GPS测速、定姿与授时
gps测量坐标方式及对应精度是多少度

GPS测量坐标方式及对应精度引言全球定位系统(GPS)是一种利用卫星信号来确定地理位置的技术。
它以高精度的方式给出了地球上任何一个点的经纬度坐标。
本文将介绍GPS测量坐标的方式以及对应的精度。
GPS测量坐标方式单点定位单点定位是GPS测量坐标的最基本方式,也是最常用的方式。
通过接收至少4颗卫星的信号,GPS接收机能够计算出接收机所在位置的经度、纬度以及海拔高度。
单点定位的原理是借助卫星信号的传输时延来计算位置。
GPS信号的传播速度近似为光速,GPS接收机通过测量信号的传播时延,从而计算出卫星与接收机之间的距离。
通过多个卫星的距离测量,接收机可以定位其所在的位置。
差分定位差分定位是一种通过比较两个或多个接收机的信号,来提高定位精度的技术。
其中一个接收机称为基站,它的位置已知。
其他接收机称为流动站,它们的位置需要测量。
在差分定位中,基站接收到卫星信号,并计算出自己的位置信息。
然后,通过与流动站的信号进行比较,基站可以确定流动站的位置误差,并将其传递给流动站。
流动站利用该位置误差进行校正,提高自身的定位精度。
差分定位的精度受到基站与流动站之间的距离限制。
一般来说,基站越近,定位精度越高。
RTK定位实时运动定位(RTK)是一种高精度定位技术,适用于需要高精度、高实时性的应用场景,例如测量、地质勘探等。
RTK定位与差分定位类似,也是通过比较基站和流动站的信号来提高定位精度。
不同之处在于,RTK定位中基站和流动站之间的数据传输是实时的。
在RTK定位中,基站接收到卫星信号,并计算出自己的位置信息。
然后,通过与流动站的信号进行比较,并实时将位置误差传递给流动站。
流动站利用该位置误差进行校正,以实现高精度定位。
GPS测量坐标的精度GPS测量坐标的精度是指测量结果与实际位置之间的差异程度。
精度通常用米(m)来表示。
对于单点定位,GPS接收机的位置精度通常在10至20米之间。
这意味着测量结果与实际位置的差异可能在10至20米之间。
GPS测量技术

GPS测量技术GPS测量技术是一种现代化的测量技术,它是利用全球卫星定位系统(GPS)的卫星信号,通过计算卫星信号到达地面接收机的时间差以及之前已知的卫星位置,进而推算出地面接收机位置的一种测量技术。
GPS测量技术的优点是测量速度快、精度高、覆盖范围广等特点,广泛应用于测绘与地理信息、地形测量、陆地监测等领域。
一、GPS测量技术的基本原理GPS系统利用卫星发射出的信号,地面接收机接收到信号后,通过计算信号到达地面接收机的时间差以及之前已知的卫星位置,推算出地面接收机的位置。
GPS测量技术的基本原理就是通过计算GPS卫星信号的时间差,从而推算出地面接收机的空间位置,而GPS卫星信号的时间差是通过测量卫星信号的传播延迟实现的。
二、GPS测量技术的基本组成部分GPS测量系统主要由卫星、地面接收机、数据处理软件等组成,其中地面接收机也包括天线、接收机等组成部分。
卫星部分:GPS卫星是GPS系统的核心部分,GPS系统由一系列卫星组成。
目前主要有美国GPS、俄罗斯GLONASS、欧洲伽利略、中国北斗、日本QZSS等卫星系统。
卫星发射出的信号中包含了时间、位置和卫星状态等信息。
GPS信号的传播速度是光速,速度恒定,具有高精度的特点。
地面接收机部分:地面接收机是接收卫星信号的设备,主要由天线、接收机等组成。
天线主要用于接收卫星信号,接收机则主要用于信号的解码和数据的处理。
接收机的主要功能是解码卫星信号中包含的时间信息和卫星状态信息,以及计算信号的传播时间差和地面接收机的空间位置等。
数据处理软件部分:数据处理软件是对接收到的GPS信号进行处理,主要将接收机从卫星处接收到的时间、位置、偏差等数据进行整合和分析,形成测量数据记录,以及精度分析。
三、GPS测量技术的基本测量方法GPS测量技术的基本测量方法主要包括单点测量、相对测量、静态测量、动态测量等。
1.单点测量单点测量是指利用GPS测量系统实现对某一点的测量,一般用于实现大地测量基准点的测量。
GPS全球定位系统及GPS测量简介.

▪ 目前 ▪ L1:频率:1575.43MHz,波长:19cm ▪ L2:频率:1227.60MHz,波长:24cm
▪ 现代化后增加
▪ L5:频率: 1176.45MHz,波长:26cm
GPS卫星信号结构——测距码
▪ 测距码
▪ 属于伪随机噪声码 – PRN码(Pseudo Random Noise )
(1)WN(Week Number)~GPS周 (2)传输参数N (3)时延差改正TGD (4)卫星钟的改正参数的数据龄期AODC (5) 卫星钟改正参数
导航电文
4.第二数据块 第二数据块是由第2子帧和第3子帧构成的。它 给出了该GPS卫星的广播星历参数。第二数据 块中的主要参数如下:
第四章
GPS全球定位系统 及GPS测量简介
▪ GPS全球定位系统 ▪ GPS测量
4.1 什么是GPS?
GPS的英文全称是Navigation Satellite Timing And Ranging Global Position System,简称GPS有时也被称作 NAVSTAR GPS。 其意为“导航星测时与 测距全球定位系统”,或简称全球定位系 统。
–当前星座:28颗
GPS的系统组成—— 空间部分
GPS卫星
• 作用:
• 发送用于导航定位的信号 • 其他特殊用途,如通讯、监测核暴等。
• 主要设备: 原子钟(2台铯钟、2台铷钟)、 信号生成与发射装置
• 类型
• 试验卫星:Block Ⅰ • 工作卫星:Block Ⅱ (包括Block Ⅱ 、Block ⅡA、Block ⅡR、Block ⅡF(新一代的GPS卫星)
toe (secs in GPS wk) Cic (rads) Wo(rads)Cis (rads)
GPS系统定位原理和测速原理

GPS系统定位原理和测速原理GPS系统包括三大部分:空间部分—GPS卫星星座;地面控制部分—地面监控系统;用户设备部分—GPS信号接收机。
GPS卫星星座GPS工作卫星及其星座由21颗工作卫星和3颗在轨备用卫星组成GPS卫星星座,记作(21+3)GPS星座。
24颗卫星均匀分布在6个轨道平面内,轨道倾角为55度,各个轨道平面之间相距60度,即轨道的升交点赤经各相差60度。
每个轨道平面内各颗卫星之间的升交角距相差90度,一轨道平面上的卫星比西边相邻轨道平面上的相应卫星超前30度。
在两万公里高空的GPS卫星,当地球对恒星来说自转一周时,它们绕地球运行二周,即绕地球一周的时间为12恒星时。
这样,对于地面观测者来说,每天将提前4分钟见到同一颗GPS卫星。
位于地平线以上的卫星颗数随着时间和地点的不同而不同,最少可见到4颗,最多可见到11颗。
在用GPS信号导航定位时,为了结算测站的三维坐标,必须观测4颗GPS卫星,称为定位星座。
地面监控系统对于GPS导航定位来说,GPS卫星是一动态已知点。
星的位置是依据卫星发射的星历—描述卫星运动及其轨道的参数算得的。
每颗GPS卫星所播发的星历,是由地面监控系统提供的。
卫星上的各种设备是否正常工作,以及卫星是否一直沿着预定轨道运行,都要由地面设备进行监测和控制。
地面监控系统另一重要作用是保持各颗卫星处于同一时间标准—GPS时间系统。
这就需要地面站监测各颗卫星的时间,求出钟差。
然后由地面注入站发给卫星,卫星再由导航电文发给用户设备。
GPS工作卫星的地面监控系统包括一个主控站、三个注入站和五个监测站。
GPS信号接收机GPS信号接收机的任务是:能够捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对所接收到的GPS信号进行变换、放大和处理,以便测量出GPS信号从卫星到接收机天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出测站的三维位置,甚至三维速度和时间。
GPS_百度百科

GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。
它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。
GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。
首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。
这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。
其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。
接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。
通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。
最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。
GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。
接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。
二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。
下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。
2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。
3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。
4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。
5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。
GPS定位原理和简单公式

GPS定位原理和简单公式GPS是全球定位系统的缩写,是一种通过卫星系统来测量和确定地球上的物体位置的技术。
它利用一组卫星围绕地球轨道运行,通过接收来自卫星的信号来确定接收器(GPS设备)的位置、速度和时间等信息。
GPS定位原理基于三角测量原理和时间测量原理。
1.三角测量原理:GPS定位主要是通过测量接收器与卫星之间的距离来确定接收器的位置。
GPS接收器接收到至少4颗卫星的信号,通过测量信号的传播时间得知信号的传播距离,进而利用三角测量原理计算出接收器的位置。
2.时间测量原理:GPS系统中的每颗卫星都具有一个高精度的原子钟,接收器通过接收卫星信号中的时间信息,利用接收时间和发送时间之间的差值,计算出信号传播的时间,从而进一步计算出接收器与卫星之间的距离。
简单的GPS定位公式:1.距离计算公式:GPS接收器与卫星之间的距离可以通过测量信号传播时间得到。
假设接收器与卫星之间的距离为r,光速为c,传播时间为t,则有r=c×t。
2.三角测量公式:GPS定位是通过测量与至少4颗卫星的距离,来计算接收器的位置。
设接收器的位置为(x,y,z),卫星的位置为(x_i,y_i,z_i),与卫星的距离为r_i,根据三角测量原理,可得到以下方程:(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=r_1^2(x-x_2)^2+(y-y_2)^2+(z-z_2)^2=r_2^2...(x-x_n)^2+(y-y_n)^2+(z-z_n)^2=r_n^2这是一个非线性方程组,可以通过迭代方法求解,求得接收器的位置。
3.定位算法:GPS定位一般使用最小二乘法来进行计算。
最小二乘法是一种数学优化方法,用于最小化误差的平方和。
在GPS定位中,通过最小化测量距离与计算距离之间的差值的平方和,来确定接收器的位置。
总结:GPS定位原理基于三角测量和时间测量原理,通过测量接收器与卫星之间的距离,利用三角测量公式和最小二乘法来计算接收器的位置。
第六章 GPS测量简介

1 第六章 GPS测量简介 内容:掌握 GPS 的基本概念和系统组成;掌握 GPS 的坐标系统和基本定位原理;理解 GPS 定位方法分类中绝对定位和相对定位、静态定位和动态定位的概念及用途。
重点:GPS 的基本概念和系统组成; GPS 基本定位原理。 难点:GPS 定位方法分类中绝对定位和相对定位、静态定位和动态定位的概念及用途。 GPS的定义及历史 1、定义 全球定位系统 GPS ( Global Position System ) , 是一种可以授时和测距的空间交会定点的导航系统 , 可向全球用户提供连续、实时、高精度的三维位置,三维速度和时间信息。
2、GPS 的产生与发展——由 TRANSIT 到 GPS (1)1957 年 10 月第一颗人造地球卫星上天,天基电子导航应运而生。 ` (2)美国 1964 年建成子午卫星导航定位系统 (TRANSIT) 。 (3)美国从1973年开始筹建全球定位系统, 1994 年全部建成,投入使用。 GPS 的研制最初主要用于军事目的。如为陆海空三军提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测、应急通讯和爆破定位等方面。随着 GPS 系统步入试验和实用阶段,其定位技术的高度自动化及所达到的高精度和巨大的潜力,引起了各国政府 2
的普遍关注,同时引起了广大测量工作者的极大兴趣。特别是近几年来, GPS 定位技术在应用基础的研究、新应用领域的开拓、软硬件的开发等方面都取得了迅速发展。
GPS 系统的组成 1、空间卫星部分。由21颗工作卫星和3颗备用卫星。 2、地面控制部分。其由1个主控站, 5个监控站和 3个注入站组成。 3、用户接收机部分。 GPS 接收机的基本类型分导航型和大地型。大地型接收机又分单频型(L1)和双频型(L1 , L2)。
GPS 系统组成 3 GPS 空间卫星部分
GPS 地面控制部分
导航型 GPS 接收机 大地型 GPS 接收机 4
GPS各章节知识点总结

第一章绪论1、GPS的应用:导航、授时、定位测量2、卫星定位经历了三个发展阶段:卫星三角测量、卫星多普勒测量、GPS卫星定位测量卫星三角测量:卫星仅作为一种空间动态观测目标,由地面通过拍摄卫星的位置而测定地面点的坐标。
卫星多普勒测量:利用地面跟踪站上的多普勒测量资料可以精确确定卫星轨道。
定位原理是基于“多普勒效应”3、子午卫星系统:利用多普勒效应进行导航定位,也被称为多普勒定位系统。
(6颗卫星,6个轨道,轨道夹角30,轨道倾角90,卫星高度1075,周期107min)局限性:①一次定位所需时间过长②不是连续的、独立的卫星导航系统③效率低、精度低4、GPS在各个领域的应用:①军事:配备GPS的士兵;导航的导弹;核潜艇;舰载飞弹②交通运输:航运、航空搜索;陆路交通(车辆导航、监控);船舶远洋导航和进港引水③测量:建立和维持全球性的参考框架;板块运动和监测;建立各级国家平面控制网;布设城市控制网、工程测量控制网,进行各种工程测量;在航空摄影测量、地籍测量、海洋测量中的应用。
④其他:精细农业;遥感;卫星定轨;资源勘探;GPS气象学;个人旅游…5、美国政府的GPS政策SPS:标准定位服务,使用C/A码,民用PPS:精密定位服务,可使用P码,军用SA:选择可用性技术;1991.7.1-2000.5.2;人为降低普通用户的测量精度;方法:降低星历精度(加入误差);卫星钟加高频抖动(短周期,快变化)AS:反电子欺骗技术;1994.1.31-今天;P码加密。
P+W→Y6、GPS现代化:①在Block IIR卫星的L2载波上调制C/A码,在Block II F卫星中增加f =1176.45MHz的民用频率;②增强卫星信号强度,增加抗干扰能力;③增设新的军用码(M码),与民用码分开,并具有更好的保密性和抗干扰能力;④使用新技术,以阻止或干扰敌方使用GPS;⑤军用接收机具有更好的保护装置,特别是抗干扰能力,具有快速初始化功能。