比例系数的几何意义作用大 2

合集下载

《反比例函数的图象和性质》教学反思

《反比例函数的图象和性质》教学反思

《反比例函数的图象和性质》教学反思《反比例函数的图象和性质》教学反思1在本节授课过程中,教学环节展开是顺畅的,学生在教师引导下,能够说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,按照列表、描点、连线三个步骤画出反比例函数图象,通过观察所画出的反比例函数图象,得出该图象的“特征”和函数的“性质”。

但因为学生刚接触反比例函数图象,图象外在形式(双曲线)与一次函数图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。

一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的.两个函数值大小时,学生不能有意识地从“自变量的正负”来考虑问题,这导致学生课后“目标检测”时,对部分问题的解决出现偏差。

此外,展开本节课学习的一个重要的方法,就是“类比”。

在教学过程中,教师极力引导学生“类比一次函数学习的方法”,最大限度地调动学生“合情推理”因素,以确保学习知识的“正迁移”效应,实际也会带来一些负面的影响,学生往往对属于一次函数和反比例函数“共性”的结论印象比较深刻,而对于反比例函数“个性”的结论,理解上反而会受到一些干扰。

《反比例函数的图象和性质》教学反思2反比例函数的图像与性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。

为此应该有意识地加强反比例函数与正比例函数之间的对比。

对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。

此外,在学习反比例函数图像的性质(k大于0双曲线的两个分支在一、三象限,k小于0双曲线的两个分支在二、四象限)时,学生由画法观察图象可知;而增减性由解析式y等于k比_(k不等于0),学生也容易理解,但从图象观察增减性较难,借助计算机的动态演示就容易多了。

湘教版九年级数学-比例系数的几何意义作用大

湘教版九年级数学-比例系数的几何意义作用大

比例系数的几何意义作用大如图1,过双曲线上任一点P 作x 轴,y 轴的垂线PM ,PN ,所得矩形PMON 的面积为:S=PM ·PN=|y|·|x|=|xy|. 又因为y=k x ,所以xy=k ,所以S=|k|.即过双曲线上任意一点作x轴,y 轴的垂线,所得的矩形的面积为|k|.这就是比例系数k 的几何意义.如图1所示,若连接OP ,则易得△POM 的面积S=12k . 在解题中如果能合理地利用比例系数k 的几何意义,便可以迅速解决有关图形面积的问题.现撷取两例解析如下,供同学们参考.一、确定表达式例1如图2,已知点A 在反比例函数图象上,AM ⊥x 轴于点M ,且△AOM的面积为1,则反比例函数的表达式为 .解析:根据反比例函数系数k 的几何意义,知S=12|k|.根据题意,有12|k|=1,即|k|=2,得k =±2.又因为反比例函数的图象在第二、四象限,所以k <0,因此k=-2.所以这个反比例函数的表达式是2=y x. 二、确定图形面积例2如图3,点A 在双曲线y=1x 上,点B 在双曲线y=3x上,且AB ∥x 轴,点C ,D 在x 轴上,若四边形ABDC 为矩形,则它的面积为_________. 解析:延长BA 交y 轴于点E.因为AB ∥x 轴,所以有BE ⊥y 轴.因为点A 在双曲线y=1x上,根据反比例函数系数k 的几何意义,知矩形AEOD 的面积为|1|=1.同理可得矩形BEOC 的面积为|3|=3.所以矩形ABDC 的面积=矩形BEOC 的面积-矩形AEOD 的面积=3-1=2.牛刀小试(2013·宜昌)如图4,点B 在反比例函数y=(x >0)的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为( )** B.2 C.3 D.4参考答案:B 图1 图2 图3 图4。

反比例函数中k的几何意义是什么

反比例函数中k的几何意义是什么

反比例函数中k的几何意义是什么
反比例函数中k的几何意义是什么
发现学生对反比例函数中K的几何意义理解的不好,造成在面对一些反比例函数与几何图形相结合的问题时的束手无策,要想解决好这个问题,这就要求我们老师在辅导学生时要敢于花大力气帮助学生深刻理解K的几何意义,下面是店铺给大家整理的反比例函数中k的几何意义简介,希望能帮到大家!
反比例函数中k的几何意义
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的`垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k 有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x 轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。

从而有k的绝对值。

K的几何意义与三角形相似知识的关联
【反比例函数中k的几何意义是什么】。

6.2(3)反比例函数中比例系数K的几何意义

6.2(3)反比例函数中比例系数K的几何意义
五【目标评定】1.知道平行四边行的判定方法。
已知□有点知□不知□
2.会用“对角线互相平分的四边形是平行四边形”。
已会□有点会□不会□
【作业】作业本:A组:基础练习+综合运用
B组:基础练习+综合运用部分至少选一道,
C组:基础练习+综合运用部分可选做
(1)求点P的坐标;
(2)若△POQ的面积为8,求k的值.
3.如图1,矩形AOBC的面积为4,反比例函数 的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是。
图1图2
4.如图2,反比例函数 (x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k=。
1.概念认知:两坐标轴和过反比例函数 图象上的一点作两坐标轴的垂线段围成的矩形面积=
2.自我检测:
①如图1,已知点A在反比例函数 图像上,过点A作AC⊥X轴于C,过点A作AB⊥Y轴于B,则矩形ABOC的面积=
图1图2
②如图2,反比例函数 的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是:
②如图2,已知直线a∥b,则⊿ABC和⊿ABD的面积大小关系是
③如图3,已知AD是⊿ABC一边上的中线,则⊿ABD和⊿ACD的面积大小关系是
图1图2图3
2.画一画,想一想:
①如图4,已知反比例函数 图像经过点A(1,2),则K=;
过点A作AB⊥X轴于B,过点A作AC⊥Y轴于C,四边形ACOB是形,AC=,AB=,四边形ACOB的面积是
3.【主题一展示】两人小对子交流与分享。ቤተ መጻሕፍቲ ባይዱ序如下:
①就【自研自探】的相关问题的解决交换意见;
②由C组展示“概念认知”和“自我检测”

反比例函数(基础)知识讲解

反比例函数(基础)知识讲解

反比例函数(基础)【学习目标】1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4. 会解决一次函数和反比例函数有关的问题.【要点梳理】【高清课堂 反比例函数 知识要点】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k =,或表示为k y x =,其中k 是不等于零的常数. 一般地,形如k y x= (k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数. 要点诠释:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点.(2)k y x= ()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)k y x = ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数k y x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:k y x= (0k ≠); (2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k 的值;(4)把求得的k 值代回所设的函数关系式k y x=中. 要点三、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a b ,)在反比例函数k y x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称; (2)在反比例函数(k 为常数,0k ≠) 中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以O 为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.3、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号. 要点四:反比例函数()中的比例系数k 的几何意义过双曲线x k y =(0k ≠) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线x k y =(0k ≠) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k . 要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典型例题】类型一、反比例函数的定义1、下列函数:①y=2x ,②y=,③y=x ﹣1,④y=.其中,是反比例函数的有( ).A. 0个B. 1个C. 2个D. 3个【答案】C ;【解析】解:①y 是x 正比例函数;②y 是x 反比例函数;③y 是x 反比例函数;④y 是x+1的反比例函数.故选:C .【总结升华】本题考查了反比例函数的定义,重点是将一般(0k y k x=≠)转化为y=kx ﹣1(k≠0)的形式.类型二、确定反比例函数的解析式2、(2016春•大庆期末)已知y 与x 成反比例,且当x=﹣3时,y=4,则当x=6时,y 的值为 .【思路点拨】根据待定系数法,可得反比例函数,根据自变量与函数值的对应关系,可得答案.【答案】﹣2.【解析】解:设反比例函数为y=,当x=﹣3,y=4时,4=,解得k=﹣12.反比例函数为y=. 当x=6时,y =﹣2, 故答案为:﹣2.【总结升华】本题考查了反比例函数的定义,利用待定系数法求函数解析式是解题关键. 举一反三:【变式】已知y 与x 成反比,且当6x =-时,4y =,则当2x =时,y 值为多少?【答案】 解:设k y x=,当6x =-时,4y =, 所以46k =-,则k =-24, 所以有24y x-=. 当2x =时,24122y -==-. 类型三、反比例函数的图象和性质3、在函数21a y x--=(a 为常数)的图象上有三点(11x y ,),(22x y ,),(33x y ,),且1230x x x <<<,则123y y y ,,的大小关系是( ).A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<【答案】D ;【解析】解:因为221(1)0k a a =--=-+<,所以函数图象在第二、四象限内,且在第二、四象限内,y 随x 的增大而增大.因为12x x <,所以12y y <.因为33(,)x y 在第四象限,而11(,)x y ,22(,)x y 在第二象限,所以31y y <.所以312y y y <<.【总结升华】已知反比例函数k y x=,当k >0,x >0时,y 随x 的增大而减小,需要强调的是x >0;当k >0,x <0时,y 随x 的增大而减小,需要强调的是x <0.这里不能说成当k >0,y 随x 的增大而减小.例如函数2y x=,当x =-1时,y =-2,当x =1时,y =2,自变量由-1到1,函数值y 由-2到2,增大了.所以,只能说:当k >0时,在第一象限内,y 随x 的增大而减小.举一反三:【变式1】已知2(3)m y m x -=-的图象是双曲线,且在第二、四象限,(1)求m 的值.(2)若点(-2,1y )、(-1,2y )、(1,3y )都在双曲线上,试比较1y 、2y 、3y 的大小.【答案】解:(1)由已知条件可知:此函数为反比例函数,且2130m m -=-⎧⎨-≠⎩,∴ 1m =. (2)由(1)得此函数解析式为:2y x=-. ∵ (-2,1y )、(-1,2y )在第二象限,-2<-1,∴ 120y y <<.而(1,3y )在第四象限,30y <.∴ 312y y y <<【高清课堂 反比例函数 例5】【变式2】对于函数y=,下列说法错误的是( )A. 它的图象分布在一、三象限;B. 它的图象与坐标轴没有交点;C. 它的图象既是轴对称图形,又是中心对称图形;D. 当x <0时,y 的值随x 的增大而增大.【答案】D ;解:A 、k=2>0,图象位于一、三象限,正确;B 、因为x 、y 均不能为0,所以它的图象与坐标轴没有交点,正确;C 、它的图象关于y=﹣x 成轴对称,关于原点成中心对称,正确;D ,当x <0时,y 的值随x 的增大而减小,故选:D .类型四、反比例函数综合4、已知点A(0,2)和点B(0,-2),点P 在函数1y x=-的图象上,如果△PAB 的面积是6,求P 点的坐标.【思路点拨】由已知的点A 、B 的坐标,可求得AB =4,再由△PAB 的面积是6,可知P 点到y 轴的距离为3,因此可求P 的横坐标为±3,由于点P 在1y x=-的图象上,则由横坐标为±3可求其纵坐标.【答案与解析】解:如图所示,不妨设点P 的坐标为00(,)x y ,过P 作PC ⊥y 轴于点C .∵ A(0,2)、B(0,-2),∴ AB =4.又∵ 0||PC x =且6PAB S =△,∴01||462x =,∴ 0||3x =,∴ 03x =±. 又∵ 00(,)P x y 在曲线1y x =-上,∴ 当03x =时,013y =-;当03x =-时,013y =. ∴ P 的坐标为113,3P ⎛⎫- ⎪⎝⎭或213,3P ⎛⎫- ⎪⎝⎭.【总结升华】通过三角形面积建立关于0x 的方程求解,同时在直角坐标系中,点到坐标轴的距离等于相应坐标的绝对值.举一反三:【变式】已知:如图所示,反比例函数k y x=的图象与正比例函数y mx =的图象交于A 、B ,作AC ⊥y 轴于C ,连BC ,则△ABC 的面积为3,求反比例函数的解析式.【答案】解:由双曲线与正比例函数y mx =的对称性可知AO =OB , 则1322AOC ABC S S ==△△. 设A 点坐标为(A x ,A y ),而AC =|A x |,OC =|A y |, 于是1113||||2222AOC A A A A S AC OC x y x y ===-=△, ∴ 3AA x y =-, 而由A A k y x =得A A x y k =,所以3k =-,所以反比例函数解析式为3y x -=.。

反比例函数中比例系数的几何意义优秀课件

反比例函数中比例系数的几何意义优秀课件

x
P,PC⊥x轴于点C,交 y 1 图像于点A,PD⊥y轴于点D,
x
交y 1
x
图像于点B,则S四边形PAOB=
3

合作探究
探究:反比例函数中比例系数k的几何意义
2、归纳:
如图,在反比例函数 y k k 0 的
x
图像上任取一点P,过点P分别作PE⊥ x轴于点E,PF⊥y轴于点F,则:
S矩形PEOF= k
.
反比例函数中比例系数k的几何意义.gsp
合作探究
探究:反比例函数中比例系数k的几何意义 3、推论:
(1)在一个反比例函数 y k k 0
设它们的面积为S1、S2、S3,则S1 S2 S3(填
“>”、“=” 或“<”);
巩固提升
4、如图,函数 y -x 与函数 y 4 的图像相交于A、B
x
两点,过点A、B分别作y轴的垂线,垂足分别为点C、
D,连接AD、BC,则S四边形ACBD= 8
.
测评达标
1、如图,反比例函数 y 4 在第一象限上有一点
反比例函数中比例系数的几何意义优秀课 件
导学领航
1、反比例函数的表达式有
y
k x
、 y kx1 、 x y = k

种常见形式,已知反比例函数图像经过点 2, 3 ,则反比例
函数表达式为
y 6 x

6 2、反比例函数 y 的图像在第
内,y随x的增大而 x 减小 ;
一、三
象限,在每个象限
自主学习
x
坐标轴作垂线,则与坐标轴围成的矩形面积为 6 ;
合作探究
探究:反比例函数中比例系数k的几何意义
1、思考:

反比例函数 全章预习提纲

反比例函数 全章预习提纲

反比例函数 全章预习提纲1. 定义:一般地,形如 (k 为常数, )的函数称为反比例函数。

xk y =还可以写成kxy =1- ; y= ; xy=2. 反比例函数解析式xk y =的特征:⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k⑶自变量x 的取值范围为 。

⑷函数y 的取值范围是 。

3. 反比例函数的图像 ⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)② 描点(从小到大的顺序)③ 连线(从左到右光滑的曲线)⑵反比例函数的图像是 线,它是否经过原点?是否与坐标轴相交?⑶反比例函数的图像是轴对称图形吗?你能找出它的对称轴吗 反比例函数的图像是中心对称图形吗?找出它的对称中心 ⑷反比例函数xk y =(0≠k )中比例系数k 的几何意义是:过双曲线xk y =(0≠k )上任意引x 轴、y 轴的垂线,所得矩形面积为 。

对应值 或图像上一个点的坐标即可求出k )反比例函数常见题型1. 概念应用(牢牢把握住概念) (1)下列函数:①31-=xy ; ②x y -=5; ③xy 52-=; ④)0(2≠=a a xa y 为常数且;其中 是反比例函数(2)下列函数中,y 是x 的反比例函数的是( ). A .1)1(=-y x B .11+=x y C .21xy =D .xy 31=(3)若y=(a-1)2a x -是反比例函数,则a=( )A .a=1B .a=-1C .a=0D .任意实数(4)已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且x=2与x=3时,y 的值都等于19,写出y 与x 的函数关系式______(5)已知y=y 1-y 2,y 1与x 成反比例,y 2与x 2成正比例,且当x=-1时y=-5,当x=1时,y=1,求y 与x 之间的函数关系式.(6)当路程s 一定时,速度v 与时间t 之间的函数关系是( ) A 正比例函数 B 反比例函数 C 一次函数 D 以上均不正确 (7)写出下列两个变量的关系式,看是否成比例?如果成比例,是成正比例,还是成反比例?①圆的面积S (cm 2)与它的半径R(cm)的关系;_______________ ②等腰三角形的顶角y 与底角x 的关系;______________________ ③人每分钟走200米,则她从家到学校用的时间t(分)与她行走的速度v (米/分)的关系._______________________________ 2.反比例函数的性质应用 (1)已知反比例函数xk y 2-=,其图象在第一、三象限内,则k 的取值范围为________________ (2) 反比例函数xm y =的图像两支分布在第二、四象限,则点(m ,m -2)在第_____象限。

第6章 反比例函数 浙教版数学八年级下册期末试题选编(含答案)

第6章 反比例函数 浙教版数学八年级下册期末试题选编(含答案)

第6章反比例函数一、单选题1.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,矩形ABCO,点B(10,8),点D在BC边上,连接AD,把ABD沿AD折叠,使点B恰好落在OC边上点E处,反比例函数(k≠0)的图象经过点D,则k的值为( )A.20B.30C.40D.482.(2022春·浙江丽水·八年级统考期末)反比例函数的图象必经过点()A.B.C.D.3.(2022春·浙江杭州·八年级统考期末)已知是关于的反比例函数,,和,是自变量与函数的两组对应值.则下列关系式中,成立的是()A.B.C.D.4.(2022春·浙江嘉兴·八年级统考期末)若反比例函数的图象经过点,则该反比例函数的表达式是()A.B.C.D.5.(2022春·浙江丽水·八年级统考期末)已知点,,都在反比例函数(a是常数)的图象上,且,则,,的大小关系为()A.B.C.D.6.(2022春·浙江湖州·八年级统考期末)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )A.y=B.y=﹣C.y=D.y=﹣7.(2022春·浙江湖州·八年级统考期末)如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,则与的面积差为().A.32B.16C.8D.48.(2022春·浙江金华·八年级统考期末)已知反比例函数的图象位于第一、三象限,则a的取值范围是()A.B.C.D.二、填空题9.(2022春·浙江绍兴·八年级统考期末)若点A(2,m)在反比例函数y=的图像上,则m 的值为________.10.(2022春·浙江宁波·八年级统考期末)如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结. 若的面积与的面积相等,则的值是_____.11.(2022春·浙江宁波·八年级统考期末)若点在反比例函数的图象上,则____(填“>”或“<”或“=”)12.(2022春·浙江绍兴·八年级统考期末)如图,直线与反比例函数的图象相交于A、C 两点,与x轴交于点D,过点D作轴交反比例函的图象于点E,连结,点B为y 轴上一点,满足,且恰好平行于x轴.若,则k的值为________.13.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,已知点的坐标为,射线与反比例函数的图像交于点,过点作轴的垂线交双曲线于点,过点作轴的垂线交双曲线于点,联结,那么的值是__________14.(2022春·浙江杭州·八年级统考期末)已知反比例函数,当时,的最大值与最小值之差是4,则________.15.(2022春·浙江绍兴·八年级统考期末)如图,在平面直角坐标系中,矩形的顶点A在x轴上,顶点C在y轴上,矩形的边在上,.反比例函数的图象经过点B,若阴影部分面积为6,则k的值为______________.16.(2022春·浙江嘉兴·八年级统考期末)如图,直线交反比例函数的图象于点A,交y轴于点B,将直线向下平移个单位后得到直线,交反比例函数的图象于点C.若的面积为,则k的值为____.17.(2022春·浙江丽水·八年级统考期末)如图,的顶点在轴正半轴上,反比例函数在第一象限经过点,与交于点,且,若的面积为9,则的值是______.18.(2022春·浙江宁波·八年级统考期末)如图,平面直角坐标系放置有两个三角板ABO和ACO,其中、为直角,,,和分别经过B、C两点,则的值为______.三、解答题19.(2022春·浙江丽水·八年级统考期末)已知是关于的反比例函数,当时,.(1)求此函数的表达式;(2)当时,函数值是,求的值.20.(2022春·浙江宁波·八年级统考期末)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象交于点A(1,2)和B(﹣2,a),与y轴交于点M.(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;(3)求不等式kx+b﹣<0的解集.(请直接写出答案)21.(2022春·浙江杭州·八年级校考期末)如图,一次函数的图象与反比例四数的图象相交于A(1,3),B(-3,n)两点.(1)求一次函数和反比例函数的表达式;(2)当一次函数的值大于反比例函数的值时,直接写出的取值范围.(3)直线交轴于点,点是轴上的点,的面积等于的面积,求点的坐标.22.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于A,BC⊥y轴于C,BA=3,BC=5,有一反比例函数图像刚好过点B.(1)分别求出过点B的反比例函数和过A,C两点的一次函数的表达式.(2)动点P在射线CA(不包括C点)上,过点P作直线l⊥x轴,交反比例函数图像于点D.是否存在这样的点Q,使得以点B,D,P,Q为顶点的四边形为菱形?若存在,求出点Q的坐标;若不存在,请说明理由.23.(2022春·浙江嘉兴·八年级统考期末)如图,经过坐标原点O的直线交反比例函数的图象于点,B.点C是x轴上异于点O的动点,点D与点C关于y轴对称,射线交y轴于点E,连结,,.(1)①写出点B的坐标.②求证:四边形是平行四边形.(2)当四边形是矩形时,求点C的坐标.(3)点C在运动过程中,当A,C,E三点中的其中一点到另两点的距离相等时,求的值.24.(2022春·浙江湖州·八年级统考期末)如图一次函数y=kx+b的图像与反比例函数的图像交于点A(2,5)和点B(n,2).(1)求m,n的值;(2)连接OA,OB,求△OAB的面积.25.(2022春·浙江舟山·八年级统考期末)背景:点A在反比例函数的图象上,轴于点B,轴于点C,分别在射线上取点D,E,使得四边形为正方形.如图1,点A在第一象限内,当时,小李测得.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请有助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了时“Z函数”的图象.①求这个“Z函数”的表达式.②补画时“Z函数”的图象,并写出这个函数的性质(两条即可).26.(2022春·浙江温州·八年级统考期末)如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为的矩形劳动基地,边的长不超过墙的长度,在边上开设宽为1m的门(门不需要消耗篱笆).设的长为(m),的长为(m).(1)求关于的函数表达式.(2)若围成矩形劳动基地三边的篱笆总长为10m,求和的长度(3)若和的长都是整数(单位:m),且围成矩形劳动基地三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案.27.(2022春·浙江衢州·八年级统考期末)如图1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压强与受力面积的关系如下表所示:桌面所受压强P(Pa)400受力面积S()0.5根据表中数据,求出压强()的函数表达式及10cm,且与原长方体相同重量的长方体放置于该水平28.(2022春·浙江杭州·八年级统考期末)在探究欧姆定律时,小明发现小灯泡电路上的电压保持不变,通过小灯泡的电流越大,灯就越亮.设选用小灯泡的电阻为,通过的电流强度为.(1)若电阻为,通过的电流强度为,求关于的函数表达式.(2)如果电阻小于,那么与原来的相比,小灯泡的亮度将发生什么变化?参考答案:1.B【分析】根据翻折变换的性质,可得AE=AB=5,DE=BD;然后设点D的坐标是(10,b),在Rt△CDE 中,根据勾股定理,求出CD的长度,进而求出k的值.【详解】解:∵△ABD沿AD折叠,使点B恰好落在OC边上点E处,点B(10,8),∴AE=AB=10,DE=BD,∵AO=8,AE=10,∴OE==6,CE=10﹣6=4,设点D的坐标是(10,b),则CD=b,DE=8﹣b,∵CD2+CE2=DE2,∴b2+42=(8﹣b)2,解得b=3,∴点D的坐标是(10,3),∵反比例函数的图象经过点D,∴k=10×3=30,故选:B.【点睛】本题考查了求反比例函数的解析式,同时也考查了矩形的翻折问题.须熟练掌握待定系数法求反比例函数的解析式,轴对称的性质.其中求点D的坐标是解题的关键.2.B【分析】利用代入法,把坐标一一代入反比例函数解析式,即可得出结果.【详解】解:A.把代入反比例函数,可得:,故该选项不符合题意;B.把代入反比例函数,可得:,故该选项符合题意;C.把代入反比例函数,可得:,故该选项不符合题意;.把代入反比例函数,可得:,故该选项不符合题意.故选:B【点睛】本题考查了反比例函数的定义及解析式,解本题的关键在充分利用反比例函数解析式进行分【详解】解:设该反比例函数的表达式是,把点代入得:,解得:,∴该反比例函数的表达式是.故选:【点睛】本题主要考查了求反比例函数解析式,熟练掌握待定系数法求函数解析式是解题的关键.【分析】根据,判断反比例函数的图象所在位置,结合图象分析函数增减性,利用函数增减性比较自变量的大小.∵,反比例函数(当时,,故选:D.【点睛】本题考查反比例函数的自变量大小的比较,解题的关键是结合图象,根据反比例函数的增减性分析自变量的大小.=,代入点求出即可.【详解】解:设反比例函数解析式为=,-4=,所以这个反比例函数解析式为=-.【点睛】本题主要考查待定系数法求反比例函数解析式,求反比例函数解析式只需要知道其图像上一点的【分析】已知反比例函数的解析式为,根据系数)再结合已知条件求解即可;【详解】解:如图,设点,因为点B在反比例函数的图象上,所以设点,),)−=m2−2=n−(=−m mn=−(BAD=8.【点睛】本题考查了反比例函数系数的几何意义、等腰三角形的性质以及面积公式,解题的关键是掌握反比例函数系数的几何意义.【分析】根据反比例函数经过第一、三象限,可知,据此作答即可.反比例函数的图象位于第一、三象限,∴,解得:,故选:C.函数的(当时,反比例函数的(当时,反比例函数的()的图象经过二、四象限.【详解】解:将点()代入反比例函数得,==3点睛:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标符合函数的解【分析】过点作轴于.根据代入即可求得的值.【详解】如图,过点作轴于.代入得:由反比例函数比例系数的几何意义,可得,.∵,∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2.【分析】先确定的图像在一,三象限,且在每一象限内,随的增大而减小,再利用反比例函数的性质可得答案.【详解】解:>的图像在一,三象限,且在每一象限内,随的增大而减小,><故答案为:【点睛】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的【分析】由等腰三角形的性质可得,即点C的纵坐标得出,进而利用全等三角形得出点,利用反比例函数图象上点的坐标特征得出点E的纵坐标,再利用三角形的面积可得【详解】解:如图,过点作轴,交于点作轴,垂足为∵,∴,由于点A、点C在反比例函数的图象上,可设点,即,,∴,∴点,即,∴,∴,在和中,,∴,∴,∴点E的横坐标为,在反比例函数的图象上,的纵坐标为,即,∵,即,∴,∴,故答案为:6.【点睛】本题考查反比例函数图象上点的坐标特征,以及一次函数与反比例函数的交点坐标,利用坐标表【分析】求出的直线解析式,联立,求出,,过点作交于点,交于点,则,,分别求出,,,,即可求,,再求即可.【详解】解:设的解析式为,,,,联立,解得,,,过点作交于点,交于点,,,,,,,,,,故答案为:1.【点睛】本题考查反比例函数的图象及性质,解题的关键是熟练掌握反比例函数的图象及性质.,∴△CMO≌△EMF(AAS)∴,∴,则ab=12,=,=k =12故答案为【点睛】本题考查待定系数法求反比例函数,矩形的性质和全等三角形的性质和判定,不规则图形面积,【分析】向下平移个单位后得到直线,可得到的函数表达式,将点A分别作轴得垂线,与y轴交于点P,则,即可求的坐标,最后将点的坐标代入反比例函数的表达式,求出k即可.∵向下平移个单位后得到直线直线=0代入得;y=,)的横坐标为m,则,)的横坐标为,)AP=m,CQ=n,PQ=-()= PB==,BQ=====∵的面积为∴==(,4(,)代入解得:k=6=四边形OACB=BC∴,∵∴,∴,∴k=12,.【分析】过点,分别做轴的垂线,交于点,,令长为,根据直角三角形的性质,勾股定理,得,,,的值,得到点,点的坐标;将点的坐标代入,点的坐代入标,求出,,即可.【详解】如图,过点,分别做轴的垂线,交于点,,设长为∴在,中,∴,∴∴∴在,中,∴;∴;∴,∴,∴故答案为:.反比例函数解析式为(2)【分析】()首先设反比例函数解析式为,然后把,代入反比例函数,即可得出)中反比例函数解析式,把代入解析式,即可得出)解:设反比例函数解析式为,把,代入反比例函数解析式,可得:,反比例函数解析式为.)可得:,当时,函数值是,∵当时,,∴,解得:.【点睛】本题考查了用待定系数法求反比例函数表达式、反比例函数的定义,解本题的关键在正确求出反比例函数表达式.),;)或;)或【分析】(1)先由点A(1,)在反比例函数图象上求解反比例函数的解析式,再求解的坐标代入一次函数的解析式,求解一次函数的解析式即可;)先求解设点,可得)结合函数图象,根据一次函数的图象在反比例函数的图象的下方,从而可得答案)=(反比例函数的解析式为:)代入可得:把代入y1=(k≠0),解得:所以一次函数的解析式为:)令则则设点,解得:或或(3)kx+b﹣<0,所以一次函数值小于反比例函数值,即一次函数的图象在反比例函数图象的下方,所以或【点睛】本题考查的利用待定系数法求解一次函数与反比例函数的图象,坐标与图形的面积,利用函数图(1),(2)或(3)或【分析】(1)将点A坐标代入反比例解析式求出解析式求出n的值,确定出点)代入反比例解析式得:,,∴反比例解析式为,)代入反比例解析式得:,∴,∴B(-3,)代入中,得:,解得:,一次函数解析式为;)解:由图象得:一次函数值大于反比例函数值的的取值范围为或;)解:对于一次函数,令,得到,即0),∴.∵的面积等于的面积,,,∵点是轴上的点,∴设点P(∴,解得,.∴或.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22.(1),存在,Q点的坐标为(5,-)或(-)或(,)根据题意分别求出A点和C点的坐标,然后用待定系数法求出函数解析式即可;点和D点的坐标,分点在直线BA=,3=,的反比例函数的解析式为=,点坐标得,,解得,A,C两点的一次函数的表达式为=-x)解:存在,(m,-m,)若以点B,为顶点的四边形为菱形则点∴-(-m+3=,整理得,解得=或,经检验,m的值是方程的解,=时,=--m==此时Q5,3-),Q(5-);=时,=-(-m==此时(5,3-),Q(5-);B,D,P,,且=3=,经检验,m的值是方程的解,,=,(,综上所述,若以点-)或(-)或(,3【点睛】本题主要考查反比例函数的综合题,熟练掌握待定系数法求解析式,一次函数的性质,反比例函数的性质,菱形的性质,解一元二次方程等知识是解题的关键.23.(1);证明见解析(2)(3)或或【分析】(1)①根据反比例函数图象是中心对称图形可得点②根据中心对称的性质可得正比例函数与反比例函数的图象于点,∴;②∵点A、∴OA=OB,∵,∴,∴,∴;(3)当点E作AH⊥x轴于∴,∴,∵,∴点D与H重合,∴,∴,当点A为CE的中点时,如图,则,同理可得,∴,∵四边形ACBD是平行四边形,∴,∴,∴,当点C为AE的中点时,,则,,由勾股定理得,∴,综上:或或.【点睛】本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的判定,矩形的性质,三角形中位线定理等知识,熟练掌握反比例函数图象是中心对称图形是解题的关键,同时注意分类讨论思想的运用.(2)【分析】2)利用待定系数法求得一次函数的解析式,即可求得直线与)代入中,得到y,y中,得到=5;)解:如图所示:∴,解得,∴一次函数为+7,令y=0,则﹣0,解得∴C(7,0),BOC.【点睛】本题考查待定系数法确定函数关系式以及平面直角坐标系下三角形面积,掌握待定系数法以及坐①;而增大.,,=(A(∴;②图象如图:性质1:x>0时,y随x的增大而增大;性质2:x<0时,y随x的增大而增大.【点睛】此题考查待定系数法求反比例函数解析式,画函数图象,函数的性质,熟练掌握各知识点并应用解决问题是解题的关键.26.(1)(2)(3)或,进而可得出:;均为整数,围成矩形劳动基地三边的篱笆总长小于10m,可得出∴.又∵墙长为∴,∴.∴y关于的函数表达式为:.)解:依题意得:,∴或,∵,∴,∴;(3)解:依题意得:,,∴,∵和的长都是正整数,∴或,∴则满足条件的围建方案为:或【点睛】本题考查了根据实际问题列出反比例函数关系式,根据各数量之间的关系,找出关系式以及根据x(1),这种摆放方式不安全,理由见解析()的函数表达式为,)代入得:,)关于受力面积S()的函数表达式为,时,,)解:这种摆放方式不安全,理由如下:=0.1×0.2=0.02()将长方体放置于该水平玻璃桌面上的压强为,(1)小灯泡的亮度将变亮【分析】(1)根据题意列出关系即可求解;电压不变,,∴,;(2),,随的增大而减小,若电阻小于,那么与原来的相比,小灯泡的亮度将变亮.【点睛】本题考查了反比例函数的应用,根据题意列出函数关系式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习方法报 全新课标理念,优质课程资源
第 1 页 共 1 页 比例系数的几何意义作用大
如图1,过双曲线上任一点P 作x 轴,y 轴的垂线PM ,PN ,所得矩形PMON 的面积为:S=PM ·PN=|y|·|x|=|xy|. 又因为y=k x
,所以xy=k ,所以S=|k|.即过双曲线上任意一点作x 轴,y 轴的垂线,所得的矩形的面积为|k|.这就是比例系数k 的几何意义.如图1所示,若连接OP ,则易得△POM 的面积S=
12k . 在解题中如果能合理地利用比例系数k 的几何意义,便可以迅速解
决有关图形面积的问题.现撷取两例解析如下,供同学们参考.
一、确定表达式
例1如图2,已知点A 在反比例函数图象上,AM ⊥x 轴于点M ,且△AOM
的面积为1,则反比例函数的表达式为 .
解析:根据反比例函数系数k 的几何意义,知S=12|k|.根据题意,有12
|k|=1,即|k|=2,得k =±2.又因为反比例函数的图象在第二、四象限,所以k <0,因此k=-2.所以这个反比例函数的表达式是2=y x
. 二、确定图形面积
例2如图3,点A 在双曲线y=1x 上,点B 在双曲线y=3x
上,且AB ∥x 轴,点C ,D 在x 轴上,若四边形ABDC 为矩形,则它的面积为_________. 解析:延长BA 交y 轴于点E.因为AB ∥x 轴,所以有BE ⊥y 轴.
因为点A 在双曲线y=1x
上,根据反比例函数系数k 的几何意义,知矩形AEOD 的面积为|1|=1.同理可得矩形BEOC 的面积为|3|=3.
所以矩形ABDC 的面积=矩形BEOC 的面积-矩形AEOD 的面积=3-1=2.
牛刀小试
(2013·宜昌)如图4,点B 在反比例函数y=(x >0)的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A ,C ,则矩形OABC 的面积为( )
A.1
B.2
C.3
D.4
参考答案:B
图1 图2 图3 图4。

相关文档
最新文档