《第1章 三角形的证明》A(20)
2022年必考点解析北师大版八年级数学下册第一章三角形的证明难点解析试题(无超纲)

北师大版八年级数学下册第一章三角形的证明难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△AAA 中,90C ∠=︒,AB 的垂直平分线DE 交AC 于点D ,垂足为E ,若30A ∠=︒,2cm CD =,则AC 的长为( )A .2cmB .4cmC .5cmD .6cm2、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个3、如图,Rt△ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .24、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A .10B .15C .17D .195、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°6、下列事件中,属于必然事件的是( )A .13人中至少有2个人生日在同月B .任意掷一枚质地均匀的硬币,落地后正面朝上C .从一副扑克牌中随机抽取一张,抽到的是红桃AD .以长度分别是3cm ,4cm ,6cm 的线段为三角形三边,能构成一个直角三角形7、如图,△ABC 中,90C ∠=︒,∠CAB 的角平分线AD 交BC 于D ,DE AB ⊥于E ,2cm DE =,且4cm DB =,则BC 的长是( )A .6cmB .4cmC .10cmD .以上都不对8、如图所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC 和正CDE △,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①ACD BCE ≅△△;②AD BE =;③60AOB ∠=︒;④CPQ 是等边三角形.其中正确的是( )A .①②③④B .②③④C .①③④D .①②③9、如图,在△AAA 中, ∠AAA 和∠AAA 的平分线相交于点A ,过点A 作AA ∥AA 交AA 于A ,交AA 于A ,过点A 作AA ⊥AA 于A ,下列四个结论:①AA =AA +AA ;② 1902BOC A ∠=+∠; ③点A 到△AAA 各边的距离相等;④设AA =A , AE AF n +=,则A AAAA =AA .其中正确的结论个数是( )A .1个B .2个C .3个D .4个10、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)1、如图,△AAA 中,AB AC ⊥,AD BC ⊥于D ,30B ∠=︒,则:ADC BDA S S =△△__________________;2、以线段MN 为底边的等腰三角形的顶角顶点的轨迹是 _____.3、如图,在等边三角形ABC 中,AB =M 为边BC 的中点,点N 为边AB 上的任意一点(不与点A ,B 重合),将△BMN 沿直线MN 折叠,若点B 的对应点B '恰好落在等边三角形ABC 的边上,则BN 的长为______.4、如图,在△ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,BE =AC .∠BAC =75°,则∠B 的度数为_______.5、若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .1、如图,△AAA 是等边三角形,D 点是BC 上一点,2BD CD ,AA ⊥AA 于点E ,CE 交AD 于点P .求∠AAA 的度数.2、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形. 已知:在△ABC 中,AD 平分∠CAB ,交BC 边于点 D ,且CD =BD ,求证:AB =AC .以下是甲、乙两位同学的作法.甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD ≌△ABD ,所以这个三角形为等腰三角形;乙:延长AD 到E ,使DE =AD ,连接BE ,可证△ACD ≌△EBD ,依据已知条件可推出AB =AC ,所以这个三角形为等腰三角形(1)对于甲、乙两人的作法,下列判断正确的是( );A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,并证明.3、教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.请根据教材中的分析.(1)结合图①,写出“线段的垂直平分线质定理”完整的证明过程.(2)定理应用:如图②,在△AAA中,AA=AA,AB的垂直平分线交AB于N,交AC于M.连接MB,若AB=8cm,△AAA的周长是14cm.①求BC的长;②点P是直线MN上一动点,在运动的过程中,由P,B,C构成的△AAA的周长是否存在最小值?若存在,标出点P的位置,并求△AAA的周长最小值;若不存在,说明理由.4、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;(2)设∠AAA=A,∠AAA=A.①如图2,当点在线段BC上移动,则A,A之间有怎样的数量关系?请说明理由;②当点在直线BC上(线段BC之外)移动,则A,A之间有怎样的数量关系?请直接写出你的结论.5、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,△AAA中,AA=7,AA=9,AA=10,P为AA上一点,当AA=_______时,△AAA与△AAA是偏等积三角形;(2)如图2,四边形AAAA 是一片绿色花园,△AAA 、△AAA 是等腰直角三角形,∠AAA =∠AAA =90°(0<∠AAA <90°).①△AAA 与△AAA 是偏等积三角形吗?请说明理由;②已知AA =60A ,△AAA 的面积为2100m 2.如图3,计划修建一条经过点C 的笔直的小路AA ,F 在BE 边上,AA 的延长线经过AA 中点G .若小路每米造价600元,请计算修建小路的总造价.-参考答案-一、单选题1、D【分析】由题意知AD BD =,30DBA A CBD ∠=∠=∠=︒,24AD BD CD ===,AC CD DA =+可求出AC 的值.【详解】解:由题意知AD BD =30DBA A CBD ∴∠=∠=∠=︒在Rt BCD 中30CBD ∠=︒24BD CD AD ∴=== 又 AC CD DA =+6AC ∴=故选D .【点睛】本题考察了垂直平分线的性质,30角的直角三角形的性质.解题的关键在于灵活运用垂直平分线与30角的直角三角形的性质.2、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意; ③∵111::::345a b c =,设a =3k,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.3、C【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【详解】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键.4、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.5、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.6、A【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.解:A. 13人中至少有2个人生日在同月,是必然事件,故该选项符合题意;B. 任意掷一枚质地均匀的硬币,落地后正面朝上,是随机事件,故该选项不符合题意;C. 从一副扑克牌中随机抽取一张,抽到的是红桃A ,是随机事件,故该选项不符合题意;D. 因为2222223425,636,346+==+≠,则以长度分别是3cm ,4cm ,6cm 的线段为三角形三边,能构成一个直角三角形,是不可能事件,故该选项不符合题意;故选A【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.7、A【分析】由角平分线的性质得CD =DE =2,等量代换后求出BC 的长.【详解】解:∵AD 平分∠CAB ,DE ⊥AB 于E ,∠C =90°,∴CD =DE =2,又∵4cm DB =,∴BC =BD +CD =4+2=6(cm );故选:A .【点睛】本题考查角平分线的性质的应用,熟练掌握角平分线的性质在实际问题中的应用,等量代换是解题关键.8、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】解:ABC ∆和CDE ∆是正三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD ACB BCD ∠=∠+∠,BCE DCE BCD ∠=∠+∠,ACD BCE ∠∠∴=,()ADC BEC SAS ∴∆≅∆,故①正确,AD BE ∴=,故②正确;ADC BEC ∆≅∆,ADC BEC ∠∠∴=,60AOB DAE AEO DAE ADC DCE ∴∠=∠+∠=∠+∠=∠=︒,故③正确;CD CE =,60DCP ECQ ∠=∠=︒,ADC BEC ∠∠=,()CDP CEQ ASA ∴∆≅∆.CP CQ ∴=,60CPQ CQP ∴∠=∠=︒,CPQ ∴∆是等边三角形,故④正确;故选:A .【点睛】此题主要考查等边三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.9、C【分析】根据∠ABC和∠ACB的平分线相交于点O和三角形的内角和等于180°,可得1902BOC A∠=+∠;再由∠ABC和∠ACB的平分线相交于点O和EF∥BC,可得∠EOB=∠OBE,∠FOC=∠OCF,从而得到BE=OE,CF=OF,进而得到EF BE CF=+;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,根据角平分线的性质定理,可得点O到ABC各边的距离相等;又由AE+AF=n,可得S△AEF=S△AOE+S△AOF=12mn,即可求解.【详解】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB=180°-∠A,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=90°-12∠A∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故②正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,又∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,即点O到△ABC各边的距离相等,故③正确;∵AE+AF=n,∴S△AEF=S△AOE+S△AOF=12AE×OM+12AF×OD=12OD×(AE+AF)=12mn,故④错误;综上所述,正确的结论有3个.故选:C【点睛】本题主要考查了角平分线性质定理,等腰三角形的性质等知识,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.10、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.【详解】解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;③等腰三角形的顶角平分线在它的对称轴上,原说法错误;④等腰三角形两腰上的中线相等,说法正确.综上,正确的有①④,共2个,故选:B.【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.二、填空题1、1:3【分析】利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】∵AB AC ⊥,AD BC ⊥,30B ∠=︒∴30B DAC ∠=∠=︒∴Rt CAD ∆中, 2AC CD =Rt ABC ∆中, 2BC AC =∴ 4BC CD =∴ 3BD CD =∴::1:3ADC BDA S S CD BD ==△△故答案为:1:3.【点睛】本题考查30°直角三角形的性质,两次使用30度角所对的直角边是斜边的一半时解题的关键.2、线段MN 的垂直平分线(线段MN 的中点除外)【分析】满足△MNC 以线段MN 为底边且CM =CN ,根据线段的垂直平分线判定得到点C 在线段AB 的垂直平分线上,除去与MN 的交点(交点不满足三角形的条件).【详解】解:∵△MNC 以线段MN 为底边,CM =CN ,∴点C 在线段MN 的垂直平分线上,除去与MN 的交点(交点不满足三角形的条件),∴以线段MN 为底边的等腰三角形的顶点C 的轨迹是:线段MN 的垂直平分线(线段MN 的中点除外).故答案为:线段MN 的垂直平分线(线段MN 的中点除外).【点睛】此题主要考查垂直平分线的判定,解题的关键是熟知等腰三角形的性质及垂直平分线的判定定理.3【分析】如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时,于是得到MN ⊥AB ,BN =B ′N ,根据等边三角形的性质得到AC =BC ,∠ABC =60°,根据线段中点的定义和30°角直角三角形的性质得到BN =12BM 2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,四边形BMB ′N 是菱形,根据线段中点的定义即可得到结论.【详解】解:如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时,则MN ⊥AB ,BN =B ′N ,∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABC =60°,∴906030BMN ∠=︒-︒=︒,∵点M 为边BC 的中点,∴BM =12BC =12AB∵在直角三角形BMN 中,30∠=︒BMN ,∴BN =12BM 如图2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,BM B M '=,∵BM CM =,∴B M CM '=,∵60C ∠=°,∴三角形B MC '是等边三角形,∴60B MC ABC '∠=︒=∠,∴AB B M '∥∵60ABC NB M '∠=∠=︒∴NB M B MC ''∠=∠∴NB BC '∥∴四边形BMB ′N 是平行四边形,又∵BM B M '=,∴平行四边形BMB ′N 是菱形,∵∠ABC =60°,点M 为边BC 的中点,∴BN =BM =12BC =12AB【点睛】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.4、35°【分析】连接AE ,根据垂直平分线的性质,等腰三角形的性质可得EAB EBA ∠=∠,EAD CAD ∠=∠,根据三角形的内角和定理,外角性质建立二元次一次方程组,解方程组求解即可【详解】解:如图,连接AEAB 的垂直平分线EF 交BC 于点E ,EA EB ∴=EAB EBA ∴∠=∠BE =AC .EA EC ∴=又D 为线段CE 的中点EAD CAD ∴∠=∠,AD EC ⊥设EAB EBA ∠=∠α=,EAD CAD ∠=∠=β则2AED α∠=∠BAC =75°,∴275αβ+=︒①AD EC ⊥2=90αβ∴+︒②联立①②2752=90αβαβ+=︒⎧⎨+︒⎩,解得3520αβ=︒⎧⎨=︒⎩即∠B 的度数为35︒故答案为:35︒【点睛】本题考查了垂直平分线的性质,三线合一,三角形外角性质,三角形内角和定理,解二元一次方程组,掌握等腰三角形的性质是解题的关键.5、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.【详解】解:若9cm 为底时,腰长应该是12(24-9)=7.5cm ,故三角形的三边分别为7.5cm 、7.5cm 、9cm ,∵7.5+7.5=15>9,故能围成等腰三角形;若9cm 为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm 、9cm 、6cm ,∵6+9=15>9,∴以9cm 、9cm 、6cm 为三边能围成三角形,综上所述,腰长是9cm 或7.5cm ,故答案为:9或7.5.【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.三、解答题1、60APE ∠=︒【分析】由题意易得60ABC ACB ∠=∠=︒,AB AC BC ==,则有30BDE ∠=︒,然后可得BE CD =,进而可证BEC CDA ≌,则有BCE =∠∠CAD ,最后问题可求解.【详解】解:∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,AB AC BC ==,∵DE AB ⊥,∴90DEB ∠=︒,∴30BDE ∠=︒,∴2BD BE =,∵2BD CD =,∴BE CD =,∴BEC CDA ≌(SAS ),∴BCE =∠∠CAD ,∵,60APE PAC ACP ACB DAC ACP ∠=∠+∠∠=∠+∠=︒,∴60APE ACB ∠=∠=︒.【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.2、(1)C ;(2)见解析【分析】(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;(2)按照乙的分析方法进行即可.【详解】(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,故选C ;(2)依据题意,延长AD 至E ,使DE =AD ,连接BE ,如图.∵D 为BC 中点.∴BD CD =.在△CAD 和△BED 中DE AD ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BED (SAS ).∴DAC E ∠=∠,BE AC =∵AD 平分∠BAC ,∴BAD CAD ∠=∠∴DAB E ∠=∠∴BE AB =∴AB =AC∴△ABC 为等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.3、(1)见解析;(2)①6cm;②存在,图见解析,14cm【分析】(1)根据MN AB ⊥,可得90ACP BCP ∠=∠=︒,从而证得△ACP ≌△BCP ,即可求证;(2)①根据线段垂直平分线的性质定理,可得MB =MA ,再由△MBC 的周长是14cm ,可得AC +BC =14cm ,即可求解;②根据线段垂直平分线的性质定理,可得PB =PA ,从而得到PB +CP =PA +PC ≥AC ,进而得到当点P 与点M 重合时,PB CP +的值最小,即可求解.【详解】(1)证明:∵MN AB ⊥,∴90ACP BCP ∠=∠=︒,在△ACP 与△BCP 中,AC BC ACP BCP PC PC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACP ≌△BCP ,∴PA =PB ;(2)①∵MN 垂直平分AB .∴MB =MA ,又∵△MBC 的周长是14cm ,∴AC +BC =14cm ,∵AC =AB =8cm ,∴BC =6cm .②如图,当点P 与点M 重合时,PB CP +的值最小,∵MN 垂直平分AB .∴PB =PA ,∴PB +CP =PA +PC ≥AC ,∴当点P 与点M 重合时,PB CP +的值最小,为AC 的长∴△PBC 的周长最小值是8+6=14cm .【点睛】本题主要考查了线段垂直平分线的性质定理,全等三角形的判定和性质,熟练掌握线段垂直平分线上的点到线段两端距离相等是解题的关键.4、(1)90;(2)180αβ+=︒,见解析;②180αβ+=︒或αβ=【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS ”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)①由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵90BAC ∠=︒,∴90DAE BAC ∠=∠=︒,∵AB =AC ,AD =AE ,∴45B ACB ∠=∠=︒,45ADE AED ∠=∠=︒,∵DAE BAC ∠=∠,∴BAD CAE ∠=∠,在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴BAD CAE ≅,∴45ACE B ∠=∠=︒,∴90BCE ACB ACE ∠=∠+∠=︒(2)αβ180+=︒或αβ=.理由:①∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠.即BAD CAE ∠=∠.在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABD ACE △≌△.∴B ACE ∠=∠.∴B ACB ACE ACB ∠+∠=∠+∠.∴B ACB β∠+∠=.∵180B ACB α+∠+∠=︒,∴180αβ+=︒.②如图:∵BAC DAE ∠=∠,∴BAC BAE DAE BAE ∠-∠=∠-∠.即BAD CAE ∠=∠.在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABD ACE △≌△.∴ABD ACE ∠=∠.∵+ABD ACB α∠=∠,ACE ACB β=∠-∠,ACE ABD βα∴=∠-∠+,αβ∴=.综上所述:点D 在直线BC 上移动,α+β=180°或α=β.【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键.5、(1)72;(2)①ACD △与BCE 是偏等积三角形,理由见详解;②修建小路的总造价为42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆∆≌,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆∆≌,得到AN CD =,再证()ACN CBE SAS ∆∆≌,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCEACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下:设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =、PB PB =,ABP ∴∆与CBP ∆不全等,ABP ∴∆与CBP ∆是偏等积三角形, 故答案为:72;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下: 过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒, 180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆∆≌,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒, ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等, ACD ∴∆与BCE ∆是偏等积三角形; ②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中, N GCD AGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆∆≌, AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒, 90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒, BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中, AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆∆≌,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒, 90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明ACM BCN ∆∆≌和ACN CBE ∆∆≌是解题的关键,属于中考常考题型.。
北师大版八年级数学(下) 第一章 三角形的证明 第5节 直角三角形的性质与判定

北师大版八年级数学(下)第一章三角形的证明第5节直角三角形的性质与判定例1:在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为()A.30°B.45°C.60°D.30°或60°解:∵在△ABC中,∠A=90°,∠B=2∠C,∴2∠C+∠C=90°,∴∠C=30°,故选:A.练习:在Rt△ABC中,∠C=90°,∠A﹣∠B=50°,则∠A的度数为()A.80°B.70°C.60°D.50°解:∵∠C=90°,∴∠A+∠B=90°,∵∠A﹣∠B=50°,∴2∠A=140°,∴∠A=70°,故选:B.作业:1.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.例2:在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C,⑤∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.2个B.3个C.4个D.5个解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠A=∠B=∠C,所以∠A+∠B+∠C=∠C+∠C+∠C=180°,则∠C=90°,所以△ABC是直角三角形;⑤因为3∠C=2∠B=∠A,∠A+∠B+∠C=∠A+∠A+∠A=180°,∠A=,所以△ABC为钝角三角形.所以能确定△ABC是直角三角形的有①②③④共4个,故选:C.练习:在下列条件中:①∠A=∠B﹣∠C,②∠A﹣∠B=90°,③∠A=∠B=2∠C,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①由∠A+∠B+∠C=180°,∠A=∠B﹣∠C得到:2∠B=180°,则∠B=90°,则△ABC是直角三角形,故符合题意;②∠A﹣∠B=90°得到:∠A>90°,则△ABC不是直角三角形,故不符合题意;③由∠A+∠B+∠C=180°,∠A=∠B=2∠C得到:5∠C=180°,则∠C=36°,则∠A =∠B=72°<90°,则△ABC不是直角三角形,故不符合题意;④由∠A+∠B+∠C=180°,∠A=∠B=∠C得到:∠C=90°,则△ABC是直角三角形,故符合题意;综上所述,是直角三角形的是①④,共2个.故选:B.作业:2. 在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,则设∠A=x,∠B=,∠C=,则x++=180°,解得x=,∴∠A=,,,∴△ABC不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个,故选:B.例3:在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2=.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:18练习:如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175B.600C.25D.625解:由勾股定理得,AB2+BC2=AC2,则S=25+400=625,故选:D.作业:3. 已知△ABC中∠C=90°,c为斜边,a、b为直角边,若a+b=17cm,c=13cm,则△ABC的面积为()A.15cm2B.30cm2C.45cm2D.60cm2解:∵a+b=17,∴(a+b)2=289,∴2ab=289﹣(a2+b2)=289﹣c2=289﹣169=120∴ab=30,故选:B.例4:如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.练习:如图,在Rt△ABD中,∠ABD=90°,AD=10,AB=8.在其右侧的同一个平面内作△BCD,使BC=8,CD=2.求证:AB∥DC.证明:∵在Rt△ABD中,∠ABD=90°,AD=10,AB=8,∴BD===6,∵BC=8,CD=2,∴62+(2)2=82,∴△BDC是直角三角形,∴∠BDC=90°,∴∠ABD=∠BDC,∴AB∥DC.作业:4. 如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)判断△BCD的形状,并说明理由.解:(1)∵∠A=90°,∴BC===15;(2)△BCD是直角三角形,理由:∵BC2=152=225,BD2=82=64,CD2=172=289,∴BC2+BD2=CD2=289,∴△BCD是直角三角形.例5:如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.练习:如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.(1)连接AC,求证:△ACD是直角三角形;(2)求△ACD中AD边上的高.解:(1)证明:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=25,∴AC=5,∵CD=12,AD=13,∴AC2+CD2=AD2,∴∠ACD=90°,∴△ACD是直角三角形;(2)解:过点C作CH⊥AD于点H,则S△ACD=AD×CH=AC×CD,∴×13×CH=×5×12,∴CH=.作业:5.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=,∴h=.例6:写出命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题.该逆命题是命题(填“真”或“假”).解:“如果两个三角形全等,那么这两个三角形的周长相等.”写成它的逆命题:如果两个三角形的周长相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的周长相等,那么这两个三角形全等;假练习:“两直线平行内错角相等”的逆命题是命题.(填“真”或“假”)解:∵原命题的条件为:两直线平行,结论为:内错角相等,∴其逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,是真命题;故答案为:真.作业:6.已知命题“等腰三角形两腰上的高线相等”,它的逆命题是,该逆命题是命题.(“真”、“假”).解:命题“等腰三角形两腰上的高线相等”的逆命题是“如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形”,是真命题,故答案为:如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形;真.。
2022年北师大版八年级数学下册第一章三角形的证明必考点解析试题(含详解)

北师大版八年级数学下册第一章三角形的证明必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列三个说法:①有一个内角是30°,腰长是6的两个等腰三角形全等;②有一个内角是120°,底边长是3的两个等腰三角形全等;③有两条边长分别为5,12的两个直角三角形全等.其中正确的个数有().A.3 B.2 C.1 D.02、如图,在△ABC中,AB=AC=6cm,AD,CE是△ABC的两条中线,CE=4cm,P是AD上的一个动点,则BP+EP的最小值是()A.3cm B.4cm C.6cm D.10cm3、有两边相等的三角形的两边长为4cm,5cm,则它的周长为()A .8cmB .14cmC .13cmD .14cm 或13cm4、等腰三角形的一个顶角是80°,则它的底角是( ).A .40°B .50°C .60°D .70°5、如图,在△ABC 中,∠B =62°,∠C =24°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A .70ºB .60ºC .50ºD .40°6、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°7、下列各组数中,不能作为直角三角形的三边的是( )A .3,4,5B .2,3C .8,15,17D .23,24,258、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于()A .20°B .50°C .70°D .110°9、如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为( )A .21B .24C .27D .3010、如图,在△AAA 中,90C ∠=︒,AB 的垂直平分线DE 交AC 于点D ,垂足为E ,若30A ∠=︒,2cm CD =,则AC 的长为( )A .2cmB .4cmC .5cmD .6cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.2、如图,点P 是等边△ABC 内的一点,PA =6,PB =8,PC =10,若点P ′是△ABC 外的一点,且△P ′AB ≌△PAC ,则∠APB 的度数为___.3、如图,将宽为2cm 的纸条沿BC 折叠,45CAB ∠=︒,则折叠后重叠部分的面积为____.(根号保留)4、如图,已知30MON ∠=︒,点1A ,2A ,3A ,⋅⋅⋅在射线ON 上,点1B ,2B ,3B ,⋅⋅⋅在射线OM 上,112A B A △,223A B A △,334A B A △,⋅⋅⋅均为等边三角形,若1OA a =,则223A B A △的边长为______.1n n n A B A +△的边长为______.5、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________三、解答题(5小题,每小题10分,共计50分)1、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=α,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.(1)如图1,点D在线段BC上.①根据题意补全图1;②∠AEF=(用含有α的代数式表示),∠AMF=°;③用等式表示线段MA,ME,MF之间的数量关系,并证明.(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.2、在△ABC 中,∠ACB =90°.现给出以下3个关系:①CD 垂直于AB ,②BE 平分∠ABC ,③∠CFE =∠CEF ,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.3、如图1,在平面直角坐标系AAA 中,点A (−4,0),A (4,0),A (0,4),给出如下定义:若P 为△AAA 内(不含边界)一点,且AP 与△AAA 的一条边相等,则称P 为△AAA 的友爱点.(1)在A 1(0,3),A 2(−1,1),()32,1P -中,△AAA 的友爱点是________;(2)如图2,若P 为△AAA 内一点,且∠AAA =∠AAA =15°,求证:P 为△AAA 的友爱点;(3)直线l为过点A(0,A),且与A轴平行的直线,若直线A上存在△AAA的三个友爱点,直接写出A的取值范围.4、已知:(1)O是∠BAC内部的一点.①如图1,求证:∠BOC>∠A;②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.(2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.5、如图,在△ABC中,AB=AC,AF⊥BC,在△CDE中,DC=DE,DG⊥CE,AF和DG的延长线交于点P,连接BP、EP.(1)求证:BP=EP;(2)若∠BCE=135°,试判断△PBE的形状,并给出证明.-参考答案-一、单选题1、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.【详解】解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C.【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.2、B【分析】连接CE交AD于点P,则BP+EP的最小值为CE的长.【详解】如图,连接CE交AD于点P,∵AB=AC,AD是BC的中线,∴AD⊥BC,∴BP=CP,∴BP+EP=CP+EP≥CE,∴BP+EP的最小值为CE的长,∵CE=4cm,∴BP+EP的最小值为4cm,故选:B.【点睛】本题是典型的将军饮马问题,考查了等腰三角形三线合一的性质和两点间线段最短知识,关键是把BP+EP的最小值转化为CP+EP的最小值,从而根据两点间线段最短解决最小值的问题.3、D【分析】有两边相等的三角形,是等腰三角形,两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.综上所述,该等腰三角形的周长是13cm或14cm.故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.4、B【分析】依据三角形的内角和是180°以及等腰三角形的性质即可解答.【详解】解:(180°-80°)÷2=100°÷2=50°;答:底角为50°.故选:B.【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.5、A【分析】根据∠BAD =∠BAC −∠DAC ,想办法求出∠BAC ,∠DAC 即可解决问题.【详解】解:∵∠B =62°,∠C =24°,∴∠BAC =180°−86°=94°,由作图可知:MN 垂直平分线段AC ,∴DA =DC ,∴∠DAC =∠C =24°,∴∠BAD =94°−24°=70°,故选:A .【点睛】本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6、C【分析】根据全等三角形的性质可证得BC=CE ,∠ACB =∠DCE 即∠ACD =∠BCE ,根据等腰三角形的性质和三角形的内角和定理求解∠B =∠BEC 和∠BCE 即可.【详解】解:∵ABC DEC ≌△△,∴BC=CE ,∠ACB =∠DCE ,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.7、D【分析】由题意直接根据勾股定理的逆定理即如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形进行分析判断即可.【详解】解:A 、32+42=52,符合勾股定理的逆定理,故选项错误;B 、22223+=,符合勾股定理的逆定理,故选项错误;C 、82+152=172,符合勾股定理的逆定理,故选项错误;D 、∵(32)2+(42)2=81+256=337,(52)2=625,∴(32)2+(42)2≠(52)2,不符合勾股定理的逆定理即此时三角形不是直角三角形,故选项正确. 故选:D.【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.9、C【分析】根据题意在AB 上截取BE =BC ,由“SAS ”可证△CBD ≌△EBD ,可得∠CDB =∠BDE ,∠C =∠DEB ,可证∠ADE =∠AED ,可得AD =AE ,进而即可求解.【详解】解:如图,在AB 上截取BE =BC ,连接DE ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,在△CBD 和△EBD 中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△CBD ≌△EBD (SAS ),∴∠CDB =∠BDE ,∠C =∠DEB ,∵∠C =2∠CDB ,∴∠CDE =∠DEB ,∴∠ADE =∠AED ,∴AD =AE ,∴△ABC 的周长=AD +AE +BE +BC +CD =AB +AB +CD =27,故选:C .【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.10、D【分析】由题意知AD BD =,30DBA A CBD ∠=∠=∠=︒,24AD BD CD ===,AC CD DA =+可求出AC 的值.【详解】解:由题意知AD BD =30DBA A CBD ∴∠=∠=∠=︒在Rt BCD 中30CBD ∠=︒24BD CD AD ∴===又 AC CD DA =+故选D .【点睛】本题考察了垂直平分线的性质,30角的直角三角形的性质.解题的关键在于灵活运用垂直平分线与30角的直角三角形的性质.二、填空题1【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =,∴GA =23AD 故答案为:3.【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.【分析】如图:连接PP′,由△PAC≌△P′AB可得PA=P′A、∠P′AB=∠PAC,进而可得△APP′为等边三角形易得PP′=AP=AP′=6;然后再利用勾股定理逆定理可得△BPP′为直角三角形,且∠BPP′=90°,最后根据角的和差即可解答.【详解】解:连接PP′,∵△PAC≌△P′AB,∴PA=P′A,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△APP′为等边三角形,∴PP′=AP=AP′=6;∵PP′2+BP2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=90°+60°=150°.故答案为:150°.【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键.3、2利用折叠的性质可得出△ABC 是等腰三角形,有AC =AB ;过点C 作CG ⊥AB 于点G ,则得CG =2,且△CGA 为等腰直角三角形,从而可求得AC 的值,则可求得面积.【详解】如图,由折叠性质得:∠ECB =∠ACB∵DE ∥AB∴∠DCA =∠CAB =45°∵∠DCA +∠ACB +∠ECB =180° ∴1(180)67.52ACB DCA ∠=︒-∠=︒∵∠CAB +∠ACB +∠ABC =180°∴∠ABC =∠ACB =67.5°∴AB =AC即△ABC 是等腰三角形过点C 作CG ⊥AB 于点G ,则CG =2,且∠ACG =∠CAB =45°∴△CGA 为等腰直角三角形∴AG =CG =2由勾股定理得:AC ==∴AB =∴重叠部分△ABC 的面积为2112)22AB CG ⨯=⨯=故答案为:2【点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定理等知识,判定△ABC是等腰三角形是本题的关键.4、2a 2n﹣1a【分析】利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到A n B n=2n﹣1a.【详解】解:∵△A1B1A2为等边三角形,∠MON=30°,∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,同理:A2O=A2B2=2=21a,A3B3=A3O=2A2O=4a=22a,…….以此类推可得△A n B n A n+1的边长为A n B n=2n﹣1a.故答案为:2a;2n﹣1a.【点睛】本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.5、70°【分析】先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.【详解】∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,∴∠BAC=∠1+∠DAC=45°+25°=70°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.三、解答题1、(1)①见解析;②60α︒-,60;③MF=MA+ME,证明见解析;(2)MF MA ME=-【分析】(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF;③在FE上截取GF=ME,连接AG,证明△AFG≌△AEM且△AGM为等边三角形后即可证得MF =MA+ME;(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.【详解】解:(1)①补全图形如下图:②∵∠CAE=∠DAC=α,∴∠BAE=30°+α∴∠FAE=2×(30°+α)∴∠AEF=()180-2+302α︒⨯︒=60°-α;∵∠AMF=∠CAE+∠AEF=α+60°-α=60°,故答案是:60°-α,60°;③MF=MA+ME.证明:在FE上截取GF=ME,连接AG.∵点D 关于直线AC 的对称点为E ,∴△ADC ≌△AEC .∴∠CAE =∠CAD =α.∵∠BAC =30°,∴∠EAN =30°+α.又∵点E 关于直线AB 的对称点为F ,∴AB 垂直平分EF .∴AF =AE ,∠FAN =∠EAN =30°+α,∴∠F =∠AEF =()180230602αα︒-︒+=︒-.∴∠AMG =6060αα︒-+=︒.∵AF =AE ,∠F =∠AEF , GF =ME ,∴△AFG ≌△AEM .∴AG =AM .又∵∠AMG =60︒,∴△AGM 为等边三角形.∴MA =MG .∴MF =MG +GF =MA +ME .(2)MF MA ME =-,理由如下:如图1所示,∵点E 与点F 关于直线AB 对称,∴∠ANM =90°,NE =NF ,又∵∠NAM =30°,∴AM=2MN,∴AM=2NE+2EM =MF+ME,∴MF=AM-ME;如图2所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,∵∠NAM=30°,∴AM=2NM,∴AM=2MF+2NF=2MF+NE+NF=ME+MF,∴MF=MA-ME;综上所述:MF=MA-ME.【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.2、①②作为条件,③作为结论,证明见解析【分析】结合题意,得∠CDA=∠ACB=90°,根据直角三角形两锐角互余的性质,得∠BCF+∠DCA=90°,∠DCA+∠A=90°,根据角平分线性质,计算得∠EBC=∠EBA,根据三角形外角的性质,通过计算得∠CFE=∠CEF,即可得到答案.【详解】∵CD⊥AB,∴∠CDA=∠ACB=90°,∴∠BCF+∠DCA=90°,∠DCA+∠A=90°,∴∠BCF=∠A,∵BE平分∠ABC,∴∠EBC=∠EBA,∵∠CFE =∠BCF +∠EBC ,∠BEC =∠A +∠EBA ,∴∠CFE =∠CEF∴①②作为条件,③作为结论成立.【点睛】本题考查了直角三角形、角平分线、三角形外角、命题的知识;解题的关键是熟练掌握直角三角形两锐角互余、三角形外角的性质,从而完成求解.3、(1)P 1、P 2;(2)见解析;(3)0<m <2【分析】(1)根据A (x 1,y 1)、和B (x 2,y 2)之间的距离公式AB 即可;(2)由题意易知∠OAB =∠OCA =∠OCB =45°,进而可求得∠PAC =∠OCP =30°,则可得出∠ACP =∠APC =75°,根据等角对等边和友爱点定义即可证得结论;(3)由题意,△ABC 在友爱点P 满足AP=BP 或AP=PC 或AP=BC=AC 三种情况,分别讨论求解即可.【详解】解:(1)∵点()4,0A -,()4,0B 关于y 轴对称,点()10,3P 在y 轴上,∴AP 1=BP 1,故P 1是ABC 的友爱点;∵AP 2CP 2=∴AP 2= CP 2,故P 1是ABC 的友爱点;∵AP 3=CP 3BP 3BC =∴故P 3不是ABC 的友爱点,综上,ABC 的友爱点是P 1、P 2,故答案为:P 1、P 2;(2)∵点()4,0A -,()4,0B ,()0,4C ,∴OA=OB=OC ,AC= BC , ∠BOC =90°,∴∠OAB =∠OCA =∠OCB =45°,∵15PAB PCB ∠=∠=︒,∴∠PAC =∠OCP =30°,∴∠ACP =45°+30°=75°,∴∠APC =180°-∠PAC -∠ACP =180°-30°-75°=75°,∴∠ACP =∠APC ,∴AP=AC=BC ,∴P 为ABC 的友爱点;(3)由题意,△ABC 的友爱点P 满足AP=BP 或AP=PC 或AP=BC 三种情况,若AP=BP ,则点P 在线段AB 的垂直平分线上,即点P 在y 轴线段OC 上,若AP=PC ,则点P 在线段AC 的垂直平分线上;若AP =BC ,则点P 在以点A 为圆心,BC 即AC 长为半径的圆上,如图,设AC 的中点为G ,则G 的坐标为(-2,2),由图可知,当直线l 为过点G 和过点()0,M m 且与x 轴平行的直线在x 轴之间时,直线l 上存在ABC 的三个友爱点,∴m 的取值范围为0<m <2.【点睛】本题考查两点之距离坐标公式、线段垂直平分线的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、圆的定义、坐标与图形等知识,理解题中定义,熟练掌握相关知识的联系与运用,利用数形结合的思想解决问题是解答的关键.4、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析【分析】(1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;②延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可.【详解】证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,∴∠BOC>∠A;②∠BOC与∠BAC的数量关系:∠BOC=2∠A;证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,∵OA=OB=OC,∴∠BAO=∠B,∠CAO=∠C,∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;(2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;证明:如图所示,设∠B=x,∵OA=OB=OC,∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;即∠BOC=2∠BAC.【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.5、(1)见解析;(2)等腰直角三角形,见解析【分析】(1)由线段垂直平分线的性质可得出答案;(2)证出∠BPE=2(∠FPC+∠GPC)=90°,则可得出结论.【详解】(1)证明:连接PC,∵AB=AC,AF⊥BC,DC=DE,DG⊥CE,∴AP、DP分别为线段BC、CE的垂直平分线,∴PC=PB,PC=PE,∴PB=PE.(2)解:△PBE的形状为等腰直角三角形;∵∠BCE=135°,∠PGC=∠PFC=90°,∴在Rt△PGC和Rt△PFC中,∠FPC+∠GPC=45°;∵AP、DP分别为线段BC、CE的垂直平分线,∠FPC=∠FPB,∠GPC=∠GPE,∴∠BPE=2(∠FPC+∠GPC)=90°;∵PB=PE,∴△PBE的形状为等腰直角三角形.【点睛】本题考查了垂直平分线的性质和判定,等腰直角三角形判定,熟练掌握垂直平分线的判定是解题的关键.。
第一章 三角形的证明 复习(有答案)导学案

第一章三角形的证明复习课导学案班级:__________姓名:_____________一.本章重要知识回顾:1.等腰三角形的性质:(1)等腰三角形是图形.(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“”),它们所在的直线都是等腰三角形的,等腰三角形有条对称轴.(3)等腰三角形的两个底角,简称;(4)等腰三角形的相等;相等;相等;(5)等腰三角形底边的中点到两腰的距离(6)等腰三角形底边上任意一点到两腰距离之和等于。
2.等腰三角形的判定:(1)的三角形叫做等腰三角形(2)如果一个三角形有两个角相等,那么它们所对的边也,简称.3.等边三角形的性质:(1)等边三角形三边都相等,三个内角都是,等边三角形是图形,等边三角形有条对称轴.(2)等边三角形内任意一点到三边距离之和等于。
4.等边三角形的判定:(1)三边都的三角形是等边三角形;(2)三角都的三角形是等边三角形;(3)有一个角等于的三角形是等边三角形.5.直角三角形的性质:(1)直角三角形的两锐角;(2)直角三角形两直角边的平方和等于斜边的平方(勾股定理);(3)直角三角形中30°的角所对的直角边等于;(4)如果直角三角形中一条直角边等于斜边的一半,那么这条直角边所对的锐角 .6.直角三角形的判定:(1)有一个是直角的三角形是直角三角形;(2)如果一个三角形的两条边的平分和等于第三条的平方,这个三角形是直角三角形(勾股定理的逆定理)。
7.直角三角形全等的判定方法:ASA,AAS,SSS,SAS,HL8.线段的垂直平分线和角平分线的性质和判定:(1)线段垂直平分线上的点到这条线段两个的距离相等。
(2)到一条线段两个距离的点,在这条线段的垂直平分线上。
(3)三角形三条边的垂直平分线相交于点,并且这点到的距离相等。
(4)角平分线上的点到的距离相等。
(5)在一个角的内部,到角距离相等的点,在这个角的上。
(6)三角形三个角的平分线相交于点,并且这点到的距离相等。
《三角形的证明》全章复习与巩固--知识讲解(基础)

《三角形的证明》全章复习与巩固(基础)知识梳理【要点】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、三角形的证明1. 已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D 是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BD CD=⎧⎨=⎩ ∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋•江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C 的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B ,∠C 的平分线相交于点O ,∴∠MBO=∠OBC ,∠NCO=∠OCB ,∴∠MBO=∠BOM ,∠NCO=∠CON ,∴BM=OM ,CN=ON ,∵△AMN 的周长为18,∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=18.【变式2】如图,在△ABC 中,AB=AC ,D 、E 在BC 上,且AD=AE ,求证:BD=CE .【答案】证明:∵AB=AC ,AD=AE ,∴∠B=∠C ,∠ADE=∠AED ,∵∠ADE=∠B+∠BAD ,∠AED=∠C+∠EAC ,∴∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴ BD=CE .类型二、直角三角形2. 如图,已知,在Rt △ABC 中,∠C=90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点与AB 边上的一点D 重合.(1)当∠A 满足什么条件时,点D 恰为AB 的中点写出一个你认为适当的条件,并利用此条件证明D 为AB 的中点;(2)在(1)的条件下,若DE=1,求△ABC 的面积.【思路点拨】(1)根据折叠的性质:△BCE ≌△BDE ,BC=BD ,当点D 恰为AB 的重点时,AB=2BD=2BC ,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED ⊥AB ,可证D 为AB 的中点;(2)在Rt △ADE 中,根据∠A 及ED 的值,可将AE 、AD 的值求出,又D 为AB 的中点,可得AB 的长度,在Rt △ABC 中,根据AB 、∠A 的值,可将AC 和BC 的值求出,代入S △ABC =AC ×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C 点折叠后与AB 边上的一点D 重合,∴BE 平分∠CBD ,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB ,所以EB=EA ;∵ED 为△EAB 的高线,所以ED 也是等腰△EBA 的中线,∴D 为AB 中点.(2)∵DE=1,ED ⊥AB ,∠A=30°,∴AE=2.在Rt △ADE 中,根据勾股定理,得22213-=∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3. 在Rt △ABC 中,AC=22AB BC -=3,∴S △ABC =12×AC ×BC=332. 【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在课堂上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB 的两边上分别取点M ,N ,使OM=ON ,再过点M 作OB 的垂线,过点N 作OA 的垂线,垂足分别为C 、D ,两垂线交于点P ,那么射线OP 就是∠AOB 的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP 就是∠AOB 的平分线吗?②请你只用三角板设法作出图∠AOB 的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt △OCM 与Rt △ODN 中,依据ASA 得出OC=OD;在Rt △OCP 与Rt △ODP 中,因为OP=OP ,OC=OD 得出Rt △OCP ≌Rt △ODP (HL ),所以∠COP=∠DOP ,即OP 平分∠AOB . ②可作出两个直角三角形,利用HL 定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt △OCM 和Rt △ODN 中,COM DON OCM ODN OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OCM ≌△ODN (AAS ),∴OC=OD ,在△OCP 与△ODP 中,∵,OC OD OP OP=⎧⎨=⎩∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt△OCE与Rt△ODE中,∵OC OD OE OE=⎧⎨=⎩,∴Rt△OCE≌Rt△ODE(HL),∴∠EOC=∠EOD,∴OE为∠AOB的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD是解题关键.类型三、线段垂直平分线4.(2015秋•麻城市校级期中)如图所示:在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为41cm,边长为15cm,△BCE的周长.【思路点拨】(1)由DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE=BE,继而求得∠A的度数,又由AB=AC,即可求得∠ABC的度数,则可求得答案;(2)由△BCE的周长=AC+BC,然后分别从腰等于15cm与底边等于15cm去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC;∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5. 如图,在△ABC中,∠BAC=80°,延长BC到D,使AC=CD,且∠ADB=20°,DE平分∠ADB交AC于F,交AB于E,连接CE,求∠CED的度数.【思路点拨】作EG⊥DA,EH⊥BD,EP⊥AC,根据角平分线的性质得到EG=EH,根据△EGA≌△EPA,得出∠ECB,就可以得到∠CED的度数.【答案与解析】证明:作EG⊥DA交DA的延长线于G,再作EH⊥BD,EP⊥AC,垂足分别为H,P,则EG=EH ∵∠ADC=20°,AC=CD,∴∠CAD=20°,而∠BAC=80°,∴∠GAE=180°﹣20°﹣80°=80°,∴Rt△EGA≌Rt△EPA,∴EG=EP∴EP=EH,∴∠ECB=∠ECA=12∠BCA=12×40°=20°∴∠CED=∠BCE﹣∠BDE=20°﹣10°=10°【总结升华】主要考查了角平分线的性质定理及逆定理、三角形全等的性质和判定;做题中两次用到角平分线的知识是正确解答本题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。
第1章三角形的证明 期末复习综合训练1-2020-2021学年北师大版八年级数学下册

2021学年北师大版八年级数学下册《第1章三角形的证明》期末复习综合训练1(附答案)1.如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°2.如图,在Rt△ABC中,∠C=90°,作AB的垂直平分线,交AB于点D,交AC于点E,若BC=4,CE=3,则AE的长是()A.3B.4C.5D.63.已知等腰三角形的两边长分别为a、b,且a、b满足|2a﹣3b﹣7|+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7B.11或7C.11D.7或104.如图,CD垂直平分线段AB,交AB于D,∠EAC=∠CAD,且CE⊥AE,CD=1,AE =2,则BC+CE的值为()A.1+B.2﹣1C.3D.45.如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°6.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF ⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB =90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个7.如图,已知△ABC中,AC=BC,且点D在△ABC外,且点D在AC的垂直平分线上,连接BD,若∠DBC=30°,∠ACD=13°,则∠A=度.8.如图所示,Rt△ABC中,CF是斜边AB上的高,角平分线BD交CF于点G,DE⊥AB 于点E,则下列结论:①∠A=∠BCF;②CD=CG;③AD=BD;④BC=BE.正确结论的序号.9.已知△ABC的某两个内角的比是4:7且AB=AC,BD⊥AC于D,BE平分∠ABC交AC 于E,则∠EBD的大小是或.10.如图,三角形ABC中,BD平分∠ABC,AD垂直于BD,三角形BCD的面积为45,三角形ADC的面积为20,则三角形ABD的面积等于.11.已知在有一角为30°的直角三角形中,30°角所对的边是斜边的一半,若在等腰三角形ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.12.在△ABC中,AB=AC,且过△ABC某一顶点的直线可将△ABC分成两个等腰三角形,则各内角的度数为.13.如图,在△ABC中,AB=AC,AE⊥BC于点E.在BC上取点D,使CD=CA.若AD =BD,则∠DAE=.14.在△ABC中,AB=5,AD是BC边上的高,且AD=3,∠ABC=2∠DAC,则BC=.15.平面直角坐标系中,已知A(﹣5,0),点P在第二象限,△AOP是以OA为腰的等腰三角形,且面积为10,则满足条件的P点坐标为.16.如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为.17.如图,在△ABC中,AB=AC,AB的中垂线交AB于点D,交BC的延长线于点E,交AC于点F,若∠A=50°,AB+BC=6,则△BCF的周长=,∠EFC=度.18.如图,在△ABC中,AB=BC,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1,则CD的长度为.19.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.20.如图,在△ABC中,AB=AC,点D和E分别是边BC和AC上的点,且满足DB=DA =DE,∠CDE=50°,则∠BAC=°.21.如图,△ABC中,AB=AC,DE垂直平分AB,D为垂足交AC于E.(1)若∠A=50°,求∠EBC的度数.(2)若AB=8,△BEC的周长是11,求△ABC的周长.22.如图△ABC中,AD平分∠BAC,AD的垂直平分线交AB于E,交AC于F求证:AF =ED.23.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.24.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.25.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)求证:BD=CE;(2)若AD=BD=DE,求∠BAC的度数.26.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.27.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=BF.28.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B出发以2cm/s 的速度向点A运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AP、AQ的长;(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?(3)当t为何值时,PQ∥BC?参考答案1.解:∵AB=AD=DC,∠BAD=α,∴∠B=∠ADB,∠C=∠CAD=β,∵DE⊥AD,∴∠ADE=90°,∴∠CAD+∠AED=90°,∵∠CDE=γ,∠AED=∠C+∠CDE,∴∠AED=γ+β,∴2β+γ=90°,故选:D.2.解:在Rt△BCE中,∠C=90°,∴BE===5,∵DE是线段AB的垂直平分线,∴AE=BE=5,故选:C.3.解:∵|2a﹣3b﹣7|+(2a+3b﹣13)2=0,∴,解得:,当a为底时,三角形的三边长为1,1,5,由于1+1<5,故不等构成三角形;当b为底时,三角形的三边长为1,5,5,则周长为11,∴等腰三角形的周长为11,故选:C.4.解:∵CE⊥AE,CD⊥AB,∠EAC=∠CAD,∴CE=CD=1,在Rt△ACE中,∴AC===,∵CD垂直平分线段AB,∴BC=AC=,∴BC+CE=1+,故选:A.5.解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵BC=BD,∴AB=BD,∴∠BAD=∠ADB=20°,∴∠ABD=140°,∴∠CBD=80°,又∵BC=BD,∴∠BCD=50°=∠BDC,故选:A.6.解:(1)证明:作PH⊥AB于H,∵AP是∠CAB的平分线,∴∠PAE=∠PAH,在△PEA和△PHA中,,∴△PEA≌△PHA(AAS),∴PE=PH,∵BP平分∠ABD,且PH⊥BA,PF⊥BD,∴PF=PH,∴PE=PF,∴(1)正确;(2)与(1)可知:PE=PF,又∵PE⊥OC于E,PF⊥OD于F,∴点P在∠COD的平分线上,∴(2)正确;(3)∵∠O+∠OEP+∠EPF+∠OFP=360°,又∵∠OEP+∠OFP=90°+90°=180°,∴∠O+∠EPF=180°,即∠O+∠EPA+∠HPA+∠HPB+∠FPB=180°,由(1)知:△PEA≌△PHA,∴∠EPA=∠HPA,同理:∠FPB=∠HPB,∴∠O+2(∠HPA+∠HPB)=180°,即∠O+2∠APB=180°,∴∠APB=90°﹣,∴(3)错误;故选:C.7.解:如图,过C作CM⊥BD,交BD的延长线于M,过D作DN⊥AC于N,∵点D在AC的垂直平分线上,∴DN是AC的垂直平分线,∴NC=AC,∵AC=BC,∴NC=BC,在Rt△BMC中,∠DBC=30°,∴CM=BC,∴CM=CN,在Rt△DNC和Rt△DMC中,∵,∴Rt△DNC和Rt△DMC(HL),∴∠DCM=∠DCN=13°,∵∠DBC=30°,∴∠MCB=60°,∴∠ACB=60°﹣26°=34°,又∵AC=BC,∴∠A=(180°﹣34°)=73°,故答案为:73.8.解:∵Rt△ABC中,CF是斜边AB上的高,∴∠A+∠ABC=∠BCF+∠ABC=90°,∴∠A=∠BCF;故①正确;∵∠CDG+∠CBD=90°,∠BGF+∠ABD=90°,且BD是△ABC的角平分线,∴∠CDG=∠BGF,∵∠BGF=∠CGD,∴∠CDG=∠CGD,∴CD=CG,故②正确;无法求得∠A的度数,即∠A不一定等于∠ABD,故AD不一定等于BD,故③错误.∵Rt△ABC中,∠ACB=90°,角平分线BD交CF于点G,DE⊥AB,∴CD=DE,∠CDB=∠EDB,∴BC=BE,故④正确;故答案为:①②④.9.解:①如图1,当三个内角的比为:4:4:7时,三个内角分别是48°,48°,84°.∵BE平分∠ABC,BD⊥AC,∠A=84°,∴∠ABE=∠ABC=24°,∠ABD=90°﹣84°=6°,∴∠EBD=∠ABE﹣∠ABD=24°﹣6°=18°.②如图2,当三个内角的比为:4:7:7时,三个内角分别是40°,70°,70°.∵BE平分∠ABC,BD⊥AC,∠A=40°,∴∠ABE=∠ABC=35°,∠ABD=90°﹣40°=50°,∴∠EBD=∠ABD﹣∠ABE=50°﹣35°=15°.故答案为:18°,15°10.解:延长AD交BC于E,如图所示:∵BD平分∠ABC,AD垂直于BD,∴∠ABD=∠EBD,∠ADB=∠EDB=90°,在△ABD和△EBD中,,∴△ABD≌△EBD(ASA),∴AD=ED,∴△ABD的面积=△EBD的面积,△CDE的面积=△ACD的面积=20,∴△ABD的面积=△EBD的面积=△BCD的面积﹣△CDE的面积=45﹣20=25.故答案为:25.11.解:分为三种情况:①如图,△ABC中,AB=AC,AD=BC,∵AB=AC,AD⊥BC,∴BD=DC=BC,∴AD=BD=DC,∴△BAC是等腰直角三角形,∴∠B=∠C=45°;②如图,△ABC中,AC=BC,∵AD=BC,AD⊥BC,∴∠D=90°,AD=AC,∴∠ACD=30°,∵AC=BC,∴∠B=∠BAC,∵∠B+∠BAC=∠ACD,∴∠B=∠BAC=15°,③如图,AD=BC,∠C=30°,∵AC=BC,∴∠B=∠BAC=75°;故答案为:45°、45°或15°、15°或75°、75°.12.解:①如图①,∵AB=AC,BD=CD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∠C=45°,∠BAC=90°.②如图②,∵AB=AC,AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∠C=36°,∠BAC=108°.③如图③,∵AB=AC,AD=BD=BC,∴∠B=∠C,∠A=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠A,∴∠ABC=∠C=2∠A,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°,∠C=72°,∠ABC=72°.④如图④,∵AB=AC,AD=BD,CD=BC,∴∠ABC=∠C,∠A=∠ABD,∠CDB=∠CBD,∵∠BDC=∠A+∠ABD=2∠A,∴∠ABC=∠C=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=()°,∠C=()°,∠ABC=()°.故答案为:(45°、45°、90°),(36°、36°、108°),(36°、72°、72°),(、、).13.解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠DAB=∠B=x,∵△CAD中,CA=CD,∴∠CAD=(180°﹣∠C)=90°﹣,∵△ABC中,∠B+∠C+∠BAC=180°,∴x+x+x+90°﹣=180°,∴x=36°,∴∠DAE=∠BAE﹣∠BAD=(90°﹣36°)﹣36°=18°.故答案为:18°.14.解:如图1中,当高AD在△ABC内部时,作∠ABC的角平分线交AD于O,交AC于H.∵∠ABH=∠CBH,∠ABC=2∠DAC,∴∠OAH=∠OBD,∵∠AOH=∠BOD,∴∠AHO=∠ODB=90°,∴∠BHA=∠BHC=90°,∵∠ABH+∠BAH=90°,∠HBC+∠C=90°,∴∠BAH=∠C,∴BC=BA=5.如图2中,当高在△ABC外时,延长CD到O,使得DO=DC,作∠ABC的角平分线BH 交AO于H.∵AD⊥CO,CD=DO,∴AC=AO,∴∠DAC=∠DAO,∵∠ABC=2∠DAC,∴∠ABC=2∠DAO,由图1可知,AB=AO=5,在Rt△ABD中,BD===4,∴OD=CD=OB﹣BD=1,∴BC=BD﹣CD=4﹣1=3,综上所述,BC的长为5或3.故答案为:5或3.15.解:设P(m,n).∵A(﹣5,0),∴OA=5,=10,∵S△POA∴×5×n=10,∴n=4,当OP=OA=5时,m2+42=52,∴m=±3,∵m<0,∴m=﹣3,∴P(﹣3,4),当AP′=5时,(m+5)2+42=52,∴m=﹣2或﹣8,∴P′(﹣8,4)或(﹣2,4).故答案为(﹣3.4)或(﹣8,4)或(﹣2,4).16.解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.17.解:如图:已知DF垂直且平分AB⇒AF=BF,AD=BD,∠A=∠ABF=50°,∠ADF =90°∠EFC=180°﹣∠A﹣∠ADF=40°(对角相等)因为AB+BC=6,AB=AC=BF+FC故周长△BCF=FC+BF+BC=6.故填6;40°.18.解:∵BD⊥BC,∴∠CBD=90°,∴∠ABD=∠ABC﹣∠CBD=120°﹣90°=30°,∵AB=BC,∠ABC=120°,∴∠A=∠C=30°,∴∠A=∠ABD,∴DB=AD=1,在Rt△CBD中,∵∠C=30°,∴CD=2BD=2.故答案为2.19.解:∵△ABC是等边三角形,∴∠C=∠A=60°,∵CG=CD,∴∠GDC=30°,∵DF=DE,∴∠E=15°.故答案为:15.20.解:∵AB=AC,∴∠B=∠C,设∠B=∠C=α,∵DB=DA=DE,∴∠DAB=∠B=α,∠DAE=∠DEA,∵∠DEA=∠CDE+∠C=50°+α,∴∠DAE=50°+α,∴∠BAC=∠DAE+∠DAB=50°+2α,∵∠BAC+∠B+∠C=180°,∴50°+2α+α+α=180°,解得α=32.5°,∴∠BAC=50°+2×32.5°=115°,故答案为115.21.解:(1)∵AB=AC,∠A=50°,∴∠ABC=∠C=65°.∵DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=50°.∴∠EBC=15°.(2)∵AE=BE,AB=8,∴BE+CE=8.∵△BEC的周长是11,∴BC=3,∴△ABC的周长是8+8+3=19.22.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AD的垂直平分线交AB于点E,交AC于点F,∴AE=DE,∠AOE=∠AOF=90°,∴∠AEF=∠AFE,∴AE=AF,∴AF=ED.23.解:(1)∵AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,∴AE=BE,AN=CN,∵BC=12,∴△AEN周长l=AE+EN+AN=BE+EN+NC=BC=12;(2)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AE=BE,AN=CN,∴∠BAE=∠CAN=30°,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN=60°;(3)∵∠AEN=∠B+∠BAE=60°,∠ANE=∠C+∠CAN=60°,∴△AEN为等边三角形.24.解:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.25.解:(1)过点A作AF⊥BC于F.∵AB=AC,AD=AE.∴BF=CF,DF=EF,∴BD=CE.(2)∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=∠ADE=60°.∵AD=BD,∴∠DAB=∠DBA.∴∠DAB=∠ADE=30°.同理可求得∠EAC=30°,∴∠BAC=120°.26.(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,AD平分线段EC,即直线AD是线段CE的垂直平分线.27.解:(1)△DBC是等腰直角三角形,理由:∵∠ABC=45°,CD⊥AB,∴∠BCD=45°,∴BD=CD,∴△DBC是等腰直角三角形;(2)∵BE⊥AC,∴∠BDC=∠BEC=90°,∵∠BFD=∠CFE,∴∠DBF=∠ACD,在△BDF与△CDA中,,∴△BDF≌△CDA,∴BF=AC;(3)∵BE是AC的垂直平分线,∴CE=AC,∴CE=BF.28.解:(1)∵Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°.又∵AB=12cm,∴AC=6cm,BP=2t,AP=AB﹣BP=12﹣2t,AQ=t;(2)∵△APQ是以PQ为底的等腰三角形,∴AP=AQ,即12﹣2t=t,∴当t=4时,△APQ是以PQ为底边的等腰三角形;(3)当PQ⊥AC时,PQ∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵PQ∥BC,∴∠QPA=30°∴AQ=AP,∴t=(12﹣2t),解得t=3,∴当t=3时,PQ∥BC.。
北师大版数学八年级下册:第一章《三角形的证明》含详细答案

北师大版八年级下册数学第一章三角形的证明一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.52.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到A.1B.2C.D.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.北师大版八年级下册数学第一章三角形的证明参考答案与试题解析一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
19-20学年八年级数学下册第一章三角形的证明1.3-4教学课件(3课时)

几何语言描述:
如图, ∵PA=PB(已知),
A
B
∴点P在AB的垂直平分线上(到一条线段
两个端点距离相等的点,在这条线段的
垂直平分线上). 提示:这个结论是经常用来证明点在直线上(或直线
经过某一点)的根据之一.
例1 已知:如图 ,在 △ABC 中,AB = AC,O 是 △ABC 内一点,且 OB = OC.
求证:直线 AO 垂直平分线段BC. 证明:∵AB=AC, ∴点A在线段BC的垂直平分线上(到一 条线段两个端点距离相等的点, 在这条线 段的垂直平分线上), 同理,点O在线段BC的垂直平分线上, ∴直线 AO 是线段BC的垂直平分线(两 点确定一条直线).
1.如图,已知AB是线段CD的 垂直平分线,E是AB上的一 点,如果EC=7 cm,那么ED=
变式2:若把∠BAC=∠EDF,改为 AC=DF,△ABC与△DEF全等吗?请 B 说明思路.
变式3:请你把例题中的∠BAC=∠EDF 改为另一个适当条件,使△ABC与 △DEF仍能全等,并给出证明.
E
A
PC D
QF
我们曾经利用折纸的方法得到:线段垂直平分线上的 点到这条线段两个端点的距离相等.你能证明这一结论 吗?
在△ABC中,AB= 2AC 4 2 . ∵AC=AE,∴BE= 4 2 4 .
∵ CD=DE,BE=DE,
∴CD= 4 2 4 (cm).
1.三角形三条角平分线的性质定理:三角形的三条角平分 线相交于一点,并且这一点到__三__条__边__的距离相等. 2.三角形三个内角平分线的交点只有一个,实际作图时,只 需作出两个角的平分线,第三个角的平分线必过这两条角 平分线的交点. 3.利用面积法求距离的方法:三角形角平分线的交点与三 个顶点的连线,把原三角形分割成了三个小三角形,利用小 三角形的面积之和等于原三角形的面积,是求角平分线交 点到三边距离的常用方法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第1章三角形的证明》同步练习卷A(20)一、选择题1.为促进旅游发展,某地要在三条公路围成的一块平地上修建一个度假村,如图所示,若要使度假村到三条公路的距离相等,则这个度假村应修建在()A.三角形ABC三条高线的交点处B.三角形ABC三条角平分线的交点处C.三角形ABC三条中线的交点处D.三角形ABC三边垂直平分线的交点处2.在三角形外部到三条边所在直线距离相等的点共有几个点()A.1B.2C.3D.43.如图所示,在△ABC中,∠B、∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,那么下列结论不正确的是()B.D E=DB+CEA.△BDF,△CEF都是等腰三角形D.B F=CFC.A D+DE+AE=AB+AC4.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③5.如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③;④EF一定平行BC.其中正确的是()A.①②③B.②③④C.①③④D.①②③④6.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.二、填空题(共3小题,每小题3分,满分9分)7.(3分)如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点E,∠A=70°,则∠E=_________.8.如图所示,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为_________.9.如图所示,在△ABC中,∠ABC=90°,AB=7,BC=24,△ABC内一点P到三边的距离PD=PE=PF,则PD的长为_________.三、解答题10.如图所示,过线段AB的两个端点作射线AM、BN,使AM∥BN,∠MAB和∠NBA的平分线交于点E,过点E 作一直线垂直于AM,垂足为点D,交BN于点C.(1)观察DE、EC,你有什么发现?请证明你的结论;(2)请你再研究AD+BC与AB的关系,并给予证明.11.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度数40°60°90°120°∠BIC的度数∠BDI的度数12.如图①,OP是∠AOB的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.13.课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B 与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)《第1章三角形的证明》同步练习卷A(20)参考答案与试题解析一、选择题1.为促进旅游发展,某地要在三条公路围成的一块平地上修建一个度假村,如图所示,若要使度假村到三条公路的距离相等,则这个度假村应修建在()A.三角形ABC三条高线的交点处B.三角形ABC三条角平分线的交点处C.三角形ABC三条中线的交点处D.三角形ABC三边垂直平分线的交点处解答:解:∵度假村在三条公路围成的平地上且到三条公路的距离相等,∴度假村应该在△ABC三条角平分线的交点处.故选B.2.在三角形外部到三条边所在直线距离相等的点共有几个点()A.1B.2C.3D.4解答:解:∵在三角形外部到三条边所在直线距离相等的点是三角形两个外角的平分线的交点,如图:D,E,F分别是三角形外两外角的平分线,过点D作DM⊥AB于M,过点D作DN⊥AC于N,过点D作DG⊥BC于G,∴DM=DN,DN=DG,∴DM=DN=DG,∴D到三条边所在直线距离相等,同理:E与F到三条边所在直线距离相等.故在三角形外部到三条边所在直线距离相等的点共有3个点.故选C.3.如图所示,在△ABC中,∠B、∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,那么下列结论不正确的是()B.D E=DB+CEA.△BDF,△CEF都D.B F=CFC.A D+DE+AE=AB+AC解答:解:∵在△ABC中,∠B、∠C的平分线相交于点F,∴∠ABF=∠CBF,∠ACF=∠BCF,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠BCF,∴∠ABF=∠DFB,∠ACF=∠EFC,∴DF=BD,EF=CE,∴△BDF,△CEF都是等腰三角形,故A正确;∴DE=DF+EF=DB+CE,故B正确;∴AD+DE+AE=AD+DB+CE+AE=AB+AC,故C正确;∵∠ABC不一定等于∠ACB,故BF不一定等于CF,故D错误.故选D.4.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③解答:解:如图,过点P作PM⊥AB,PN⊥BC,PD⊥AC,垂足分别为M、N、D,①∵PB平分∠ABC,PA平分∠EAC,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),故本小题正确;②∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,很明显∠MPN≠∠APC,∴∠ABC+∠APC=180°错误,故本小题错误;③在Rt△APM与Rt△APD中,,∴Rt△APM≌Rt△APD(HL),∴AD=AM,同理可得Rt△CPD≌Rt△CPN,∴CD=CN,∴AM+CN=AD+CD=AC,故本小题正确;④∵PB平分∠ABC,PC平分∠ACF,∴∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,∴∠BAC=2∠BPC,故本小题正确.综上所述,①③④正确.故选B.5.如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③;④EF一定平行BC.其中正确的是()A.①②③B.②③④C.①③④D.①②③④解答:解:①∵三角形ABC中,∠A的平分线交BC于点D,DE⊥AC,DF⊥AB,∴∠ADE=∠ADF,DF=DE,∴AF=AE,∴∠AFE=∠AEF,故正确;②∵DF=DE,AF=AE,∴点D在EF的垂直平分线上,点A在EF的垂直平分线上,∴AD垂直平分EF,故正确;③∵S△BFD=BF•DF,S△CDE=CE•DE,DF=DE,∴;故正确;④∵∠EFD不一定等于∠BDF,∴EF不一定平行BC.故错误.故选A.6.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.解答:解:∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB、AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD•,解得BD=.故选A.二、填空题7.如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点E,∠A=70°,则∠E=125°.解答:解:∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∵∠ABC与∠ACB的平分线交于点E,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×110°=55°,∴∠E=180°﹣(∠EBC+∠ECB)=180°﹣55°=125°.故答案为:125°.8.如图所示,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为5.解答:解:∵P是△ABC的内角平分线的交点,P点到AB边的距离为1,∴点P到AB、BC、AC的距离都是1,∴△ABC的面积=×ABו1+×BC•1+×AC•1=(AB+BC+AC),∵△ABC的周长为10,∴△ABC的面积=×10=5.故答案为:5.9.如图所示,在△ABC中,∠ABC=90°,AB=7,BC=24,△ABC内一点P到三边的距离PD=PE=PF,则PD的长为3.解答:解:∵∠ABC=90°,AB=7,BC=24,∴AC===25,∴S△ABC=AB•PD+BC•PE+AC•PF=AB•BC,即×(7+24+25)×PD=×7×24,解得PD=3.故答案为:3.三、解答题10.如图所示,过线段AB的两个端点作射线AM、BN,使AM∥BN,∠MAB和∠NBA的平分线交于点E,过点E 作一直线垂直于AM,垂足为点D,交BN于点C.(1)观察DE、EC,你有什么发现?请证明你的结论;(2)请你再研究AD+BC与AB的关系,并给予证明.解答:解:(1)∵AM∥BN,CD⊥AM,∴CD⊥BN,∵AE是∠MAB的平分线,∴DE=EF,同理可得EC=EF,∴DE=EC;(2)在△ADE和△AFE中,,∴△ADE≌△AFE(HL),∴AD=AF,同理可得BC=BF,∵AB=AF+BF,∴AD+BC=AB.11.我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度数40°60°90°120°∠BIC的度数∠BDI的度数解答:解:(1)填写表格如下:∠BAC的度数40°60°90°120°∠BIC的度数110°120°135°150°∠BDI的度数110°120°135°150°(2)∠BIC=∠BDI,理由如下:∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.12.如图①,OP是∠AOB的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.解答:解:在OP上任找一点E,过E分别做CE⊥OA于C,ED⊥OB于D,可得△OEC≌△OED,如图①,(1)结论为EF=FD.如图②,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF与△AGF中,∴△AEF≌△AGF(SAS).∴∠AFE=∠AFG,FE=FG.由∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,∵2∠2+2∠3+∠B=180°,∴∠2+∠3=60°.又∵∠AFE为△AFC的外角,∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°.∴∠CFG=60°.即∠GFC=∠DFC,在△CFG与△CFD中,∴△CFG≌△CFD(ASA).∴FG=FD.∴FE=FD.(2)EF=FD仍然成立.如图③,过点F分别作FG⊥AB于点G,FH⊥BC于点H.∴∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠2+∠3=60°,F是△ABC的内心∴∠GEF=∠BAC+∠3=60°+∠1,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH(角平分线上的点到角的两边相等).又∵∠HDF=∠B+∠1(外角的性质),∴∠GEF=∠HDF.在△EGF与△DHF中,,∴△EGF≌△DHF(AAS),∴FE=FD.13.课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B 与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)解答:证明:(1)∵∠B与∠D互补,∠B=∠D,∴∠B=∠D=90°,∠CAD=∠CAB=∠DAB=30°,∵在△ADC中,cos30°=,在△ABC中,cos30°=,∴AB=AC,AD=.∴AB+AD=.(2)由(1)知,AE+AF=AC,∵AC为角平分线,CF⊥AD,CE⊥AB,∴CE=CF.而∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE.∵在Rt△CDF与Rt△CBE中,∴Rt△CDF≌Rt△CBE.∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=AC.。