基因错误表达:原本应该表达的基因被关闭,本应关闭的基因却一直处于工作状态。
这会导致细胞失去原有的功能,造成机体衰老。
为了证明这一点,生物学家大卫·辛克莱选择了两只基因型相同的双胞胎小鼠进行实验。
他利用一种酶以3倍速度加快其中一只小鼠的DNA的断裂。
实验进行三周后,他发现这只小鼠出现了行动缓慢、器官衰竭和痴呆等衰老症状。
衰老机制及其学说

衰老机制及其学说一、本文概述衰老,作为生命不可避免的过程,一直是生物学、医学及众多相关学科研究的热点和难点。
本文旨在探讨衰老的机制及其相关学说,以期更深入地理解这一复杂的生命现象,并为抗衰老研究提供理论支持。
本文首先将对衰老的定义、特点及其重要性进行概述,然后介绍目前关于衰老机制的主要学说,包括基因调控学说、自由基学说、免疫学说等。
通过对这些学说的详细阐述,我们将更全面地了解衰老的生物学基础。
本文还将对衰老机制研究的最新进展进行综述,展望未来的研究方向和可能的应用前景。
希望本文能为读者提供一个关于衰老机制及其学说的全面而深入的视角,为抗衰老研究和实践提供有益的参考。
二、衰老的生物学基础衰老,这个生命过程中不可避免的一环,其生物学基础深植于细胞、分子和遗传等多个层面。
在细胞层面,衰老主要表现为细胞功能的下降和死亡。
随着年龄的增长,细胞分裂和再生的能力逐渐减弱,细胞内的代谢过程也发生变化,导致细胞对外部环境的适应能力降低。
分子层面,DNA损伤、蛋白质修饰和代谢产物的积累都是衰老的重要标志。
DNA在复制过程中产生的错误累积,蛋白质的错误折叠和修饰,以及代谢产物的堆积,都会对细胞功能产生负面影响。
在遗传层面,衰老被视为一种复杂的遗传性状,受多种基因和环境因素的共同影响。
一些基因的表达随着年龄的增长而发生变化,这些基因被称为“衰老基因”。
端粒长度的缩短也被视为衰老的一个重要标志。
端粒是染色体末端的结构,随着细胞分裂次数的增加,端粒会逐渐缩短,当端粒缩短到一定程度时,细胞就会进入衰老状态。
衰老的生物学基础还包括免疫系统功能的下降。
随着年龄的增长,免疫系统的反应能力减弱,对新病原体的抵抗能力降低,这也是老年人更容易感染疾病的原因之一。
衰老还与细胞间的通讯障碍、线粒体功能下降、表观遗传改变等多种生物学过程密切相关。
衰老的生物学基础是一个复杂而多元的系统,涉及细胞、分子、遗传和免疫等多个方面。
对衰老机制的深入研究,不仅有助于我们理解生命的本质,也为开发抗衰老药物和治疗方法提供了理论基础。
端粒-端粒酶假说与细胞衰老

Ke r : t l m e e ̄ e o e a e; e la ng; l i y wo ds e o r t l m r s c l gi con n 而表现 出 功
v td t etl me eln t l b ln e ,h r b t yn el r l e ain Th eo r/ eo r s y ae ,h eo r e g h wi eeo g d t e e y sa ig c l p oi rto . e tlme e t lmea e h — l f
p t e i a d is i t r a to t e la i g, n h r g e s so e o e e i h s e to n ma l n n o h ss n t n e e c i n wih c l g n a d t e p o r s e ft l m r n t e a p c fa i lco i g
2 .Grd aeS h o , i eeAc d myo ce c s B in 0 0 9, ia a u t c o lChn s a e fS in e , ej g 1 0 3 Chn ) i
Ab t a t sr c :Te o r s t o p e ft r na l me e i he c m l x o e mi lDNA n o en,ou tt e e f e a yo i hr — a d pr t i f nd a h nd o uk r tc c o
mo o s Th eo r e g h wi es o t ra el g n . l me a e a c l l rrb n c e p o e n ( s me . e t l me e l n t l b h r e sc l a i g Te o r s , e l a i o u l o r t i RNP l u )
细胞衰老的原因

细胞衰老的原因,近几十年来,许多学者提出了各种假说,企图来解释衰老的本质和机理,但这些假说尚不能圆满解答。
现把目前几种较为流行假说,介绍如下:(1)错误成灾说(两个例子:成纤维细胞,人工合成dna)近年来这个观点有所发展。
orgele,1973年提出了细胞大分子合成错误成灾说。
意思是说,细胞里的核酸和蛋白质在生物合成中如果由于某些原因而发生差错,这差错会得到累积而迅速扩大,引起代谢功能大幅度降低,造成衰老。
对这个假说进一步说明如下在细胞里核酸造出蛋白质(酶),因为蛋白质是用核酸分子做样板合成的;蛋白质造出核酸,因为核酸的合成需要酶,例如聚合酶的协助。
酶是蛋白质,所以核酸和蛋白质在合成中形成一种循环,相互联系,相互协作,相互制约。
如果在一次循环中,出现一个错误,这错误会在下一次循环中得到扩大。
这样,错误在几次循环中会很快扩大而成灾,使细胞功能大大降低,造成衰老。
最近,在人工培养的人的成纤维细胞工作的基础上,从上述细胞中提取dna聚合酶,利用这种酶进行dna复制实验,结果发现上述成纤维细胞经过40次到56次的继续培养,其dna聚合酶的活性显著地降低了,大约降低到只有正常细胞的1/5活性。
从此以后,这些细胞就迅速衰老而死亡了。
上述研究者还做了另一个实验,他们从年老的(即经过很多次继代培养的)和年轻的(只经过若干次继代培养的)上述成纤维细胞分别提取出dna聚合酶,用人工合成dna分子作样板,进行离体DNA复制实验,得到一些有趣的结果,人工合成的DNA分子有意搞成只含碱基腺嘌呤(a)和胸腺嘧啶(t),而不含有胞嘧啶(c)和鸟嘌呤(g),按照核酸分子碱基配对的原理,在DNA 合成中,a只能和t配对,t只能和a配对。
因此在上述离体实验中,如果DNA聚合酶能忠实执行任务,那么所含成的DNA分子中就不能含有c或g的碱基。
如果所提出的dna聚合酶在帮助合成DNA分子中,用了一个c或一个g去合成DNA,就算是一次错误。
衰老机理的学说

衰老机理的学说近几十年来,随着现代遗传学、分子生物学、细胞生物学和分子免疫学等边缘学科的飞速发展,人们对衰老的机理有了深层次的认识,在大量实验证据的基础上提出了许多新的学说。
下面,就几个有代表性的并被广泛接受的学说作一简要介绍。
一、遗传程序学说遗传程序学说(genetic program theory)认为每一种物种本身固有其遗传基因上的衰老程序。
该程序何时启动、如何被基因组控制?对此曾提出如下几个假说。
(一)修饰基因假说修饰基因假说(modifier genes theory)认为存在一种修饰基因,它在动物性成熟以前可以抑制对染色体的任何有害作用,而随着年龄的增长该基因的抑制作用就逐渐丧失。
(二)密码子限制假说密码子限制假说(codon restriction theory)认为在机体一定时期合成某一种成分的基因密码被抑制导致某一成分的减少以至缺失。
(三)重复利用基因枯竭假说真核生物基因组有许多重复序列,这种高度重复并保守的序列预示其基因产物执行某种重要的生理功能。
重复基因利用枯竭假说认为某一基因序列破坏或抑制时,则由重复序列中另一个相同基因序列来接替,当这种重复序列被耗竭时则该基因产物就缺失了。
(四)DNA分子修复能力下降假说DNA分子具有很强的自我修复能力,这是保证个体稳定遗传并健康发育成长的必要条件。
DNA分子修复能力下降假说认为这个修复能力的下降是衰老的一个途径。
二、差错灾难学说蛋白质合成过程中的DNA复制、转录都可能产生差错,它不同于变异。
多掺入或少掺入一个核苷酸、或者以另一种核苷酸替代了该位点原有核苷酸。
正常情况下这些差错可由修复机制(外切酶)来修复,但这种差错也可能发生在参与这种修复机制的酶类而使该修复机制修复能力降低或丧失,这种差错在体内的累积可导致衰老。
三、交联学说交联学说(cross linkage theorr)认为体内甲醛、自由基(free radicals)等物质可以引起体内DNA分子双链间、蛋白胶原纤维间等大分子间的交联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于细胞衰老原因的假说
以往人们对衰老的研究主要局限于生理学范畴,如观察到衰老时心脏搏出量减少,神经传导速率减缓,等等。
近十余年来,随着细胞生物学和分子生物学的飞速发展,人们开始从分子层次探讨衰老的原因和本质。
虽然衰老机制的研究是当今生命科学研究的一个热点领域,也取得了不少进展,但是由于衰老的原因非常复杂,许多研究至今还是
停留在假说阶段。
遗传决定学说认为衰老是遗传上的程序化过程,其推动力和决定因素是基因组。
控制生长发育和衰老的基因都在特定时期有序地开启或关闭。
控制机体衰老的基因或许就是“衰老基因”。
长寿者、早老症患者往往具有明显的家族性,后者已被证实是染色体隐性遗传病。
这些都促使人们推测,衰老在一定程度上是由遗传决定的。
氧化损伤学说早在20世纪50年代,就有科学家提出衰老的自由基理论,以后该理论又不断发展。
自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物体内,种类多,数量大,是活性极高的过渡态中间产物。
自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂质等大分子物质,造成氧化性损伤,结果导致DNA 断裂、交联、碱基羟基化,蛋白质变性失活,膜脂中不饱和脂肪酸氧化而流动性降低。
正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统,前者如超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶;非酶系统有维生素E,醌类物质等。
实验证明,SOD与CAT的活性升高能延缓机体的衰老。
研究人员将SOD与CAT基因导入果蝇,转基因果蝇中酶活性显著升高,平均年龄和最高寿限有所延长。
但也有研究对SOD等抗氧化因子对衰老的影响提出质疑。
例如,有学者将小鼠的谷胱甘肽过氧化物酶基因及SOD1、SOD2、SOD3基因中的一种剔除,结果并未引起衰老的加速。
而且,人们在线虫中已发现至少两个与寿命延长相关的基因,它们都与抗氧化作用无关。
端粒钟学说端粒是染色体末端的一种特殊结构,其DNA由简单的重复序列组成。
在细胞分裂过程中,端粒由于不能为DNA聚合酶完全复制而逐渐变短。
1990年,科学家测定了不同年龄段人成纤维细胞染色体的端粒长度,结果发现端粒长度随年龄增长而下降;在体外培养的成纤维细胞中,端粒长度也随分裂次数的增加而下降。
在这些研究基础上,科学家提出了端粒钟学说,认为端粒随着细胞的分裂不断缩短,当端粒长度缩短到一定阈值时,细胞就进入衰老过程。
后来其他科学家又提出了更令人信服的证据。
此外,对提前衰老的克隆羊多莉的研究发现,它的细胞中端粒的长度比同龄羊短20%。
这些研究表明,端粒长度的确与衰老有着密切的关系。
然而一些研究并不支持这一学说,例如,有研究发现某些小鼠终生保持较长的端粒,但并未因此获得较长的寿命。
基因转录或翻译差错学说随着年龄的增长,机体的细胞内不但DNA复制效率下降,而且常常发生核酸、蛋白质、酶等大分子的合成差错,这种与日俱增的差错最终导
致细胞功能下降,并逐渐衰老、死亡。
代谢废物累积学说由于细胞功能下降,细胞一方面不能将代谢废物及时排出细胞,另一方面又不能将这些代谢废物降解消化,这些代谢废物越积越多,在细胞中占据的空间越来越大,影响细胞代谢废物的运输,以致于阻碍了细胞的正常生理功能,最终引起细胞的衰老。
哺乳动物脂褐质的沉积是一个典型的例子。
脂褐质是一些长寿命的蛋
白质与DNA及脂质共价缩合形成的巨交联物,它主要在次级溶酶体中形成。
由于脂褐质结构致密,不能被彻底水解,又不能排出细胞,结果在细胞内沉积增多,阻碍细胞的物质交流和信号传递,最后导致细胞衰老。
老年性痴呆(AD)患者脑内的脂褐质、脑血管沉积物中均有β-淀粉样蛋白(β-AP),因此β-AP可做为AD的鉴定指标。
有关衰老的假说还有很多。
近年来,用线虫进行的发育程序与衰老关系的研究取得了显著进展。
正常情况下,秀丽隐杆线虫在经历约4 d的幼虫期后进入成虫期,成虫期延续数周后即衰老死亡。
但当幼虫遇到不良环境条件时,如虫口过密,食物短缺,幼虫将进入休眠状态达6个月之久;如果环境改善,又可以发育为成虫完成其生活史。
遗传分析表明,有两类基因与休眠期幼虫的形成有关,一类是age1和daf2基因,另一类是daf16基因。
age1和daf2的正常表达决定了正常的成虫发育;在不良环境里,daf16将表达并使幼虫向休眠期幼虫发育;在某些age1和daf2的突变体中,二者部分表达,其结果是既完成正常成虫的发育,又获得寿命的延长,可延长2~4倍。
线虫的特殊发育模式引起研究者们的强烈兴趣,因为这关系到发育方向的决定和寿命的延长。