。2018年云南省玉溪市高考数学模拟试卷(01)

合集下载

2018年云南省玉溪市高考数学模拟试卷(01)

2018年云南省玉溪市高考数学模拟试卷(01)

.2018 年云南省玉溪市高考数学模拟试卷(01)一、选择题(本大题共10 小题.每题 5 分.共 50 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.(5 分)会合 A={ x|| x| ≤4,x∈ R} ,B={ x| ( x+5)( x﹣a)≤ 0} ,则“A? B”是“a> 4”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件2.(5 分)以下命题中, m,n 表示两条不一样的直线,α、β、γ表示三个不一样的平面.①若 m⊥α, n∥α,则 m⊥ n;②若α⊥γ,β⊥γ,则α∥β;③若 m∥α, n∥α,则 m∥ n;④若α∥β,β∥γ, m⊥α,则 m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④3.(5 分)由曲线 y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4C.D.64.(5 分)已知等比数列 { a n} 公比为 q,其前 n 项和为 S n,若 S3、S9、 S6成等差数列,则 q3等于()A.﹣B.1C.﹣或1 D.﹣1或5.(5 分)以下图是某次考试对一道题评分的算法框图,此中x1,x2,x3为三个评阅人对该题的独立评分, p 为该题的最后得分,当x1=6,x2=9,p=8.5 时, x3等于()A.11 B.10 C.8D.76.(5 分)图是函数 y=Asin(ωx+φ)(x∈R)在区间上的图象,为了获得这个函数的图象,只需将y=sinx( x∈R)的图象上全部的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到本来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到本来的 2 倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到本来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到本来的 2 倍,纵坐标不变7.(5 分)若存在实数x∈[ 2,4] ,使 x2﹣ 2x+5﹣ m<0 成立,则 m 的取值范围为()A.(13, +∞) B.(5,+∞)C.(4,+∞)D.(﹣∞, 13)8.(5 分)已知奇函数f(x)在 [ ﹣1,0] 上为单一递减函数,又α,β为锐角三角形两内角,以下结论正确的选项是()A.f (cos α)> f(cos β)B.f(sin α)> f( sin β)C.f(sin α)> f( cos β)D. f(sin α)< f(cos β)9.( 5 分)△ABC所在平面上一点P知足+ + =,则△ PAB的面积与△ ABC的面积比为()A.2:3B.1:3C.1:4D.1:610.( 5 分)如图下边的四个容器高度都同样,将水冷静器顶部一个孔中以同样的速度注入此中,注满为止.用下边对应的图象显示该容器中水面的高度h 和时间 t 之间的关系,此中不正确的有()A.1 个 B.2 个 C.3 个 D.4 个二、填空题(本大题共 5 个小题,每题 5 分,共 25 分.把答案填写在题中横线上)11.( 5 分)已知命题p:“存在 x ∈ ,使x+2x+1+m=0”,若“非 p”是假命题,则实R4数 m 的取值范围是..(分)若>,则函数2﹣ax+1 在区间(0,2)上恰巧有个12 5 a 3f(x)=x零点.13.( 5 分)已知函数 f (x) =lnx,0<a<b<c<1,则,,的大14.(5 分)已知整数的序列以下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)⋯第 57 个数是.15.( 5 分)如是一个几何体的三,依据中的数据,可得几何体的体是.三、解答(本大共 6 小,共 75 分.解答写出文字明、明程和演算步)16.( 12 分)已知α∈(0,π)且 cos(α )=.求cosα17.( 12 分)已知向量=3i 4j,=6i 3j,=( 5 m )i( 3+m)j,此中 i,j 分是平面直角坐系内x 与 y 正方向上的位向量.( 1)若点 A, B, C 能组成三角形,求数m 足的条件;( 2)随意 m∈[ 1,2] ,不等式2≤ x2+x+3恒成立,求x的取范.18.( 12 分)列加速能够提升路运量.列运转,前后两必要保持一个“安全隔距离d(千米)”,“安全隔距离 d(千米)”与列的速度 v(千米 / 小)的平方成正比(比率系数 k=).假全部的列度 l 均 0.4千米,最大速度均 v0(千米 / 小).:列速多大,位流量 Q=最大?19.( 12 分)如, a 的正方体 1 1 1 1 中,ECC1的中点.ABCD ABCD(1)求直 A1E 与平面 BDD1B1所成的角的正弦(2)求点 E 到平面 A1DB 的距离.20.( 13 分)在数列 { a n} 中, a1=1,a n=n2[ 1+ + +⋯+] (n≥2,n∈N)( 1)当 n≥2 ,求:=( 2)求:(1+)(1+)⋯(1+)<4.21.( 14 分)已知函数 f (x)=(x2+ax 2a 3) ?e3﹣x(a∈ R);(1) f(x)的性;(2) g( x) =(a2+ )e x( a> 0),若存在( a> 0),x1, x2∈ [ 0, 4] 使得 | f( x1)﹣ g(x2) | <1 成立,求 a 的取值范围.2018 年云南省玉溪市高考数学模拟试卷(01)参照答案与试题分析一、选择题(本大题共10 小题.每题5 分.共50 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.(5 分)会合 A={ x|| x| ≤4,x∈ R} ,B={ x| ( x+5)( x﹣a)≤ 0} ,则“A? B”是“a> 4”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件【解答】解:会合 A={ x|| x| ≤ 4, x∈R} ={ x| ﹣ 4≤ x≤4} , B={ x| (x+5)( x﹣ a)≤ 0} ,由 A? B,可得 B≠?,即有( 5﹣4)(﹣ 4﹣a)≤ 0 且( 5+4)(4﹣a)≤0,解得 a≥4,则则“A?B”是“a>4”的必需不充足条件,应选 B.2.(5 分)以下命题中, m,n 表示两条不一样的直线,α、β、γ表示三个不一样的平面.①若 m⊥α, n∥α,则 m⊥ n;②若α⊥γ,β⊥γ,则α∥β;③若 m∥α, n∥α,则 m∥ n;④若α∥β,β∥γ, m⊥α,则 m⊥γ.正确的命题是()A.①③B.②③C.①④D.②④【解答】解:由题意, m, n 是两条不一样的直线,α,β,γ是三个不一样的平面观察①选项,此命题正确,若m⊥α,则 m 垂直于α中全部直线,由n∥α,知m⊥ n;观察②选项,此命题不正确,因为垂直于同一平面的两个平面的地点关系是平行或订交;观察③选项,此命题不正确,因为平行于同一平面的两条直线的地点关系是平行、订交或异面;观察④选项,此命题正确,因为α∥β,β∥γ,所以α∥γ,再由 m⊥α,获得 m ⊥γ.应选 C.3.(5 分)由曲线 y=,直线y=x﹣2及y轴所围成的图形的面积为()A.B.4C.D.6【解答】解:联立方程获得两曲线的交点(4,2),所以曲线 y=,直线y=x﹣2及y轴所围成的图形的面积为:S=.应选 C.4.(5 分)已知等比数列 { a n} 公比为 q,其前 n 项和为 S n,若 S3、S9、 S6成等差数列,则 q3等于()A.﹣B.1C.﹣或1 D.﹣1或【解答】解:若 S3、S9、 S6成等差数列,则 S3+S6=2S9,若公比 q=1,则 S3=3a1, S9=9a1,S6=6a1,即3a1+6a1=18a1,则方程不可立,即 q≠1,则=,即1﹣q3+1﹣q6=2﹣2q9,即 q3+q6=2q9,即 1+q3=2q6,即 2(q3)2﹣q3﹣ 1=0,解得 q3=,应选: A.5.(5 分)以下图是某次考试对一道题评分的算法框图,此中x1,x2,x3为三个评阅人对该题的独立评分, p 为该题的最后得分,当x1=6,x2=9,p=8.5 时, x3等于()A.11 B.10 C.8D.7【解答】解:依据框图的流程,当输入x1,2时,不知足1﹣x2| =3<2,=6 x =9| x当输入 x3<7.5 时,知足 | x3﹣x1| <| x3﹣x2| ,则履行 x2=x3.输出 P==8.5?x3=11(舍去);当输入 x3≥7.5 时,不知足 | x3﹣ x1| <| x3﹣x2| ,则履行 x1 3,输出 P==8.5=x3=8.? x应选: C.6.(5 分)图是函数 y=Asin(ωx+φ)(x∈R)在区间上的图象,为了获得这个函数的图象,只需将 y=sinx( x∈R)的图象上全部的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到本来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到本来的 2 倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到本来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到本来的 2 倍,纵坐标不变【解答】解:由图象可知函数的周期为π,振幅为 1,所以函数的表达式能够是 y=sin(2x+φ).代入(﹣, 0)可得φ的一个值为,故图象中函数的一个表达式是y=sin( 2x+),即 y=sin2( x+),所以只需将 y=sinx(x∈ R)的图象上全部的点向左平移个单位长度,再把所得各点的横坐标缩短到本来的倍,纵坐标不变.应选 A.7.(5 分)若存在实数x∈[ 2,4] ,使 x2﹣ 2x+5﹣ m<0 成立,则 m 的取值范围为()A.(13, +∞) B.(5,+∞)C.(4,+∞)D.(﹣∞, 13)【解答】解:存在实数 x∈[ 2,4] ,使 x2﹣2x+5﹣m<0 成立,等价于 x∈[ 2,4] ,m>( x2﹣2x+5)min.令 f( x)=x2﹣2x+5=(x﹣1)2+4∴函数的图象张口向上,对称轴为直线x=1∵x∈[ 2,4] ,∴x=2 时, f (x)min=f( 2) =22﹣2× 2+5=5∴m>5应选: B.8.(5 分)已知奇函数f(x)在 [ ﹣1,0] 上为单一递减函数,又α,β为锐角三角形两内角,以下结论正确的选项是()A.f (cos α)> f(cos β)B.f(sin α)> f( sin β)C.f(sin α)> f( cos β)D. f(sin α)< f(cos β)【解答】解:∵奇函数 y=f( x)在 [ ﹣ 1,0] 上为单一递减函数∴f(x)在 [ 0,1] 上为单一递减函数,∴f(x)在[ ﹣1,1] 上为单一递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴>α>﹣β> 0,∴ 1> sin α>sin(﹣β)=cosβ>0,∴f(sin α)< f(cosβ),应选: D.的面积比为()A.2:3B.1:3C.1:4D.1:6【解答】解:以下图,∵点P 知足+ + =,∴=,∴.∴△ PAB的面积与△ ABC的面积比 =AP:AC=1:3.应选: B.10.( 5 分)如图下边的四个容器高度都同样,将水冷静器顶部一个孔中以同样的速度注入此中,注满为止.用下边对应的图象显示该容器中水面的高度h 和时间 t 之间的关系,此中不正确的有()A.1 个 B.2 个 C.3 个 D.4 个【解答】解: A、因正方体的底面积是定值,故水面高度的增添是平均的,即图象是直线型的,故 A 不对;B、因几何体下边窄上边宽,且同样的时间内注入的水量同样,所以下边的高度增添的快,上边增添的慢,即图象应愈来愈缓和,故 B 正确;C、球是个对称的几何体,下半球因下边窄上边宽,所以水的高度增添的愈来愈慢;上半球恰相反,所以水的高度增添的愈来愈快,则图象先缓和再变陡;故C 正确;D、图中几何体两端宽、中间窄,所以水的高度增添的愈来愈慢后再愈来愈慢快,则图象先缓和再变陡,故 D 正确.应选 A.二、填空题(本大题共 5 个小题,每题 5 分,共 25 分.把答案填写在题中横线上)11.( 5 分)已知命题 p:“存在 x∈R,使 4x+2x+1+m=0”,若“非 p”是假命题,则实数 m 的取值范围是(﹣∞,0).【解答】解:∵命题 p:“存在 x∈ R,使 4x+2x+1+m=0”,∴p 为真时, m=﹣( 2x)2﹣2×2x,存在 x∈R 成立∴m 的取值范围是: m< 0又∵非 p”是假命∴p 是真命∴m∈(∞, 0)故答案:(∞, 0)>,函数2 ax+1 在区( 0,2)上恰巧有 1个12.( 5 分)若 a 3f( x)=x零点.【解答】解:当 a> 3 ,因为次二次函数f(x)=x2ax+1,可得 f( 0) =1>0,f(2)=5 2a<0,即 f( 0) f(2)< 0,故函数 f(x)=x2ax+1 在区( 0,2)上恰巧有一个零点,故答案: 1.13.( 5 分)已知函数 f (x) =lnx,0<a<b<c<1,,,的大小关系是<<.【解答】解:函数 f (x) =lnx,0<a<b<c<1,g(x) ==,g′( x)=,可得 0<x<e , g′(x)> 0,g(x)增,由 0<a<b<c< 1,可得g(a)< g(b)< g( c),即<<.故答案:<<.14.(5 分)已知整数的序列以下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2),(4,1),(1,5),(2,4)⋯第 57 个数是(2,10).【解答】解:(1,1),两数的和 2,共 1 个,(1, 2),(2,1),两数的和 3,共 2 个,(1, 3),(2,2),(3,1),两数的和 4,共 3 个,(1, 4),(2,3),(3,2),(4,1),两数的和 5,共 4 个⋯∵1+2+3+4+5+6+7+8+9+10=55,∴第 57 个数在第 11 之中的第 2 个数,进而两数之和 12,( 2,10);故答案:( 2,10).15.( 5 分)如是一个几何体的三,依据中的数据,可得几何体的体是2.【解答】解:由三原原几何体如,几何体五面体ABCDEF,此中面 ABCD等腰梯形, EF∥BC∥AD,EF在平面 ABCD上的射影在梯形ABCD的中位上,分 E、 F 作 BC、 AD 的垂,把原几何体切割两个四棱及一个三棱柱,几何体的体V=.故答案: 2.三、解答(本大共 6 小,共 75 分.解答写出文字明、明程和演算步)16.( 12 分)已知α∈(0,π)且 cos(α )=.求cosα【解答】解:∵α∈( 0,π),∴,又,∴,∴=.17.( 12 分)已知向量=3i 4j,=6i 3j,=( 5 m )i( 3+m)j,此中 i,j 分是平面直角坐系内x 与 y 正方向上的位向量.( 1)若点 A, B, C 能组成三角形,求数m 足的条件;( 2)随意 m∈[ 1,2] ,不等式2≤ x2+x+3恒成立,求x的取范.【解答】解:( 1)依意,以 O 坐原点成立直角坐系,A( 3,4),B.(6, 3), C( 5 m, 3 m),∵ A, B,C 能组成三角形,A、B、C 三点不共,若 A、B、C 三点共,=t ? ( 3, 1) =t(2 m,1 m),即,解得;∴当 m≠,A,B,C能组成三角形;(2)∵ =(2 m, 1 m), m∈[ 1, 2] ,∴2=(2 m )2+(1 m)2=2m2 6m+5=2(m)2+,其称m=,当 m∈[ 1, ] ,函数减,当 m∈ [ , 2] ,函数增,∴当 m=1 或 m=2 , 2 获得最大1.∵ 随意 m∈[ 1,2] ,不等式2≤ x2+x+3恒成立,∴ x2+x+3≥=1,即 x2 x 2≤0,解得:1≤ x≤2.∴ x 的取范 [ 1,2] .18.( 12 分)列加速能够提升路运量.列运转,前后两必要保持一个“安全隔距离d(千米)”,“安全隔距离 d(千米)”与列的速度 v(千米 / 小)的平方成正比(比率系数k=).假全部的列度l 均 0.4 千米,最大速度均 v0(千米 / 小).:列速多大,位流量Q=最大?【解答】解:因,所以⋯(4分)≥2 = ,当且当 v=40 取等号;当 v0≥40 , Q≤ 50,所以 v=40,Q max=50⋯(8 分).当 0<v0<40 ,⋯(12 分)19.( 12 分)如, a 的正方体 ABCD A1B1C1D1中, E CC1的中点.(1)求直 A1E 与平面 BDD1B1所成的角的正弦(2)求点 E 到平面 A1DB 的距离.【解答】解:以 DA、 DC、DD1所在的直分x 、 y 、 z ,成立空直角坐系如,D(0,0,0),A(a,0,0). B( a, a, 0),C(0,a,0), E( 0, a,),A1( a, 0, a).⋯(3 分)( 1)直 A1E 与平面 BDD1B1所成的角α.因 AC⊥平面 BDD1 B1,所以平面 BDD1B1的法向量,又.,所以s.⋯(6分)( 2)=( x,y,1)平面 A1DB 的法向量,∵,∴x= 1,y=1⋯(8 分)∴又⋯(11分)即点 E 到平面 A1DB的距离.⋯(12 分).(分)在数列n}中,a1, n 2[ 1++ +⋯+] (n≥2,n∈N)20 13{ a=1 a =n( 1)当 n≥2 ,求:=( 2)求:(1+)(1+)⋯(1+)<4..【解答】(1)明:当 n≥ 2 ,,⋯(1分)所以⋯(4 分)故⋯(5 分)(2)明:当n≥2,⋯(6 分)=⋯(8 分)=⋯(10 分)=.⋯(11 分)当 n=1 ,⋯(12分)上所述,随意n∈N*,不等式都成立.⋯(13 分)21.( 14 分)已知函数 f (x)=(x2+ax 2a 3) ?e3﹣x(a∈ R);(1) f(x)的性;(2) g( x) =(a2+ )e x( a> 0),若存在( a> 0),x1, x2∈ [ 0, 4] 使得 | f(x1) g(x2) | <1 成立,求 a 的取范.【解答】.解:( 1) f'( x) = [ x2+(a 2) x 3a 3] e3﹣x=( x 3)(x+a+1)e3﹣ x由 a 1=3 得 a= 4,当 a= 4 , f ′( x)=( x 3)2e3﹣x≤0,此函数在(∞, +∞)上减函数,当 a< 4 , a 1>3,由 f'(x)< 0? x<3 或 x> a 1,f'(x)> 0? 3<x< a 1..∴f(x)单一减区间为(﹣∞, 3),(﹣ a﹣1,+∞),单一增区间为( 3,﹣ a﹣1).当 a>﹣ 4 时,﹣ a﹣1<3,f'(x)< 0? x>3 或 x<﹣ a﹣1,f'(x)> 0? ﹣ a﹣1<x<3.∴ f(x)单一减区间为(﹣∞,﹣ a﹣1),(3,+∞),单一增区间为(﹣ a﹣1,3).(2)由( 1)知,当 a>0 时,﹣ a﹣1<0,f(x)在区间 [ 0,3] 上的单一递加,在区间 [ 3,4)] 单一递减,而 f (0)=﹣( 2a+3)e3< 0, f( 4)=(2a+13)e﹣1>0, f(3)=a+6.那么 f (x)在区间 [ 0,4] 上的值域是 F=[ ﹣( 2a+3)e3, a+6]又 g( x)=(a2+)e x(a>0),在[ 0,4]上是增函数,对应的值域为G=[ a2+,( a2+)e4],3224 ∵ a> 0,∴﹣( 2a+3)e < a+6≤a + <( a + )e ,若存在( a>0),x1,x2∈ [ 0,4] 使得 | f( x1)﹣ g(x2) | < 1 成立,只需要 g min(x)﹣ f max(x)< 1,∴ a2+﹣a﹣6<1,得4a2﹣4a﹣3<0,得﹣<a<∵a> 0,∴ 0< a<∴ a 的取值范围为( 0,).14页。

2018年云南省玉溪市高考一模数学试卷(理科)【解析版】

2018年云南省玉溪市高考一模数学试卷(理科)【解析版】

A.
B.
第 2 页(共 22 页)
C.
D.
11.(5 分)双曲线 C: ﹣ =1(a>0,b>0)的左右焦点分别为 F1(﹣c,
0),F2(c,0),M,N 两点在双曲线上,且 MN∥F1F2,|F1F2|=2|MN|,线段 F1N 交双曲线 C 于点 Q,且|F1Q|= |F1N|,则双曲线的离心率为( )

14.(5 分)在( ﹣2x2)5 的展开式中,x2 的系数是

15.(5 分)已知抛物线 y2=2px(p>0)的焦点为 F,过点 F 且斜率为 的直线
l 与该抛物线分别交于 A,B 两点,(点 A 在第一象限),若 = ,则 λ


16.(5 分)已知各项均为正数的数列{an}的前 n 项和为 Sn,且点(an,4Sn)在
(Ⅰ)求证:直线 PA∥平面 MFE; (Ⅱ)若二面角 P﹣AD﹣C 的大小为 60°,求直线 PE 与平面 MFE 所成角的余
弦值.
第 4 页(共 22 页)
20.(12 分)已知圆 C:x2+(y+ )2=16,点 A(0, ),P 是圆上任意一点, 线段 AP 的垂直平分线交 CP 于点 Q,当的 P 在圆上运动时,点 Q 的轨迹为曲 线 E,直线 l:y=kx+m 与 y 轴交于点 D,与曲线 E 交于 M,N 两个相异点,
证明:t<2.
请考生在 22.23 两题中任选一题作答,如果多做,则按所做第一题计分,[选修
=3,c=2 ,则 sinC=( )
A.
B.
C.
D.1
8.(5 分)如图所示的程序框图是数学史上有名的“冰雹猜想”,它蕴含着一个 规律,即任意正整数 n,按照改程序运行,最终都会变为 4﹣2﹣1 循环,若输 入 i=0,试求输入 n 分别为 5 和 6,则输出的 i 分别为( )

2018年云南省玉溪市高中毕业班复习检测理科数学试题及

2018年云南省玉溪市高中毕业班复习检测理科数学试题及

云南省玉溪市2018年高中毕业班复习检测数学(理)试题 第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合22={x|1og (1)0},|0,2xS x T x x ⎫-⎧+>=<⎨⎬+⎩⎭则S T 等于 A .(-1,2) B .(0,2) C .(1,)-+∞ D .(2,+∞)2.复数3(2i i i i-为虚数单位)的虚部是 A .15iB .15C .-15iD .-153.函数()sin ,()f x x x x R =+∈A .是偶函数,且在(,)-∞+∞上是减函数B .是偶函数,且在(,)-∞+∞上是增函数C .是奇函数,且在(,)-∞+∞上是减函数D .是奇函数,且在(,)-∞+∞上是增函数4.若等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,那么a 2= A .-6 B .6C .-8D . 85.如果执行右边的框图,输入N=5,则输出的数为( ) A .74 B .65C .95D .1166.已知变量x ,y 满足约束条件21,1y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( ) A .12B .11C .3D .-17.若一个棱锥的三视图如右图所示,则它的体积为( ) A .12B .32C .1D .138.已知△ABC 和点M 满足0MA MB MC ++=若存在实数m 使得AB AC mAM+=成立,则m= A .2B .3C .4D .5 9.设函数()sin ()3f x x x R π⎛⎫=+∈ ⎪⎝⎭,则()f x( )A .在区间[,]2ππ--上是减函数 B .在区间27[,]36ππ上是增函数 C .在区间[,]84ππ上是增函数D .在区间5[,]36ππ上是减函数10.已知命题p :函数2()21(0)f x ax x a =--≠在(0,1)内恰有一个零点;命题q :函数2a y x -=在(0,)+∞上是减函数若p 且q ⌝为真命题,则实数a 的取值范围是( )A . 1a >B .a ≤2C . 1<a ≤2D .a ≤l 或a>211.从1、2、3、4、5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有( ) A .51个B .54个C .12个D .45个12.设P 为椭圆上一点,且∠PF1F 2=30°,∠PF 2F 1=45°,其中F 1,F 2为椭圆的两个焦点,则椭圆的离心率e 的值等于( )A .(22+B .(21)2+C .(22+D .(21)2第II 卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分 13.若(n的展开式中各项系数之和为64,则展开式的常数项为 。

云南省玉溪市普通高中毕业班2018届高考数学一轮复习模拟试题11含答案

云南省玉溪市普通高中毕业班2018届高考数学一轮复习模拟试题11含答案

一轮复习数学模拟试题11满分150分,时间120分钟.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有 一项是符合题目要求的. 1 若复数,i 为虚数单位)是纯虚数,则实数a 的值为A 6B -6C 5D -4 2 函数的图像大致是3. m 、n 是不同的直线,α、β、γ是不同的平面,有以下四命题: ① 若γαβα//,//,则γβ//; ②若αβα//,m ⊥,则β⊥m ; ③若βα//,m m ⊥,则βα⊥; ④若α⊂n n m ,//,则α//m . 其中真命题的序号是 ( )A .①③B .①④C .②③D .②④ 4.设函数()3)sin(2)(||)2f x x x πϕϕϕ=+++<,且其 图象关于直线0x =对称,则( )A.()y f x =的最小正周期为π,且在(0,)2π上为增函数 B 。

()y f x =的最小正周期为π,且在(0,)2π上为减函数C 。

()y f x =的最小正周期为2π,且在(0,)4π上为增函数D 。

()y f x =的最小正周期为2π,且在(0,)4π上为减函数5.如右图,若程序框图输出的S 是126,则判断框①中应为 ( )A .?5≤nB .?6≤nC .?7≤nD .?8≤n6.若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,(),f x x =则方程3()log||f x x =的解个数是 ( )A .0个B .2个C .4个D .6个 7.若{}na 是等差数列,首项公差0d <,10a>,且201320122013()0a a a +>,则使数列{}n a 的前n 项和0nS>成立的最大自然数n 是 ( )A .4027B .4026C .4025D .4024 8.已知0(,)M x y 为圆222(0)xy a a +=>内异于圆心的一点,则直线200x x y y a +=与该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交 9.已知n 为正偶数,用数学归纳法证明11111111...2(...)2341242n n n n-+-++=++++++ 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立 ( )A .1n k =+B .2n k =+C .22n k =+D .2(2)n k =+10. 已知向量α、β、γ满足||1α=,||||αββ-=,()()0αγβγ-⋅-=.若对每一确定的β,||γ的最大值和最小值分别为m 、n ,则对任意β,m n -的最小值是主视图 俯视图侧视图( )A .12B .1C .2 D第Ⅱ卷(共100分)二、填空题:本大题共共5小题,每小题5分,共25分11。

2018年云南省玉溪市高考数学模拟试卷(11)

2018年云南省玉溪市高考数学模拟试卷(11)

2018年云南省玉溪市高考数学模拟试卷(11)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.6B.﹣6C.5D.﹣42.(5分)函数的图象大致是()A.B.C.D.3.(5分)设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中正确命题的序号是()A.①③B.①④C.②③D.②④4.(5分)设函数f(x)=cos(2x+φ)+sin(2x+φ)(|φ|<),且图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数5.(5分)若程序框图输出S的值为126,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤86.(5分)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的解有()A.2个B.3个C.4个D.多于4个7.(5分)若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n项和S n>0成立的最大自然数n是()A.4027B.4026C.4025D.40248.(5分)M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系为()A.相切B.相交C.相离D.相切或相交9.(5分)已知n为正偶数,用数学归纳法证明时,若已假设n=k(k≥2)为偶数)时命题为真,则还需要用归纳假设再证n=()时等式成立.A.n=k+1B.n=k+2C.n=2k+2D.n=2(k+2)10.(5分)已知向量,,满足,,.若对每一确定的,的最大值和最小值分别为m,n,则对任意,m﹣n的最小值是()A.B.C.D.1二、填空题:本大题共共5小题,每小题5分,共25分11.(5分)为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为万只.月份养鸡场(个数)。

2018年云南省玉溪市高考数学模拟试卷附答案解析

2018年云南省玉溪市高考数学模拟试卷附答案解析

2018年云南省玉溪市高考数学模拟试卷(07)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={m,﹣3},N={x|2x2+7x+3<0,x∈Z},如果M∩N≠∅,则m等于()A.﹣1 B.﹣2 C.﹣2或﹣1 D.2.(5分)已知函数f(x)=,则f(f(1))+f(log3)的值是()A.7 B.2 C.5 D.33.(5分)为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测算A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50m,∠ABC=105°,∠BCA=45°,就可以计算出A,B两点的距离为()A.50m B.50m C.25m D.m4.(5分)设m,n是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:①若α∥β,m⊂α,n⊂β,则m∥n;②若m⊥α,m∥β,则α⊥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.其中错误命题的序号是()A.①④B.①③C.②③④D.②③5.(5分)函数y=x•|cosx|的图象大致是()A.B.C.D.6.(5分)函数y=的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为等比数列的公比的数是()A.B.C.D.7.(5分)已知向量,,若+2与垂直,则k=()A.﹣3 B.﹣2 C.1 D.﹣18.(5分)计算(x+)dx的值为()A.B.+ln2 C.+ln2 D.3+ln29.(5分)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A.24﹣B.24﹣C.24﹣πD.24﹣10.(5分)下列命题中为真命题的是()A.若B.直线a,b为异面直线的充要条件是直线a,b不相交C.“a=1是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题p:”∃x∈R,x2﹣x﹣1>0”,则命题p的否定为:”∀x∈R,x2﹣x﹣1≤0”11.(5分)已知各项均为正数的等比数列{a n}中,成等差数列,则=()A.﹣1或3 B.3 C.27 D.1或2712.(5分)已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称,则下列结论中正确的是()A.f(4.5)<f(7)<f(6.5)B.f(7)<f(4.5)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(4.5)<f(6.5)<f(7)二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)已知向量,,且直线2xcosα﹣2ysinα+1=0与圆(x﹣cosβ)2+(y+sinβ)2=1相切,则向量与的夹角为.14.(4分)已知2+=4×,3+=9×,4+=16×,…,观察以上等式,若9+=k×;(m,n,k均为实数),则m+n﹣k=.15.(4分)设x、y满足约束条件,则目标函数z=x2+y2的最大值为.16.(4分)定义在R上的函数f(x),对∀x∈R,满足f(1﹣x)=f(1+x),f(﹣x)=﹣f(x),且f(x)在[0,1]上是增函数.下列结论正确的是.(把所有正确结论的序号都填上)①f(0)=0;②f(x+2)=f(﹣x);③f(x)在[﹣6,﹣4]上是增函数;④f(x)在x=﹣1处取得最小值.三、解答题:(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.18.(12分)已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.(Ⅰ)求证:直线SA∥平面BDE;(Ⅱ)求直线BD与平面SBC所成角的正弦值.20.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c的最小值.21.(12分)某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+﹣1450(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(14分)已知函数f(x)=xe﹣x+(x﹣2)e x﹣a(e≈2.73).(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;(Ⅱ)若a>2时,当x≥1时,f(x)≥恒成立,求实数a的取值范围.2018年云南省玉溪市高考数学模拟试卷(07)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={m,﹣3},N={x|2x2+7x+3<0,x∈Z},如果M∩N≠∅,则m等于()A.﹣1 B.﹣2 C.﹣2或﹣1 D.【解答】解:由集合N中的不等式2x2+7x+3<0,因式分解得:(2x+1)(x+3)<0,解得:﹣3<x<﹣,又x∈Z,∴x=﹣2,﹣1,∴N={﹣2,﹣1},∵M∩N≠∅,∴m=﹣1或m=﹣2.故选C2.(5分)已知函数f(x)=,则f(f(1))+f(log3)的值是()A.7 B.2 C.5 D.3【解答】解:由题意可得,f(1)=log21=0,f(f(1))=f(0)=90+1=2f()=+1=+1=5∴=7故选A3.(5分)为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图),要测算A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50m,∠ABC=105°,∠BCA=45°,就可以计算出A,B两点的距离为()A.50m B.50m C.25m D.m【解答】解:由题意及图知,∠BAC=30°,又BC=50m,∠BCA=45°由正弦定理得AB==50m故选A4.(5分)设m,n是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题:①若α∥β,m⊂α,n⊂β,则m∥n;②若m⊥α,m∥β,则α⊥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.其中错误命题的序号是()A.①④B.①③C.②③④D.②③【解答】解:①若α∥β,m⊂α,n⊂β,则m、n不想交,但可能平行也可能异面,故①不正确;②∵m∥β,∴过m作平面与β相交,交线为n,则m∥n,∵m⊥α,∴n⊥α,∴根据面面垂直的判定,可得α⊥β,故②正确;③∵n⊥α,m⊥α,∴m∥n,∵n⊥β,∴m⊥β,故③正确;④α⊥γ,β⊥γ,m⊥α,α∥β,则m⊥β,故④不正确.综上,错误命题的序号是为①④,故选A.5.(5分)函数y=x•|cosx|的图象大致是()A.B.C.D.【解答】解:设函数y=f(x)=x|cosx|,则f(﹣x)=﹣x|cosx|=﹣f(x),即函数为奇函数,故其图象关于原点对称,排除C,D,又当x≥0时,f(x)=x|cosx|≥0,故在x轴下方无图象,故排除B,故选A6.(5分)函数y=的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为等比数列的公比的数是()A.B.C.D.【解答】解:函数y=的等价于,表示圆心在(5,0),半径为3的上半圆(如图所示),圆上点到原点的最短距离为2(点2处),最大距离为8(点8处),若存在三点成等比数列,则最大的公比q应有8=2q2,即q2=4,q=2,最小的公比应满足2=8q2,即q2=,解得q=又不同的三点到原点的距离不相等,故q≠1,∴公比的取值范围为≤q≤2,且q≠1,故选:D7.(5分)已知向量,,若+2与垂直,则k=()A.﹣3 B.﹣2 C.1 D.﹣1【解答】解:∵=(,3),又∵∴==0∴k=﹣3故选A8.(5分)计算(x+)dx的值为()A.B.+ln2 C.+ln2 D.3+ln2【解答】解:(x+)dx==2+ln2﹣=ln2+;故选B.9.(5分)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为()A.24﹣B.24﹣C.24﹣πD.24﹣【解答】解:该几何体是由一个长方体截去半个圆柱所得,其中长方体的体积为V1=4×3×2=24;半个圆柱的体积为V2==,则V=24﹣.故选A.10.(5分)下列命题中为真命题的是()A.若B.直线a,b为异面直线的充要条件是直线a,b不相交C.“a=1是“直线x﹣ay=0与直线x+ay=0互相垂直”的充要条件D.若命题p:”∃x∈R,x2﹣x﹣1>0”,则命题p的否定为:”∀x∈R,x2﹣x﹣1≤0”【解答】解:对于A,只有当x>0时,结论成立;对于B,直线a,b不相交,直线a,b有可能平行;对于C,直线x﹣ay=0与直线x+ay=0互相垂直时,a=±1;对于D,显然成立.故选D.11.(5分)已知各项均为正数的等比数列{a n}中,成等差数列,则=()A.﹣1或3 B.3 C.27 D.1或27【解答】解:∵各项均为正数的等比数列{a n}中,公比为q,∵成等差数列,∴a3=3a1+2a2,可得a1q2=33a1+2a1q2,解得q=﹣1或3,∵正数的等比数列q=﹣1舍去,故q=3,∴====27,故选C;12.(5分)已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称,则下列结论中正确的是()A.f(4.5)<f(7)<f(6.5)B.f(7)<f(4.5)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(4.5)<f(6.5)<f(7)【解答】解:定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称,可知函数是周期为4的函数,x∈[0,2]函数是增函数,函数的对称轴为x=2,f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5),可得f(4.5)<f(7)<f(6.5).故选:A.二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)已知向量,,且直线2xcosα﹣2ysinα+1=0与圆(x﹣cosβ)2+(y+sinβ)2=1相切,则向量与的夹角为60°.【解答】解:∵直线2xcosα﹣2ysinα+1=0与圆(x﹣cosβ)2+(y+sinβ)2=1相切,∴=1解得向量==故两向量的夹角为60°故答案为60°14.(4分)已知2+=4×,3+=9×,4+=16×,…,观察以上等式,若9+=k×;(m,n,k均为实数),则m+n﹣k=79.【解答】解:通过观察可得,n+=(n≥2,n∈N*),所以由9+=k×,得n=m=92﹣1=80,k=92=81,所以m+n﹣k=80+80﹣81=79.故答案为:79.15.(4分)设x、y满足约束条件,则目标函数z=x2+y2的最大值为52.【解答】解:作出不等式组表示的平面区域,得到如图的四边形OABC,其中A(0,2),B(4,6),C(2,0),O为原点设P(x,y)为区域内一个动点,则|OP|=表示点P到原点O的距离∴z=x2+y2=|OP|2,可得当P到原点距离最远时z达到最大值因此,运动点P使它与点B重合时,z达到最大值=42+62=52∴z最大值故答案为:5216.(4分)定义在R上的函数f(x),对∀x∈R,满足f(1﹣x)=f(1+x),f(﹣x)=﹣f(x),且f(x)在[0,1]上是增函数.下列结论正确的是①②④.(把所有正确结论的序号都填上)①f(0)=0;②f(x+2)=f(﹣x);③f(x)在[﹣6,﹣4]上是增函数;④f(x)在x=﹣1处取得最小值.【解答】解:因为定义在R上的函数f(x),对∀x∈R,函数满足f(﹣x)=﹣f (x),所以函数是奇函数,定义域是R,所以f(0)=0;①正确;又函数满足f(1﹣x)=f(1+x),所以函数关于x=1对称,可得f(x+2)=f(﹣x);②正确;f(x+2)=f(﹣x);f(﹣x)=﹣f(x),可得f(x+4)=f(x),函数的周期是4,f(x)在[﹣6,﹣4]上不是单调函数,③不正确;f(x)在[0,1]上是增函数.函数又是奇函数,函数关于x=1对称[1,2]是减函数;所以函数在[﹣1,0]也是增函数,[﹣2,﹣1]上是减函数,所以函数在x=﹣1球的最小值,④正确;正确结果是:①②④.故答案为:①②④.三、解答题:(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.【解答】解:(1)f(x)===故f(x)的最小正周期为T==8(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)).由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,从而==当时,时,因此y=g(x)在区间上的最大值为18.(12分)已知平面区域被圆C及其内部所覆盖.(1)当圆C的面积最小时,求圆C的方程;(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.【解答】解:(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,由于覆盖它的且面积最小的圆是其外接圆,∴圆心是Rt△OPQ的斜边PQ的中点C(2,1),半径r=|OC|==,∴圆C的方程是(x﹣2)2+(y﹣1)2=5.(2)设直线l的方程是:y=x+b.∵CA⊥CB,∴圆心C到直线l的距离是=,即,解之得,b=﹣1±.∴直线l的方程是:y=x﹣1±.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.(Ⅰ)求证:直线SA∥平面BDE;(Ⅱ)求直线BD与平面SBC所成角的正弦值.【解答】解:(I)如图,连接EO,∵四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,∴O是AC的中点,∵E是侧棱SC的中点,∴EO是△ASC的中位线,∴EO∥SA,∵SA⊂面ASC,EO不包含于面ASC,∴直线SA∥平面BDE.(II)过点O作CB的平行线作x轴,过O作AB的平行线作y轴,以OS为z轴,建立如图所示的空间直角坐标系,∵四棱锥S﹣ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°,∴SA=4,SO=2,∴B(2,2,0),C(﹣2,2,0),S(0,0,2),D(﹣2,﹣2,0),∴,,,设面SBC的法向量为,则,,∴,∴,设直线BD与平面SBC所成角为θ,则sinθ=|cos<>|=||=.20.(12分)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{b n}的前三项.(Ⅰ)分别求数列{a n},{b n}的通项公式a n,b n;(Ⅱ)设,若恒成立,求c的最小值.【解答】解:(Ⅰ)设d、q分别为数列{a n}、数列{b n}的公差与公比,a1=1.由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{b n}的前三项,∴(2+d)2=2(4+2d)⇒d=±2.>a n,∵a n+1∴d>0.∴d=2,∴a n=2n﹣1(n∈N*).由此可得b1=2,b2=4,q=2,∴b n=2n(n∈N*).(Ⅱ),①∴.②①﹣②,得=+2(++…+)﹣,∴T n=3﹣.∴T n+﹣=3﹣≤2,∴满足条件恒成立的最小整数值为c=3.21.(12分)某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+﹣1450(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【解答】解:(1)∵每件商品售价为0.05万元,∴x千件商品销售额为0.05×1000x万元,①当0<x<80时,根据年利润=销售收入﹣成本,∴L(x)=(0.05×1000x)﹣x2﹣10x﹣250=﹣x2+40x﹣250;②当x≥80时,根据年利润=销售收入﹣成本,∴L(x)=(0.05×1000x)﹣51x﹣+1450﹣250=1200﹣(x+).综合①②可得,L(x)=;(2)①当0<x<80时,L(x)=﹣x2+40x﹣250=﹣(x﹣60)2+950,∴当x=60时,L(x)取得最大值L(60)=950万元;②当x≥80时,L(x)=1200﹣(x+)≤1200﹣2=1200﹣200=1000,当且仅当x=,即x=100时,L(x)取得最大值L(100)=1000万元.综合①②,由于950<1000,∴年产量为100千件时,该厂在这一商品的生产中所获利润最大.22.(14分)已知函数f(x)=xe﹣x+(x﹣2)e x﹣a(e≈2.73).(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;(Ⅱ)若a>2时,当x≥1时,f(x)≥恒成立,求实数a的取值范围.【解答】解:(Ⅰ)当a=2时,f(x)=xe﹣x+(x﹣2)e x﹣2,f(x)的定义域为R,f′(x)=e﹣x﹣xe﹣x+e x﹣2+(x﹣2)e x﹣2=(x﹣1)(e x﹣2﹣e﹣x)=e﹣x(x﹣1)(e x﹣1﹣1)(e x﹣1+1).当x≥1时,x﹣1≥0,e x﹣1﹣1≥0,所以f′(x)≥0,当x<1时,x﹣1<0,e x﹣1﹣1<0,所以f′(x)≥0,所以对任意实数x,f′(x)≥0,所以f(x)在R上是增函数;(II)当x≥1时,f(x)≥恒成立,即(x﹣2)e2x﹣a﹣x2+3x﹣1≥0恒成立,设h(x)=(x﹣2)e2x﹣a﹣x2+3x﹣1(x≥1),则h′(x)=(2x﹣3)(e2x﹣a﹣1),令h′(x)=(2x﹣3)(e2x﹣a﹣1)=0,解得,,(1)当1<<,即2<a<3时,x(1,)(,)(,+∞)h′(x)+0﹣0+h(x)单调递增极大值单调递减极小值单调递增所以要使结论成立,则h(1)=﹣e2﹣a+1≥0,h()=﹣e3﹣a+≥0,即e2﹣a ≤1,e3﹣a≤,解得a≥2,a≥3﹣ln,所以3﹣ln≤a<3;(2)当=,即a=3时,h′(x)≥0恒成立,所以h(x)是增函数,又h(1)=﹣e﹣1+1>0,故结论成立;(3)当,即a>3时,x(1,)(,)(,+∞)h′(x)+0﹣0+h(x)单调递增极大值单调递减极小值单调递增所以要使结论成立,则h(1)=﹣e2﹣a+1≥0,h()=﹣+2a﹣3≥0,即e2﹣a≤1,a2﹣8a+12≤0,解得a≥2,2≤a≤6,所以3<a≤6;综上所述,若a>2,当x≥1时,f(x)≥恒成立,实数a的取值范围是3﹣ln≤a≤6.…(12分)。

云南省玉溪市普通高中毕业班2018届高考数学一轮复习模拟试题02含答案

云南省玉溪市普通高中毕业班2018届高考数学一轮复习模拟试题02含答案

一轮复习数学模拟试题02满分150分,考试用时120分钟.第一部分 选择题(共40分)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若全集U=R,集合}01x 3x |x {N },4x|x {M 2<+-=>=,则)N C(M U ⋂等于( )A 。

}2x |x {-<B 。

}3x 2x |x {≥-<或C 。

}3x |x {≥D 。

}3x 2|x {<≤-2.与函数)1lg(10-=x y 的图象相同的函数是 ( )A.1-=x yB. 1-=x yC.112+-=x x yD 。

211⎪⎪⎭⎫ ⎝⎛--=x x y3.若a ∈R ,则2a =是()()120a a --=的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件4.在下列图象中,二次函数y =ax 2+bx 与指数函数y =(ab )x 的图象只可能是( )5.对于定义在R 上的函数)(x f y =,若),,(0)()(b a R b a b f a f <∈<•且,则函数)(x f y =在区间),(b a 内()A .只有一个零点B .至少有一个零点C .无零点D .无法判断6.二次函数()x f 满足()()22+-=+x f x f ,又()30=f ,()12=f ,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是( )A 。

()+∞,0B 。

[)+∞,2C 。

(]2,0 D. [2,4] 7.设奇函数f (x )的定义域为R , 且)()(x f x f =+4, 当x ] ,[64∈时f (x)=12+x, 则f (x )在区间] ,[02-上的表达式为( )A .12+=x x f )(B .124--=+-x x f )(C .124+=+-x x f )(D .12+=-xx f )(8. 正实数12,x x 及函数()f x 满足)(1)(14x f x f x-+=,且12()()1f x f x +=,则12()f x x +的最小值为 ( )A . 4B . 2C . 54D . 41第二部分 非选择题(共110分)二、填空题:本大题共6小题,每小题5分,满分30分. 9.已知命题P: “对任何2,220x R x x ∈++>"的否定是_____________________ 10.函数2()lg(31)f x x =++的定义域是____________11.设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________.12.下列命题:(1)梯形的对角线相等;(2)有些实数是无限不循环小数;(3)有一个实数x ,使0322=++x x;(4)y x y x ≠⇔≠22或y x -≠;(5)命题“b a 、都是偶数,则b a +是偶数”的逆否命题“若b a +不是偶数,则b a 、都不是偶数";(6)若p 或q ”为假命题,则“非p 且非q ”是真命题;(7)已知c b a 、、是实数,关于x 的不等式02≤++c bx ax 的解集是空集,必有0>a 且0≤∆。

2018高考数学(理科)模拟考试题一含答案及解析

2018高考数学(理科)模拟考试题一含答案及解析

2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B. 5 C.4 D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i, 其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B. 2 C. 3 D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2= 3.故选C.图D1884.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π24.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.5.设x ∈R ,[x ]表示不超过x 的最大整数. 若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立,则正整数n 的最大值是( )A .3B .4C .5D .65.B 解析:因为[x ]表示不超过x 的最大整数.由[t ]=1,得1≤t <2,由[t 2]=2,得2≤t 2<3.由[t 3]=3,得3≤t 3<4.由[t 4]=4,得4≤t 4<5.所以2≤t 2< 5.所以6≤t 5<4 5.由[t 5]=5,得5≤t 5<6,与6≤t 5<4 5矛盾,故正整数n 的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a 值为1,则输出的k 值为( )图M1-2A .1B .2C .3D .46.B 解析:输入a =1,则k =0,b =1;进入循环体,a =-12,否,k =1,a =-2,否,k =2,a =1,此时a =b =1,输出k ,则k =2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m +n 的值是( )图M1-3A .10B .11C .12D .137.C 解析:由题意,得78+88+84+86+92+90+m +957=88,n =9.所以m +n =12.故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16C .17万元 D .18万元8.D 解析:设该企业每天生产甲、乙两种产品分别为x 吨、y 吨,则利润z =3x +4y .由题意可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0.其表示如图D189阴影部分区域:图D189当直线3x +4y -z =0过点A (2,3)时,z 取得最大值,所以z max =3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个9.C 解析:由题意,必有a 1=0,a 8=1,则具体的排法列表如下:10.(2016年天津)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎝⎛⎦⎤0,18B.⎝⎛⎦⎤0,14∪⎣⎡⎭⎫58,1 C.⎝⎛⎦⎤0,58 D.⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58 10.D 解析:f (x )=1-cos ωx 2+sin ωx 2-12=22sin ⎝⎛⎭⎫ωx -π4,f (x )=0⇒sin ⎝⎛⎭⎫ωx -π4=0, 所以x =k π+π4ω(π,2π),(k ∈Z ).因此ω⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,54∪⎝⎛⎭⎫98,94∪…=⎝⎛⎭⎫18,14∪⎝⎛⎭⎫58,+∞⇒ω∈⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58.故选D.11.四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为243π16的同一球面上,则P A =( )A .3 B.72C .2 3 D.9211.B 解析:如图D190,连接AC ,BD 交于点E ,取PC 的中点O ,连接OE ,则OE∥P A ,所以OE ⊥底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O 为球心,12PC =12P A 2+AC 2=12P A 2+8,所以由球的体积可得43π⎝⎛⎭⎫12P A 2+83=243π16,解得P A =72.故选B.图D19012.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若OA →·OB →=6(O 为坐标原点),则△ABO 与△AOF 面积之和的最小值为( )A .4 B.3 132 C.17 24D.1012.B 解析:设直线AB 的方程为x =ty +m ,点A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m,0),将直线方程与抛物线方程联立,可得y 2-ty -m =0,根据韦达定理有y 1·y 2=-m ,因为OA →·OB →=6,所以x 1·x 2+y 1·y 2=6,从而(y 1·y 2)2+y 1·y 2-6=0,因为点A ,B 位于x 轴的两侧,所以y 1·y 2=-3,故m =3,不妨令点A 在x 轴上方,则y 1>0,又F ⎝⎛⎭⎫14,0,所以S △ABO +S △AFO =12×3×(y 1-y 2)+12×14y 1=138y 1+92y 1≥2138·y 1·92·1y 1=3132,当且仅当13y 18=92y 1,即y 1=6 1313时取等号,故其最小值为3 132.故选B.第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则c =m a +b =(m +4,2m +2),|a |=5,|b |=2 5,a ·c =5m +8,b ·c =8m +20.∵c 与a 的夹角等于c 与b 的夹角,∴c·a |c|·|a|=c·b |c|·|b|.∴5m +85=8m +202 5.解得m =2.14.设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.14.5 解析:根据双曲线的对称性,不妨设F (c,0),虚轴端点为(0,b ),从而可知点(-c,2b )在双曲线上,有c 2a 2-4b 2b2=1,则e 2=5,e = 5.15.(2016年北京)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式T r +1=C r 6·(-2)r x r 可知,x 2的系数为C 26(-2)2=60,故填60.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤12”发生的概率为________.16.13 解析:由正弦函数的图象与性质知,当x ∈⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π时,sin x ≤12. 所以所求概率为⎝⎛⎭⎫π6-0+⎝⎛⎭⎫π-5π6π=13.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.17.解:(1)设{a n }的公比为q ,{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10.消去d ,得q 4-2q 2-8=0.解得q =2,d =2.所以{a n }的通项公式为a n =2n -1,n ∈N *, {b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)2n -1,设{c n }的前n 项和为S n , 则S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以S n =(2n -3)·2n +3,n ∈N *.18.(本小题满分12分)(2014年大纲)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠P AB=90°,BC=CD=12AD,E为边AD的中点,异面直线P A与CD所成的角为90°.(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB ⊂平面PBE ,CM 平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点) (2)方法一,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 从而CD ⊥PD .所以∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.设BC =1,则在Rt △P AD 中,P A =AD =2.如图D191,过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 易知P A ⊥平面ABCD , 从而P A ⊥CE . 于是CE ⊥平面P AH . 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE . 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=3 22, 所以sin ∠APH =AH PH =13.图D191 图D192方法二,由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD . 于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角. 所以∠PDA =45°.由P A ⊥AB ,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD → ,AP →的方向分别为x 轴,z 轴的正方向,建立如图D192所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2)设平面PCE 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0, 得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13 .所以直线P A 与平面PCE 所成角的正弦值为13.20.(本小题满分12分)(2016年新课标Ⅲ)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .20.解:(1)由题设,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减.(2)由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)由题设c >1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c . 令g ′(x )=0,解得x 0=lnc -1ln cln c .当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减. 由(2)知,1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以x ∈(0,1)时,1+(c -1)x >c x .21.(本小题满分12分)(2016年广东广州综合测试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2, 0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为椭圆的左焦点为F 1(-2,0),所以a 2-b 2=4.①因为点B (2,2)在椭圆C 上,所以4a 2+2b 2=1.②由①②,解得a =2 2,b =2.所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A ,则点A 的坐标为(-2 2,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于两点E ,F ,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).联立方程组⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2. 所以x 0=2 21+2k2,则y 0=2 2k 1+2k2.所以直线AE 的方程为y =k1+1+2k2(x +2 2).因为直线AE ,AF 分别与y 轴交于点M ,N ,令x =0得y = 2 2k1+1+2k2,即点M ⎝ ⎛⎭⎪⎫0, 2 2k 1+1+2k 2. 同理可得点N ⎝ ⎛⎭⎪⎫0, 2 2k 1-1+2k 2. 所以|MN |=⎪⎪⎪⎪⎪⎪2 2k 1+1+2k 2- 2 2k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k .则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+2 2k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A (2,π)、B ⎝⎛⎭⎫2,4π3. (1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.22.解:(1)将A 、B 化为直角坐标为A (2cos π,2sin π),B ⎝⎛⎭⎫2cos 4π3,2sin 4π3,即A ,B 的直角坐标分别为A (-2,0),B (-1,-3),k AB =-3-0-1+2=-3,∴直线AB 的方程为y -0=-3(x +2),即直线AB 的方程为3x +y +2 3=0.(2)设M (2cos θ,sin θ),它到直线AB 的距离d =|2 3cos θ+sin θ+2 3|2=|13sin (θ+φ)+2 3|2, ∴d max =13+2 32.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -2|-|2x -a |,a ∈R .(1)当a =3时,解不等式f (x )>0;(2)当x ∈(-∞,2)时,f (x )<0恒成立,求a 的取值范围.23.解:(1)当a =3时,f (x )>0,即|x -2|-|2x -3|>0,等价于⎩⎪⎨⎪⎧ x ≤32,x -1>0,或⎩⎪⎨⎪⎧ 32<x <2,-3x +5>0,或⎩⎪⎨⎪⎧x ≥2,-x +1>0. 解得1<x ≤32,或32<x <53. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <53. (2)f (x )=2-x -|2x -a |,所以f (x )<0可化为|2x -a |>2-x , ①即2x -a >2-x ,或2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a ,∵x ∈(-∞,2),∴a ≥4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A.2:3 B.1:3
C.1:4
D.1:6
10.( 5 分)如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同 的速度注入其中, 注满为止. 用下面对应的图象显示该容器中水面的高度 h 和时
间 t 之间的关系,其中不正确的有(

A.1 个 B.2 个 C.3 个 D.4 个
二、填空题(本大题共 5 个小题,每小题 5 分,共 25 分.把答案填写在题中横
5.(5 分)下图是某次考试对一道题评分的算法框图,其中 x1,x2,x3 为三个评 阅人对该题的独立评分, p 为该题的最终得分,当 x1=6,x2=9,p=8.5 时, x3 等于 ()
A.11 B.10 C.8 D.7
6.(5 分)图是函数 y=Asin(ωx+φ)(x∈R)在区间
上的图象,为
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.(5 分)下列命题中, m,n 表示两条不同的直线, α、β、γ表示三个不同的 平面. ①若 m⊥ α, n∥ α,则 m⊥ n;
②若 α⊥γ,β⊥γ,则 α∥β; ③若 m∥ α, n∥ α,则 m∥ n;
④若 α∥β,β∥γ, m⊥ α,则 m⊥ γ.
线上) 11.( 5 分)已知命题 p:“存在 x∈R,使 4x+2x+1+m=0”,若“非 p”是假命题,则实
数 m 的取值范围是

12.(5 分)若 a>3,则函数 f(x)=x2﹣ax+1 在区间(0,2)上恰好有

零点.
13.( 5 分)已知函数 f (x) =lnx,0<a<b<c<1,则
了得到这个函数的图象,只要将 y=sinx( x∈R)的图象上所有的点(

A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标
不变 B.向左平移
个单位长度,再把所得各点的横坐标伸长到原来的
2 倍,纵坐标
不变 C.向左平移
个单位长度,再把所得各点的横坐标缩短到原来的
倍,纵坐标
不变 D.向左平移
( x1)﹣ g(x2) | <1 成立,求 a 的取值范围.
2018 年云南省玉溪市高考数学模拟试卷(
参考答案 小题.每小题 5 分.共 50 分.在每小题给出的四个 选项中,只有一项是符合题目要求的) 1.(5 分)集合 A={ x|| x| ≤4,x∈ R} ,B={ x| ( x+5)( x﹣a)≤ 0} ,则“A? B”是 “a > 4”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【解答】 解:集合 A={ x|| x| ≤ 4, x∈R} ={ x| ﹣ 4≤ x≤ 4} , B={ x| (x+5)( x﹣ a)≤ 0} , 由 A? B,可得 B≠?, 即有( 5﹣4)(﹣ 4﹣a)≤ 0 且( 5+4)(4﹣a)≤ 0, 解得 a≥4, 则则 “?AB”是“>a4”的必要不充分条件, 故选 B.
个单位长度,再把所得各点的横坐标伸长到原来的
2 倍,纵坐标
不变 7.(5 分)若存在实数 x∈[ 2,4] ,使 x2﹣ 2x+5﹣ m<0 成立,则 m 的取值范围
为( )
A.(13, +∞) B.(5,+∞) C.(4,+∞) D.(﹣∞, 13)
8.(5 分)已知奇函数 f(x)在 [ ﹣1,0] 上为单调递减函数,又 α, β为锐角三
角形两内角,下列结论正确的是(

A.f (cos α)> f(cos β) B.f(sin α)> f( sin β) C.f(sin α)> f( cos β)
D. f(sin α)< f(cos β)
9.( 5 分)△ABC所在平面上一点 P 满足 + + = ,则△ PAB的面积与△ ABC
的面积比为(
2018 年云南省玉溪市高考数学模拟试卷( 01)
一、选择题(本大题共 10 小题.每小题 5 分.共 50 分.在每小题给出的四个 选项中,只有一项是符合题目要求的)
1.(5 分)集合 A={ x|| x| ≤4,x∈ R} ,B={ x| ( x+5)( x﹣a)≤ 0} ,则“A? B”是 “a > 4”的( )
米,最大速度均为 v0(千米 / 小时).问:列车车速多大时,单位时间流量 Q=
最大? 19.( 12 分)如图,边长为 a 的正方体 ABCD﹣A1B1C1D1 中, E 为 CC1 的中点. ( 1)求直线 A1E 与平面 BDD1B1 所成的角的正弦值 ( 2)求点 E 到平面 A1DB 的距离.
积是

三、解答题(本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程和演
算步骤) 16.( 12 分)已知 α∈(0,π)且 cos(α﹣ )= .求 cos α
17.( 12 分)已知向量 =3i﹣4j, =6i﹣3j, =( 5﹣m )i﹣( 3+m)j,其中 i, j 分别是平面直角坐标系内 x 轴与 y 轴正方向上的单位向量. ( 1)若点 A, B, C 能构成三角形,求实数 m 应满足的条件; ( 2)对任意 m∈[ 1,2] ,不等式 2≤﹣ x2+x+3 恒成立,求 x 的取值范围. 18.( 12 分)列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持 一个 “安全间隔距离 d(千米) ”,“安全间隔距离 d(千米) ”与列车的速度 v(千 米 / 小时)的平方成正比(比例系数 k= ).假设所有的列车长度 l 均为 0.4 千


的大
小关系是

14.(5 分)已知整数对的序列如下: (1,1),(1,2),(2,1),(1,3),(2,2),
( 3, 1),(1,4),(2,3)( 3, 2),(4,1),(1,5),(2,4)…则第 57 个数对


15.( 5 分)如图是一个几何体的三视图,根据图中的数据,可得该几何体的体
20.( 13 分)在数列 { an} 中, a1=1,an=n2[ 1+ + +…+
] (n≥2,n∈N)
( 1)当 n≥2 时,求证:
=
( 2)求证:(1+ )(1+ ) …(1+ )< 4. 21.( 14 分)已知函数 f (x)=(x2+ax﹣2a﹣ 3) ?e3﹣x(a∈ R); ( 1)讨论 f(x)的单调性; ( 2)设 g( x) =(a2+ )ex( a> 0),若存在( a> 0),x1, x2∈ [ 0, 4] 使得 | f
正确的命题是(

A.①③ B.②③ C.①④ D.②④
3.(5 分)由曲线 y= ,直线 y=x﹣2 及 y 轴所围成的图形的面积为(

A. B.4 C. D.6
4.(5 分)已知等比数列 { an} 公比为 q,其前 n 项和为 Sn,若 S3、S9、 S6 成等差
数列,则 q3 等于(

A.﹣ B.1 C.﹣ 或 1 D.﹣ 1 或
相关文档
最新文档