2017年济南市市中区九年级第一次模拟考试数学试题(2017.03)
2017年山东省济南市中考数学试卷(含答案解析版)

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5。
55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()第1页(共47页)第2页(共47页)A .40°B .45°C .50°D .60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0。
九年级数学第一次模拟试题2

P P P PQQQQR RRR北30°45°30°30°30°45°45°45°A CBD东山东省济南市槐荫区2017届九年级数学第一次模拟试题第I 卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 下列各数中,是无理数的一项是 A. -1 B. 2 C.20174D. 3.14 2. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为 A. 95×10-6B. 9.5×10-6C. 95×10-7D. 9.5×10-73. 下列计算正确的是 A .a 3÷a 2=1 B .a 2+a 3=a 5 C .(a 3)2=a 5D .a 2·a 3=a 54. 方程322x x =-的解为 A .x =2 B .x =6 C .x =-6 D .无解5. 岛P 位于岛Q 的正西方,由岛P 、Q 分别测得船R 位于南偏东30°和南偏西45°方向上.符合条件的示意图是6. 将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是 A .12 B .13 C .15D .16 7. 某市6月份某周内每天的最高气温数据如下:24、26、29、26、29、32、29(单位:℃),则这组数据的众数和中位数分别是A .29,29B .26,26C .26,29D .29,32 8. 下列等式成立的是A .123a b a b +=+ B .212a b a b =++ C .2ab a ab b a b =-- D .a aa b a b=--++ 9. 如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是A .70°B .60°C .55°D .50°xy OA B CD EF 15题图ABCDE1329题图 AB C DE10题图OA BP11题图ABC DPE C 113题图 ADEFPCB12题图为8,高AE 长为3,10.如图,菱形ABCD 的周长则AC ∶BD =A .1∶2B .1∶3C .1∶2D .1∶311. 如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆周角的度数是A .60°B .120°C .60°或120°D .30°或150° 12. 如图,P 为平行四边形ABCD 的边AD 上的一点,E 、F 分别为PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为S 、S 1、S 2.若S =3,则S 1+S 2的值为A .24B .12C .6D .313. 如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落在点C 1处;作∠BPC 1的平分线交AB 于点E .设BP =x ,BE =y ,那么y 关于x 的函数图象大致应为A B C D14. 小华通过学习函数发现:若二次函数y =ax 2+bx +c (a ≠0)的图象经过点(x 1,y 1),(x 2,y 2) (x 1 <x 2),若y 1y 2<0,则方程ax 2+bx +c =0(a ≠0)的一个根x 0的取值范围是x 1<x 0<x 2,请你类比此方法推断方程x 3+x -1=0的实数根x 0所在范围为A .0102x -<<B .0102x <<C .0112x <<D .0312x <<15. 如图,△ABC 和△DEF 的各顶点分别在双曲线1y x =,2y x=, 3y x=在第一象限的图象上,若∠C =∠F =90°,AC ∥DF ∥x 轴,BC ∥EF ∥y 轴,则S △ABC -S △DEF = A.112 B. 16 C. 14 D. 512第Ⅱ卷(非选择题 共75分)AO BC Dxy19题图AB CPM21题图S1S2S3……20题图S20注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题(本大题共6个小题,每小题3分,共18分.)16. 2×(-3)=___________________.17. 不等式112x-->0的解集为 ___________________.18. 分解因式:224129m mn n-+= ___________________.19. 如图所示,四边形ABCD的四个顶点A、B、C、D的坐标分别为(-1,1)、(-1,-3)、(5,3)、(1,3),则其对称轴的函数表达式为___________________.20. 手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3……,则S1+S2+S3+……+S20= ___________________.21. 如图,在△ABC中,∠BAC=90°,射线AM平分∠BAC,AB=8,cos∠ACB=35,点P为射线AM上一点,且PB=PC,则四边形ABPC的面积为___________________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(1)(本小题满分3分)解方程:x2+x-1=022.(2) (本小题满分4分)抛物线y=-x2+bx+c经过点(1,0),(-3,0),求b、c的值.23.(1) (本小题满分3分)A BC D 23题图223题图1ABCDEFO如图1,在圆内接正六边形ABCDEF 中,半径OC =4. 求正六边形的边长. 23.(2) (本小题满分4分)如图2,在△ABC 中,AB =13,BC =10,BC 边上的中线AD =12. 求证:AB =AC . 24.(本小题满分8分)在植树节到来之际,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省....的方案,并求出该方案所需费用.yxOAB C P26题图 BODC xy10% 不了解 45%知道尚未使用 使用过某小区居民 对共享单车的了解情况25105 人数2~4 10 20 30 40 50 某小区居民使用共享单车的情况 4~6 6~8 00~2 (这里的2~4表示:2千米<每天骑行路程≤4千米)25.(本小题满分8分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:(1)本次调查人数共 人,使用过共享单车的有 人;(2)请将条形统计图补充完整; (3)如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?26.(本小题满分9分)如图,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象交于点P (n ,2),与x 轴交于点A (-4,0),与y 轴交于点C ,PB 丄x 轴于点B ,点A 与点B 关于y 轴对称.(1)求一次函数、反比例函数的解析式; (2)求证:点C 为线段AP 的中点;(3)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形,如果存在,说明理由并求出点D 的坐标;如果不存在,说明理由. 27.(本小题满分9分)3),与x 轴交于B 、C 两如图,抛物线2323y x c +与y 轴交于点A (0,-点,其对称轴与x 轴交于点D ,直线l ∥AB 且过点D .(1)求AB 所在直线的函数表达式;(2)请你判断△ABD 的形状并证明你的结论;(3)点E 在线段AD 上运动且与点A 、D 不重合,点F 在直线l 上运动,且∠BEF =60°,连接BF ,求出△BEF 面积的最小值.28.(本小题满分9分)如图,正方形ABCD 中,对角线AC 、BD 交于点O ,将BD 绕点B 逆时针旋转30°到BE 所在的位置,BE 与AD 交于点F ,分别连接DE 、ABDEF O28题图CE .(1)求证:DE =DF ; (2)求证:AE ∥BD ; (3)求tan ∠ACE 的值.2017年学业水平阶段性调研测试 数学试题参考答案与评分标准一、选择题二、填空题16. -6 17. x <-2 18. (2m -3n )219. y =-x +2 20. 195π 21. 49 三、解答题22(1) 解:x ==············· 2分 ∴1x =,2x ···················· 3分 22(2) 解:方法1 由已知可得y =-x 2+bx +c=-(x -1)(x +3) ···················· 2分 =-x 2-2x +3, ····················· 3分∴b =-2,c =3. ·························· 4分 方法2把点(1,0),(-3,0)代入y =-x 2+bx +c 得10930b c b c -++=⎧⎨--+=⎩, ························· 1分 ①-②得:4b =-8,b =-2, ···················· 2分 把b =-2代入①得-1-2+c =0,c =3, ················ 3分 ∴23b c =-⎧⎨=⎩···························· 4分23题图1ABCDEFO23(1) 解:连接OD ,∵六边形ABCDEF 是⊙O 的内接正六边形, ∴∠O =360606︒=︒, ········ 1分 又∵OC =OD ,∴△OCD 是等边三角形, ······ 2分 ∴CD =OC =4,即正六边形的边长为4. ······· 3分 (2) ∵AD 是△ABC 的中线,∴BD =CD =12BC =5, ························ 1分∵AB =13,AD =12,∴BD 2+AD 2=52+122=169=132=AB 2, ··················· 2分 ∴AD ⊥BC ,∴AC 2= CD 2+AD 2=52+122=169,∴AC =13, ···························· 3分 ∴AB =AC . ····························· 4分 24. 解:(1)设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得: 1分 80x +60(17-x )=1220, ······················ 3分 80x +1020-60x =1220,x =10,∴ 17-x =7. ························· 4分 (2) 17-x < x , ·························· 5分 解得x >172, ··························· 6分 购进A 、B 两种树苗所需费用为80x +60(17-x )=20 x +1020,则费用最省需x 取最小整数9,此时17-x =8,这时所需费用为20×9+1020=1200(元). ································· 7分 答:(1)购进A 种树苗10棵,B 种树苗7棵;(2)费用最省方案为:购进A 种树苗9棵,B 种树苗8棵. 这时所需费用为1200元. ································· 8分0~2 2~4 4~6 6~8人数某小区居民使用共享单车的情况25. (1) 200,90 ························· 4分 (2) 补全条形 5分························ 7分(3)答: 每天的750人 ·················· 8分26. (1)∵ ∴AO =BO , ∵A (-4,0), ∴B (4,0),∴P (4,2), ···························· 1分把P (4,2)代入y =mx得m =8, ∴反比例函数的解析式:y =8x··················· 2分 把A (-4,0),P (4,2)代入y =kx +b 得:0424k b k b =-+⎧⎨=+⎩,解得:141k b ⎧=⎪⎨⎪=⎩,所以一次函数的解析式:y =14x +1. ················· 3分 (2) ∵点A 与点B 关于y 轴对称,∴OA =OB , ···························· 4分 ∵PB 丄x 轴于点B , ∴∠PBA =90°, ∵∠COA =90°, ∴PB ∥CO ,∴点C 为线段AP 的中点. ······················ 5分 (3)存在点D ,使四边形BCPD 为菱形. ················· 6分 ∵点C 为线段AP 的中点, ∴BC =12AP PC =, ∴BC 和PC 是菱形的两条边 ····················· 7分26题图由y =14x +1,可得点C (0,1), 过点C 作CD 平行于x 轴,交PB 于点E ,交反比例函数y =8x的图象于点D , 分别连结PD 、BD , ∴点D (8,1), BP ⊥CD ∴PE =BE =1, ∴CE =DE =4,∴PB 与CD 互相垂直平分, ····· 8分 ∴四边形BCPD 为菱形.∴点D(8,1)即为所求. ······ 9分27. (1)将点A (0c =当y =020x = 化简得x 2-2x -3=0∴(x +1)(x -3)=0 ∴ x 1=-1, x 2=3∴点B (-1,0),点C (3,0)················· 1分设直线AB 的表达式为y=kx+b ,图象经过点A (0,点B (-1,0),代入得0k b b -+=⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩∴直线AB 的表达式为y = ················· 2分(2)△ABD 是等边三角形,(结论不单独给分)点B (-1,0), 点D (1,0) ∴OB =OD =1,∵OA 是公共边,∠BOA =∠DOA =90°,∴△BOA ≌△DOA , ························· 3分 ∴BA =DA ,ABO DC l x yEFG tan∠ABO =331OA OB ==, ∴∠ABO =60°,∴△ABD 是等边三角形 ······················· 4分(3)过点E 作EG ∥x 轴,交AB 于点G , ················ 5分 ∵△ABD 是等边三角形 ∴∠BAD =∠ABD =∠ADB =60° ∴∠AEG =∠AGE =60° ∴△AEG 是等边三角形,∴AE=AG ····························· 6分 ∴DE=BG ∵AB ∥l∴∠EDF =∠BGE =120°∴∠GBE +∠GEB =60°,∠DEF +∠GEB =60°, ∴∠GBE =∠DEF ∴△BEG ≌△EFD ∴BE=EF 又∵∠BEF =60°∴△BEF 是等边三角形 ······················· 7分 ∴S △BEF =23BE 当BE ⊥AD 时,BE 的长度最小,则△BEF 的面积取最小值, ······· 8分 此时,BE =AB sin60°=3, △BEF 面积的最小值=23BE =33·················· 9分28. 证明:∵BD 绕点B 逆时针旋转30°至BE ,∴∠DBE =30°,BD=BE ,∴∠BDE =∠BED =180302︒-︒=75° ·········在正方形ABCD 中,BD 是对角线,∴∠ADB =45°,文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.11文档来源为:从网络收集整理.word 版本可编辑.ABCD EF O28题图G∴∠EDF =75°-45°=30°, ···················· 2分 在△DEF 中,∠DFE =180°-∠EDF -∠FED=180°-30°-75° =75°∴∠DFE =∠DEF∴DE=DF ····························· 3分 (2)证明:过点E 作EG ⊥BD 于点G , ∵∠DBE =30°∴EG =1122BE BD = ························· 4分在正方形ABCD 中,AC 、BD 是对角线, ∴AC=BD ,OA =1122AC BD =,AC ⊥BD ∴EG=OA 且EG ∥OA∴四边形AOGE 是平行四边形,∴四边形AOGE 是矩形 ······················· 5分 ∴AE ∥BD ····························· 6分 (3)解:设EG=x ,则BE=BD=AC =2EG =2x , ························ 7分 R t △BEG 中,BG =223BE EG x -=, ∴OG=BG -BO 31)x ,在矩形AOGE 中,∠EAO =90°, ··················· 8分AE=OG 31-)x∴tan∠ACE =31AE AC -=······················ 9分。
2017济南市天桥区中考数学第一次模拟考试试题(含答案)

2017年济南市天桥区九年级第一次模拟数学试题一、选择题(本大题共15小题,每小题3分,共45分)1.32-的相反数是( ) A .23- B . 23 C . 32- D .322.我国最新研制的巨型计算机“曙光3000超级服务器”,它的运算峰值可以达到每秒403200000000次。
这个数字用科学计数法来表示( )A .4032×108B .4.032×1010C .4.032×1011D .4.032×1012 3.下列运算正确的是( )A .x 3+x 2=x 5B .2x 3•x 2=2x 6C .(3x 3)2=9x 6D .x 6÷x 3=x 24.下面几个几何体,主视图是圆的是( )5.下列图形中,既是轴对称图形又是中心对称图形的是( )6.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )。
A .30° B . 35° C . 40° D .50°7.化简ab b b a a -+-22的结果是( ) A .a +b B . b -a C . a -b D .-a -b8.如图,将△PQR 向右平移2的个单位长度,再向下的平移3个单位长度,则顶点P 平移后的坐标是( )A .(-2,-4)B .(-2,4)C .(2,-3)D .(-1,-3)9.函数b kx y +=(k 、b 为常数,0≠k )的图象如图所示,则关于x 的不等式0>+b kx 的解集为( )A .0>xB .0<xC .2>xD .2<x10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4 个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为31,则袋中白球的个数为( )A .2B .3C .4D .1211.如图,将等腰直角三角形ABC 绕点A 逆时针旋转15度得到ΔAEF ,若AC =3,则阴影部分的面积为( ) A .1 B .21C . 23D .312.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元,设平均每次降价的百分率为x ,则下面所列方程正确的是( ) A .100(1−x )2=81 B .81(1−x )2=100 C .100(1-2x )=81 D .81(1-2x )=10013.如图,已知直线l :x y 33,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线y 轴于点A 2;……按此作法继续下去,则点A 4的坐标为( ) A .44 B . 43 C .42 D .414.如图,正方形ABCD 中,点E ,F 分别在BC ,CD 上, ΔAEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①CE =CF ,②∠AEB =75°,③AG =2GC ,④BE +DF =EF ,⑤S △C E F =2S △A B E ,其中结论正确的个数为( )A .2个B .3个C .4个D .5个A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分)16.分解因式:x 2+xy =_______________ 17.计算:9-2+(-2)0=______________.18.有一组数据:2,a ,4,6,7,它们的平均数是5,则这组数据的中位数是______________. 19.如图,△ABC 中,∠C =90°,若CD ⊥AB 于点D ,且BD =4,AD =9,则tan A =_________.ABC20.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点D 在AB 上,若以点D 为圆心,AD 为半径的圆于BC 相切,则⊙D 的半径为_____________.CB21.如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________________.三、解答题(本大题共7小题,共57分)22.(本小题满分7分)(1)化简:a (a -2b )+(a +b )2(2)解不等式组⎩⎨⎧x -2>0-2x +6>0,并把解集在数轴上表示出来.23. (本小题满分7分)(1)如图,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE =CF .求证:DE =BFFAC(2)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C =20°,求∠CDA 的度数.A。
2017年济南数学中考模拟真题及答案

2017年济南数学中考模拟真题及答案初三的学生备考的j阶段要多做数学中考模拟试题,并加以复习,这样能更快提升自己的成绩。
以下是小编精心整理的2017年济南数学中考模拟试题及答案,希望能帮到大家!2017年济南数学中考模拟试题一、选择题(本题共10个小题,每小题3分,共30分)1.﹣2,﹣1,0,四个数中,绝对值最小的数是( )A. B.﹣2 C.0 D.﹣12.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.3.要使分式有意义,则x的取值应满足( )A.x≠﹣2B.x≠2C.x≠﹣1D.x=14.对“某市明天下雨的概率是80%”这句话,理解正确的是( )A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大5.在平面直角坐标系中,点P(﹣,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限6.下列计算正确的是( )A.2a3•3a2=6a6B.a3+2a2=3a5C.a÷b× =aD.( ﹣)÷x﹣1=7.设函数y= (k≠0,x>0)的图象所示,若z= ,则z关于x的函数图象可能为( )A. B. C. D.8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.用两个相等的实数根B.有两个不相等的实数根C.不确定,与b的取值有关D.无实数根9.有以下四个命题:①半径为2的圆内接正三角形的边长为2 ;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x 的取值为x>3或x<﹣1,其中假命题的个数为( )A.4个B.3个C.2个D.1个10.,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为( )A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)11.,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于.12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件元.13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为.14.分解因式:a3﹣6a2+5a= .15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是.16.,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(本大题共9小题,共72分)17.(10分)计算、求值:(1)计算:| ﹣2|+( )﹣1﹣( +1)( ﹣1);(2)已知单项式2xm﹣1yn+3与﹣xny2m是同类项,求m,n的值.18.(7分),DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F(1)求证:EF=DE;(2)若AC=BC,判断四边形ADCF的形状.19.(10分)为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表进球数(个) 人数0 11 22 x3 y4 45 2(1)求这个班级的男生人数,补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;(2)写出女生进球个数统计表中x,y的值;(3)若该校共有学生1880人,请你估计全校进球数不低于3个的学生大约多少人?20.(6分)所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(结果用含非特殊角的三角函数和根式表示即可)21.(6分)已知关于x的不等式组有解,求实数a的取值范围,并写出该不等式组的解集.22.(7分)在直角坐标系中,直线y=kx+1(k≠0)与双曲线y= (x>0)相交于点P(1,m)(1)求k的值;(2)若双曲线上存在一点Q与点P关于直线y=x对称,直线y=kx+1与x轴交于点A,求△APQ的面积.23.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.24.(9分),已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.25.(10分)抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P 为抛物线上一点,且位于x轴下方.(1)1,若P(1,﹣3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;(2)2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB 与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t) 2017年济南数学中考模拟试题答案一、选择题(本题共10个小题,每小题3分,共30分)1.﹣2,﹣1,0,四个数中,绝对值最小的数是( )A. B.﹣2 C.0 D.﹣1【考点】18:有理数大小比较;15:绝对值.【分析】首先求出每个数的绝对值各是多少;然后根据有理数大小比较的法则,判断出﹣2,﹣1,0,四个数中,绝对值最小的数是哪个即可.【解答】解:|﹣2|=2,|﹣1|=1,|0|=0,| |= ,∵2>1> >0,∴﹣2,﹣1,0,四个数中,绝对值最小的数是0.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.要使分式有意义,则x的取值应满足( )A.x≠﹣2B.x≠2C.x≠﹣1D.x=1【考点】62:分式有意义的条件.【分析】分式有意义:分母不等于零.【解答】解:依题意得:﹣x+2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.4.对“某市明天下雨的概率是80%”这句话,理解正确的是( )A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大【考点】X3:概率的意义.【分析】根据概率的意义进行解答即可.【解答】解:“某市明天下雨的概率是80%”说明某市明天下雨的可能性较大,故选:D.【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.5.在平面直角坐标系中,点P(﹣,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:∵﹣ >0,∴点P(﹣,2)在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.下列计算正确的是( )A.2a3•3a2=6a6B.a3+2a2=3a5C.a÷b× =aD.( ﹣)÷x﹣1=【考点】6C:分式的混合运算;49:单项式乘单项式;6F:负整数指数幂.【分析】根据整式的运算以及分式的运算法则即可求出答案.【解答】解:(A)原式=6a5,故A错误;(B)a3与2a2不是同类项,不能合并,故B错误;(C)原式=a× × = ,故C错误;故选(D)【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.设函数y= (k≠0,x>0)的图象所示,若z= ,则z关于x的函数图象可能为( )A. B. C. D.【考点】G2:反比例函数的图象.【分析】根据反比例函数解析式以及z= ,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y= (k≠0,x>0),∴z= = = (k≠0,x>0).∵反比例函数y= (k≠0,x>0)的图象在第一象限,∴k>0,∴ >0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.用两个相等的实数根B.有两个不相等的实数根C.不确定,与b的取值有关D.无实数根【考点】AA:根的判别式.【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,∵△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选B.【点评】此题考查了根的判别式,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了完全平方公式.9.有以下四个命题:①半径为2的圆内接正三角形的边长为2 ;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x 的取值为x>3或x<﹣1,其中假命题的个数为( )A.4个B.3个C.2个D.1个【考点】O1:命题与定理.【分析】利用正多边形和圆、全等三角形的判定、概率公式及二次函数的性质分别判断后即可确定正确的选项.【解答】解:①半径为2的圆内接正三角形的边长为2 ,正确,是真命题;②有两边及其夹角对应相等的两个三角形全等,故错误,是假命题;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球的可能性大于摸到黑色球的可能性,故错误,是假命题;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为﹣1假命题有3个,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解正多边形和圆、全等三角形的判定、概率公式及二次函数的性质的知识,难度不大.10.,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为( )A. B. C. D.【考点】S3:黄金分割;KG:线段垂直平分线的性质;KH:等腰三角形的性质;T7:解直角三角形.【分析】根据三角形内角和定理求出∠A,根据等腰三角形的性质得到点E是线段AC的黄金分割点,根据余弦的概念计算即可.【解答】解:∵AB=AC,∠C=72°,∴∠A=36°,∵D是AB的中点,点E在AC上,DE⊥AB,∴EA=EB,∴∠ABE=∠A=36°,∴点E是线段AC的黄金分割点,∴BE=AE= ×4=2( ﹣1),∴cos∠ABE= = ,故选:C.【点评】本题考查的是等腰三角形的性质、线段垂直平分线的判定和性质、黄金分割的概念,掌握等腰三角形的性质、熟记黄金比值是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于70°.【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠3=∠1,4=∠3,然后由邻补角的定义即可得到结论.【解答】解:∵a∥b,c∥d,∴∠3=∠1,∠4=∠3,∴∠1=∠4=110°,∴∠2=180°﹣∠4=70°,故答案为:70°.【点评】本题考查了平行线的性质,解题时注意:运用两直线平行,同位角相等是解答此题的关键.12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件150 元.【考点】8A:一元一次方程的应用.【分析】设该商品的标价为每件为x元,根据八折出售可获利20元,可得出方程:80%x﹣100=20,再解答即可.【解答】解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.【点评】此题考查了一元一次方程的应用,关键是仔细审题,得出等量关系,列出方程,难度一般.13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为.【考点】X5:几何概率;29:实数与数轴.【分析】直接利用数轴的性质,结合a的取值范围得出答案.【解答】解:∵|x|<2,∴﹣2当a>1时有1∴取到的点对应的实数大于1的概率为:,故答案为: .【点评】此题主要考查了几何概率,正确利用数轴,结合a的取值范围求解是解题关键.14.分解因式:a3﹣6a2+5a= a(a﹣5)(a﹣1) .【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】原式提取公因式,再利用十字相乘法分解即可.【解答】解:原式=a(a2﹣6a+5)=a(a﹣5)(a﹣1).故答案是:a(a﹣5)(a﹣1).【点评】此题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是 4 .【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高= =2 ,所以左视图的面积为×4×2 =4 .故答案为4 .。
2017年山东省济南市中考数学试卷(含答案解析版)(3)(K12教育文档)

2017年山东省济南市中考数学试卷(含答案解析版)(3)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年山东省济南市中考数学试卷(含答案解析版)(3)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年山东省济南市中考数学试卷(含答案解析版)(3)(word版可编辑修改)的全部内容。
第1页(共58页)2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,,3中,最大的是( )A.0 B.﹣2 C . D.32.(3分)如图所示的几何体,它的左视图是()A .B .C .D .3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )A.0。
555×104B.5。
55×104C.5。
55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是( )第2页(共58页)A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A .B .C .D .6.(3分)化简÷的结果是()A.a2B .C .D .7.(3分)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A .B .第3页(共58页)C .D .9.(3分)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A .B .C .D .10.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是( )A.12cm B.24cm C.6cm D.12cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2第4页(共58页)12.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A .B.3 C .D.413.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A .B.2C .D .14.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4第5页(共58页)15.(3分)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x 之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4= .17.(3分)计算:|﹣2﹣4|+()0= .18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.第6页(共58页)19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC 的面积为.21.(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),第7页(共58页)则P,Q的“实际距离"为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离"相等,则点M的坐标为.22.(6分)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:.于点F.求证:AB=DF.23.(4分)如图,在矩形ABCD,AD=AE,DF⊥AE第8页(共58页)25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1。
2017年山东省济南市中考数学试题

2017年山东省济南市中考数学试题一、选择题(本大题共15小题,每小题3分,共45分)1.(2017济南,1,3分)在实数0,-2,5,3中,最大的是( ) A .0 B .-2 C . 5 D .3 【答案】D2.(2017济南,2,3分)如图所示的几何体,它的左视图是()A .B .C .D .【答案】A3.(2017济南,3,3分)2017年5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104 B .5.55×104 C .5.55×103 D .55.5×103 【答案】C4.(2017济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40° B .45° C .50° D .60°a b【答案】C5.(2017济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .【答案】B6.(2017济南,6,3分)化简a 2+ab a -b ÷aba -b 的结果是( )A .a 2B .a 2a -bC .a -b bD .a +b b【答案】D7.(2017济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( ) A .-6 B .-3 C .3 D .6 【答案】B 8.(2017济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .⎩⎨⎧y -8x =3y -7x =4B .⎩⎨⎧y -8x =37x -y =4C .⎩⎨⎧8x -y =3y -7x =4D .⎩⎨⎧8x -y =37x -y =4【答案】C9.(2017济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23出口出口【答案】B10.(2017济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .63cmD .123cm【答案】C11.(2017济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( ) A .x >-1 B .x >1 C .x >-2 D .x >2 【答案】A12.(2017济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =0.6m ,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为( ) A .34B .3C .35D .4EA【答案】B13.(2017济南,13,3分)如图,正方形ABCD 的对角线AC ,BD 相较于点O ,AB =32,E 为OC 上一点, OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( ) A .3105B .2 2C .354D .322AB14.(2017济南,14,3分)二次函数y =ax 2+bx +c (a ≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( ) A .1 B .2 C .3 D .4 【答案】C15.(2017济南,15,3分)如图,有一正方形广场ABCD ,图形中的线段均表示直行道路,⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( ) A .A →B →E →G B .A →E →D →C C .A →E →B →F D .A →B →D →C第15题图1第15题图2第15题图3【答案】D二、填空题(本大题共6小题,每小题3分,共18分)16.(2017济南,16,3分)分解因式:x 2-4x +4=__________. 【答案】(x -2)217.(2017济南,17,3分)计算:│-2-4│+(3)0=________________. 【答案】718.(2017济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.19.(2017济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm . 【答案】20C20.(2017济南,20,3分)如图,过点O 的直线AB 与反比例函数y =kx 的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y =-3kx (x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.【答案】821.(2017济南,21,3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿综或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______________.【答案】(1,-2)三、解答题(本大题共7小题,共57分)22.(2017济南,22,7分)(1)先化简,再求值:(a +3)2-(a +2)(a +3),其中a =3. 【解】原式=a 2+6a +9-(a 2+2a +3a +6) = a 2+6a +9-a 2-2a -3a -6) =a +3. 当a =3时, 原式=3+3=6.(2)解不等式组:⎩⎪⎨⎪⎧3x -5≥2(x -2) ①x 2>x -1 ②【解】由①,得x ≥1.由②,得x <2.∴不等式组的解集为:1≤x <2.23.(2017济南,23,7分)(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .ECAB证明:∵四边形ABCD 是矩形,∴∠B =90°,AD ∥B C. ∴∠DAF =∠BE A . ∵DF ⊥AE , ∴∠AFD =90°.∴∠B =∠AFD =90°. 又∵AD =AE , ∴△ADF ≌△EB A. ∴AB =DF .(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.CD【解】∵AB 是⊙O 的直径,∴∠ADB =90°. ∵∠B =∠C =25°, ∴∠BAD =90°-25°=65°.24.(2017济南,24,8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【解】设银杏树的单价是x 元,玉兰树的单价是1.5x 元,则12000x +90001.5x=150. 解得x =120.经检验x =120是方程的解. ∴1.5x =180.答:银杏树的单价是120元,玉兰树的单价是180元, 25.(2017济南,25,8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数; (4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数. 【解】(1)a =10,b =0.28,c =50;(2)将频数分布表直方图补充完整,如图所示:本(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本). (4)该校八年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).26.(2017济南,26,9分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A (2,1),反比例函数y =kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =kx (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【解】(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2.又∵AB =OC =3, ∴B (2,4).∵反比例函数y =kx (x >0)的图象经过的B ,∴4=k2.∴k =8.∴反比例函数的关系式为y =8x.(2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=2 5.∵点H 是OB 的中点,∴点H (1,2).∴OH =12+22= 5. ∵∠OHN =∠OGB =90°,∠HON =∠GOB , ∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =2.5. (3)ED =BF .理由:由点A (2,1)可得直线OA 的解析式为y =12x .解方程组⎩⎨⎧y =12xy =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4.∵点D 在第一象限,∴D (4,2).由B (2,4),点D (4,2)可得直线BD 的解析式为y =-x +6. 把y =0代入上式,得0=-x +6.解得x =6. ∴E (6,0).∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=2 2. ∴ED =BF .27.(2017济南,27,9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB =∠AED =90°,∠CAB =∠EAD =60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF 的两条边是否相等,如EF =CF ,以下是她的证明过程①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.第27题图2第27题图1C C【解】(1)①证明中所叙述的辅助线如下图所示:第27题答案图1CA②证明的括号中的理由是:AAS.(2)△CEF是等边三角形.证明如下:设AE=a,AC=b,则AD=2a,AB=2b,DE=3a,BC=3b,CE=a+b.∵△BGF≌△DEF,∴BG=DE=3a.∴CG=BC+BG=3(a+b).∵CB CG =3b 3(a +b )=b a +b ,CA CE =b a +b,∴CB CG =CACE .又∵∠ACB =∠ECG ,∴△ACE ∽△ECG .∴∠CEF =∠CAB =60°. 又∵CF =EF (已证), ∴△CEF 是等边三角形. (3)△CEF 是等边三角形.证明方法一: 如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FN B.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN .设AC =a ,AE =b ,则BC =3a ,DE =3b . ∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°. ∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EA C . 在△AEC 和△BNC 中, ∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC , ∴△AEC ∽△BN C .∴∠ECA =∠NC B .∴∠ECN =90°. 又∵EF =FN , ∴CF =12EN =EF .又∵∠CEF =60°,∴△CEF 是等边三角形.第27题答案图2N第27题答案图3证明方法二:如答案图3,取AB 的中点M ,并连接CM ,FM ,则CM =12AB =A C.又∵∠CAM =60°,∴△ACM 是等边三角形. ∴∠ACM =∠AMC =60°.∵AM =BM ,DF =BF ,∴MF 是△ABD 的中位线.∴MF =12AD =AE 且MF ∥A D .∴∠DAB +∠AMF =180°.∴∠DAB +∠AMF +∠AMC =180°+60°=240°. 即∠DAB +∠CMF =180°+60°=240°. 又∵∠CAE +∠DAB =360°-∠DAE -∠BAC =360°-60°-60=240°, ∴∠DAB +∠CMF =∠CAE +∠DAB ∴∠CMF =∠CAE .又∵CM =AC ,MF =AE ,∴△CAE ≌△CMF .∴CE =CF ,∠ECA =∠FCM . 又∵∠ACM =∠ACF +∠FCM =60°, ∴∠ACF +∠ECA =60°.即∠ECF =60°. 又∵CE =CF ,∴△CEF 是等边三角形.28.(2017济南,28,9分)如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交B C 于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)点P 是抛物线M 1对称轴上一动点,当∠CP A =90°时,求所有符合条件的点P 的坐标;(3)如图2,点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2.①设点D 平移后的对应点为点D ′,当点D ′ 恰好在直线AE 上时,求m 的值; ②当1≤x ≤m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DFAF=2,∴AF =3.∴OF =1.∴D (1,6).把A (4,0),D (1,6)分别代入 y =ax 2+bx (a ≠0),得⎩⎨⎧0=16a +4b 6=a +b .解得⎩⎨⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x .(2)连接AC ,则AC =42+62=213.∵y =-2x 2+8x =-2(x -2)2+8, ∴抛物线M 1的对称轴是直线x =2. 设直线x =2交OA 于点N ,则N (2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2. ∵点M 是AC 的中点,∴点M (2,3).∴MN =2. ∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13.∴P 1N =MN + P 1M =3+13. ∴点P 1(2,3+13).同理可得点P 2(2,3-13).(3)由A (4,0),点E (0,4)可得直线AE 的解析式为y =-x +4. ①点D (1,6)平移后的对应点为点D ′(1,6-m ),∵点D ′ 恰好在直线AE 上 ∴6-m =-1+4. 解得m =3.∴D ′(1,3),m =3.答案图3②如答案图4,作直线x =1,它与直线AE 的交点就是点D ′(1,3).作直线x =m 交直线AE 于点Q (m ,-m +4).设抛物线M 2的解析式为y =-2x 2+8x -m .若要直线AE 与抛物线M 2有两个交点N 1、N 2,则关于x 的一元二次方程-2x 2+8x -m =-x +4有两个不相等的实数根,将该方程整理,得2x 2+9x +m +4=0. 由△=92-4×2(m +4)>0,解得m <498.又∵m >1,∴1<m <498.…………………………………………………………………………①∵1≤x ≤m (m >1),∴抛物线M 2与直线AE 有两个交点N 1、N 2要在直线x =1与直线x =m 所夹的区域内(含左、右边界).当点N 1与点D ′(1,3)重合时,把D ′(1,3)的坐标代入y =-2x 2+8x -m ,可得m =3. ∴m ≥3…………………………………………………………………………②当点N 2与点Q (m ,-m +4)重合时,把点Q (m ,-m +4)的坐标代入y =-2x 2+8x -m ,可得-m +4=-2m 2+8m -m .解得m 1=2+2,m 2=2-2(不合题意,舍去). ∴m ≥2+2…………………………………………………………………………③ 由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498..。
山东省济南市九年级上学期数学第一次月考试卷

山东省济南市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·北京) 下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .2. (2分)已知正比例函数y1=x,反比例函数,由y1 , y2构造一个新函数y=x+,其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题:①该函数的图象是中心对称图形;②当x<0时,该函数在x=﹣1时取得最大值﹣2;③y的值不可能为1;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是()A . ①②④B . ①②③C . ②③D . ①③3. (2分) (2020九上·番禺期末) 若点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,则当y≥0时,x的取值范围是()A . ﹣1<x<3B . x<﹣1或x>3C . ﹣1≤x≤3D . x≤﹣1或x≥34. (2分)关于的一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定5. (2分)反比例函数y=的图象的对称轴条数是()A . 0B . 1C . 2D . 46. (2分)如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于()A . 50°B . 60°C . 70°D . 80°7. (2分)在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向下、向左平移2个单位,那么在新坐标系下抛物线的解析式是()A . y=2(x-2)2+2B . y=2(x+2)2-2C . y=2(x-2)2-2D . y=2(x+2)2+28. (2分) (2018九上·成都期中) 一元二次方程的根的情况是A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根9. (2分) (2015八下·安陆期中) 若等边△ABC的边长为2cm,那么△ABC的面积为()A . cm2B . 2cm2C . 3cm2D . 4cm210. (2分) (2017八下·东营期末) 若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是x=1C . 当x=1时,y的最大值为4D . 抛物线与x轴的交点为(﹣1,0),(3,0)二、填空题 (共6题;共6分)11. (1分) (2015八下·嵊州期中) 方程(x﹣1)2=4的根是________.12. (1分)已知抛物线y=x2-k的顶点为P,与x轴交于点A,B,且△ABP是正三角形,则k的值是________13. (1分)如图,在平面直角坐标系xOy中,点A1 , A2 , A3 ,…,An在x轴的正半轴上,且OA1=2,OA2=2OA1 , OA3=2OA2 ,…,OAn=2OAn﹣1 ,点B1 , B2 , B3 ,…,Bn在第一象限的角平分线l上,且A1B1 ,A2B2 ,…,AnBn都与射线l垂直,则B1的坐标是________,B3的坐标是________,Bn的坐标是________.14. (1分) (2019九上·思明月考) 公路上行驶的汽车的刹车距离(m)与时间(s)的函数关系式为,司机刹车时汽车要滑行________秒才能停下来.15. (1分)(2020·达县) 已知k为正整数,无论k取何值,直线与直线都交于一个固定的点,这个点的坐标是________;记直线和与x轴围成的三角形面积为,则________,的值为________.16. (1分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的倍(木条宽度忽略不计),则这个平行四边形的最小内角为________ 度.三、解答题 (共9题;共80分)17. (10分) (2020九上·滕州期中) 我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① ;② ;③ ;④ .18. (5分) (2018九上·丹江口期中) 已知抛物线的顶点坐标是(﹣1,﹣4),与y轴的交点是(0,﹣3),求这个二次函数的解析式.19. (5分)(2019·大邑模拟) 若关于y的一元二次方程by2﹣(2b﹣1)y+b=0有两个实数根,求满足条件的最大整数b .20. (10分) (2020九上·武汉期中) 如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,平行四边形ABCD的顶点在格点上.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:( 1 )将线段AD绕点A逆时针旋转90°,画出对应线段AE;( 2 )过点E画一条直线把平行四边形ABCD分成面积相等的两部分;( 3 )过点D画格点线段DP,使得DP⊥BC于点M,垂足为M;( 4 )过点M画线段MN,使得MN//AB,MN=AB.21. (5分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),A(﹣1,0),B(3,0),与y轴交于点C(0,3)连接BC.(1)求抛物线的解析式;(2)点D与点C关于抛物线对称轴对称,连接DB、DC,直线PD交直线BC于点P,且直线PD把△BCD分成面积相等的两部分,请直接写出直线PD的解析式.22. (10分)(2018·内江) 如图,已知抛物线与轴交于点和点,交轴于点 .过点作轴,交抛物线于点 .(1)求抛物线的解析式;(2)若直线与线段、分别交于、两点,过点作轴于点,过点作轴于点,求矩形的最大面积;(3)若直线将四边形分成左、右两个部分,面积分别为、,且,求的值.23. (10分) (2020九上·遂宁期末) 如图,直线与轴、轴分别相交于点B、C,经过B、C两点的抛物线与轴的另一个交点为A,顶点为P,且对称轴为直线。
山东省济南市 中考数学一模试卷

中考数学一模试卷一、选择题(本大题共15小题,共45.0分)1.实数7的相反数是()A. B. C. D. 72.《2017中国共享单车行业研究报告》报告指出,2月20日至26日一周,摩拜单车的日均有效使用时间是1100万分钟,远远领先行业第二名ofo共享单车,使用量稳居行业首位,数字1100万用科学记数法表示为()A. B. C. D.3.如图是由4个大小相等的正方形搭成的几何体,其左视图是()A.B.C.D.4.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E,若∠A=42°,则∠D=()A.B.C.D.5.下列计算正确的是()A. B. C. D.6.不等式组的解集在数轴上表示为()A. B.C. D.7.在x2□2xy□y2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()A. 1B.C.D.8.已知x+y=﹣5,xy=3,则x2+y2=()A. 25B.C. 19D.9.抛物线y=x2+2x+m-1与x轴有交点,则m的取值范围是()A. B. C. D.10.下列命题是真命题的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是正方形C. 一组对边平行的四边形是平行四边形D. 四边相等的四边形是菱形11.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A. 小亮骑自行车的平均速度是B. 妈妈比小亮提前小时到达姥姥家C. 9:00妈妈追上小亮D. 妈妈在距家13km处追上小亮12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc<0;②a+b+c<0;③4a+c>2b;④2a-b=0;⑤m(am+b)+b<a(m≠-1),其中,正确的结论有()A. 2个B. 3个C. 4个D. 5个13.对于实数a,b,先定义一种新运算“★”如下:a★b=当时当时.若2★m=36,则实数m等于()A. B. 4 C. 4或 D. 4或或14.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B.C. D.15.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①△AED≌△GED;②四边形AEGF是菱形;③∠DFG=112.5°;④BC+FG=1.5,其中正确的结论是()A. ①②B. ①②③C. ②③④D. ①③④二、填空题(本大题共6小题,共18.0分)16.分解因式:x3-xy2=______.17.化简:的结果是______.18.仙桃市大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全市学校的设施和设备进行全面改造,2014年市政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为______.19.如图,等边三角形AOB的顶点A的坐标为(-4,0),顶点B在反比例函数y=(x<0)的图象上,则k=______.20.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是______(填序号)21.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为______.三、计算题(本大题共1小题,共8.0分)22.课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A-优秀,B-良好,C-一般,D-较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有______ 名,D类男生有______ 名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.四、解答题(本大题共6小题,共49.0分)23.(1)+()-1-2sin45°-|1-|(2)解分式方程:=-2.24.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.25.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)26.如图,在平面直角坐标系中,已知点A(8,1),B(0,-3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.28.如图,抛物线y=-x2+x+2与x轴交于点A、点B,与y轴交于点C、点D与点C关于x轴对称,点P是x轴上一动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求直线BD的解析式.(2)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时四边形CQMD是平行四边形.(3)点P在运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q坐标;若不存在,说明理由.答案和解析1.【答案】C【解析】解:7的相反数是-7,故选:C.根据只有符号不同的两个数互为相反数,可得答案.本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.【答案】D【解析】解:1100万=11000000,用科学记数法表示为:1.1×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:从正面看易得第一层有2个正方形,第二层最左边有一个正方形.故选C.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【答案】D【解析】解:∵AB∥CD,∴∠ECD=∠A=42°,又∵DE⊥AE,∴直角△ECD中,∠D=90°-∠ECD=90°-42°=48°.故选:D.首先根据平行线的性质求得∠ECD的度数,然后在直角△ECD中,利用三角形内角和定理求解.本题考查了平行线的性质以及三角形内角和定理,正确运用定理是关键.5.【答案】D【解析】解:A、结果是2a6,故本选项不符合题意;B、结果是3,故本选项不符合题意;C、结果是a6,故本选项不符合题意;D、结果是a3,故本选项符合题意;故选D.根据合并同类项法则、单项式除以单项式法则、幂的乘方、同底数幂的乘法分别求出每个式子的值,再判断即可本题考查了合并同类项法则、单项式除以单项式法则、幂的乘方、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.6.【答案】C【解析】解:,解不等式2x-1≥5,得:x≥3,解不等式8-4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.7.【答案】C【解析】解:能够凑成完全平方公式,则2xy前可是“-”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:C.让填上“+”或“-”后成为完全平方公式的情况数除以总情况数即为所求的概率.此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比;a2±2ab+b2能构成完全平方式.8.【答案】C【解析】解:∵x+y=-5,xy=3,∴x2+y2=(x+y)2-2xy=25-6=19.故选:C.把x2+y2利用完全平方公式变形后,代入x+y=-5,xy=3求值.本题的关键是利用完全平方公式求值,把x+y=-5,xy=3当成一个整体代入计算.9.【答案】A【解析】解:由题意可知:△=4-4(m-1)≥0,∴m≤2,故选(A)根据抛物线与x轴有交点可知,△≥0,本题考查抛物线与x轴交点,解题的关键是列出不等式,本题属于基础题型.10.【答案】D【解析】解:A、对角线相等的四边形是矩形是假命题,应为对角线相等的平行四边形是矩形,故本选项不符合题意;B、对角线互相垂直的四边形是正方形是假命题,应为对角线互相垂直平分且相等的四边形是正方形,故本选项不符合题意;C、一组对边平行的四边形是平行四边形是假命题,应为两组对边平行的四边形是平行四边形,故本选项不符合题意;D、四边相等的四边形是菱形是真命题,故本选项符合题意.故选D.根据矩形、正方形、平行四边形、菱形的判定方法对各选项分析判断即可得解.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.11.【答案】D【解析】解:解:A、根据函数图象小亮去姥姥家所用时间为10-8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10-9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9-8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故错误;故选D.根据函数图象可知根据函数图象小亮去姥姥家所用时间为10-8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.12.【答案】C【解析】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=-=-1<0,∴b=2a,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①错误;∵x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的对称轴为直线x=-1,抛物线与x轴的一个交点在点(0,0)和(1,0)之间,∴抛物线与x轴的一个交点在点(-3,0)和(-2,0)之间,∴当x=-2时,y>0,∴4a-2b+c>0,所以③正确;∵抛物线对称轴x=-=-1,∴b=2a,即2a-b=0,所以④正确;∵抛物线的对称轴为直线x=-1,∴当x=-1时,y有最大值,∴am2+bm+c<a-b+c(m≠-1),∴m(am+b)<a-b(m≠-1),所以⑤正确;综上,正确的结论有②③④⑤,故选:C.由抛物线开口向下得a<0,由抛物线的对称轴为直线x=-=-1得b=2a<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;由于x=1时,函数值小于0,所以a+b+c<0;根据抛物线的对称性得到抛物线与x轴的一个交点在点(-3,0)和(-2,0)之间,则当x=-2时,y>0,即4a-2b+c>0;根据抛物线的对称轴为直线x=-1,开口向下,得到当x=-1时,y有最大值,所以am2+bm+c<a-b+c(m≠-1),整理得到m(am+b)<a-b(m≠-1).本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.13.【答案】B【解析】解:根据题意,得:①当2≥m时,2★m=4m+2=36,即4m+2=36,解得,m=>2(不合题意,舍去);②当2<m时,2★m=2m2+m=36,即2m2+m-36=0,∴(m-4)(2m+9)=0,∴m-4=0或2m+9=0,∴m=4,或m=-4.5<2,(不合题意,舍去),综合①②,m=4.故选B.分类讨论:①当2≥m时,将2★m代入新定义运算a★b=a2b+a;②当2<m时,将2★m代入新定义运算a★b=ab2+b.本题考查了一元一次方程的解法、因式分解法解一元二次方程.利用因式分解解方程时,采用了“十字相乘法”分解因式:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.14.【答案】C【解析】【分析】首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1<x≤2;③2<x≤3;分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.本题考查了动点问题的函数图象,正方形的性质,三角形的面积,利用数形结合、分类讨论是解题的关键.【解答】解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9-3x,则△BPQ的面积=AP•BQ,解y=•(9-3x)•x=x-x2;故D选项错误.故选:C.15.【答案】B【解析】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故①正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理△AEF≌△GEF,可得EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故②正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误.故选B.首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.16.【答案】x(x+y)(x-y)【解析】解:x3-xy2=x(x2-y2)=x(x+y)(x-y).故答案为:x(x+y)(x-y).首先提取公因式x,进而利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.17.【答案】m+3【解析】解:====m+3.故答案为:m+3.首先将原式变为同分母的分式:,然后利用同分母的分式相加减的运算法则求解即可答案,注意运算结果需化为最简.此题考查了分式的加减运算法则.此题比较简单,注意运算要细心,注意运算结果需化为最简.18.【答案】20%【解析】解:设每年投资的增长率为x,由题意得,5×(1+x)2=7.2,解得:x=0.2或x=-1.2(不合题意,舍去),答:每年投资的增长率为20%.故答案为:20%.设每年投资的增长率为x,根据题意可得,2014年投资额×(1+x)2=2016年的投资额,据此列方程求解.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.19.【答案】-4【解析】解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(-4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(-2,2),∴k=-2×2=-4,故答案为-4.过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0),所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.20.【答案】①④【解析】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.本题主要考查矩形的性质和轴对称的性质、等边三角形的判定、直角三角形的性质等知识,综合性较强,掌握直角三角形中30°角所对的直角边是斜边的一半是解题的关键.21.【答案】【解析】解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时PA+PB最小,且等于AC的长.连接OA,OC,根据题意得:∵∠AMN=30°,∴弧AN的度数是60°,∵B为AN弧的中点,∴弧BN的度数是30°,∵NO⊥BC,∴=,∴弧CN的度数是30°,∴=+=90°∴∠AOC=90°,又∵OA=OC=1,∴AC==.即PA+PB的最小值为:,故答案为:.首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.此题主要考查了利用轴对称求最短路线问题,解答此题的关键是找到点B的对称点,把题目的问题转化为两点之间线段最短解答.22.【答案】3;1【解析】解:(1)本次调查的学生数=10÷50%=20(名);(2)C类学生数=20×25%=5,则C类女生数=5-2=3(名);D类学生数=20-3-10-5=2(名),则D类男生有1名,条形统计图为:(3)画树状图为:共有15种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为7种,所以所选同学中恰好是一位男同学和一位女同学的概率=.故答案为3,1.(1)用B类的人数除以它所占的百分比即可得到本次调查的学生数;(2)先利用调查的总人数乘以C类所占百分比得到C类人数,然后减去男生人数即可得到C类女生人数,同样可求出D类男生人数,然后补全条形统计图;(3)先画树状图展示15种等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式计算.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.【答案】解:(1)原式=2+2-2×-(),=2+2-+1,=3;(2)去分母得:1-x=-1-2(x-3),1-x=-1-2x+6,-x+2x=-1+6-1,x=4,检验:把x=4代入x-3得:x-3=4-3=1≠0,∴x=4是原分式方程的解.【解析】(1)首先分别计算二次根式、负整数指数幂、特殊角的三角函数和绝对值,再合并同类二次根式,进行加减计算即可;(2)首先乘以x-3去分母,然后再解方程可得x的值,最后要进行检验.此题主要考查了实数运算和解分式方程,关键是掌握负整数指数幂、绝对值的性质以及特殊角的三角函数.24.【答案】解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,∴∠E=∠CFD=90°,∵AD是中线,∵BD=CD,在△BED和△CFD中,∵ ,∴△BED≌△CFD(AAS),∴BE=CF;(2)∵AB为⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°又∵∠BAC=2∠B∴∠B=30°,∠BAC=60°∵OA=OC∴△OAC是等边三角形.∴OA=AC=6,∠AOC=60°∵AP是⊙O的切线.∴∠OAP=90°∴在直角△OAP中,∠P=90°-∠AOC=90°-60°=30°∴OP=2OA=2×6=12,∴PA===6.【解析】(1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD可得答案;(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.本题主要考查了全等三角形的判定与性质及切线的性质定理,勾股定理以及直角三角形中,30度的锐角所对的直角边等于斜边的一半,正确证明△AOC 是等边三角形是解决本题的关键.25.【答案】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.【解析】(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.26.【答案】解:(1)把点A(8,1)代入反比例函数y=(x>0)得:k=1×8=8,y=,∴k=8;(2)设直线AB的解析式为:y=kx+b,根据题意得:,解得:k=,b=-3,∴直线AB的解析式为:y=x-3;设M(t,),N(t,t-3),则MN=-t+3,∴△BMN的面积S=(-t+3)t=-t2+t+4=-(t-3)2+,∴△BMN的面积S是t的二次函数,∵-<0,∴S有最大值,当t=3时,△BMN的面积的最大值为;(3)∵MA⊥AB,∴设直线MA的解析式为:y=-2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=-2x+17,解方程组得:或(舍去),∴M的坐标为(,16),∴t=.【解析】(1)把点A坐标代入y=(x>0),即可求出k的值;(2)先求出直线AB的解析式,设M(t,),N(t,t-3),则MN=-t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组才能得出结果.27.【答案】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴ .∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°-∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°-180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【解析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.本题考查了全等三角形的判定与性质、平行线的性质、等腰直角三角形的判定与性质、多边形的内角与外角等知识,渗透了变中有不变的辩证思想,是一道好题.28.【答案】解:(1)在y=-x2+x+2中,令x=0可得y=2,∴C(0,2),∵C与D关于x轴对称,∴D(0,-2),令y=0可得-x2+x+2=0,解得x1=-1,x2=4,∴B(4,0),设BD解析式为y=kx+b,则,解得,∴直线BD解析式为y=x-2;(2)∵P(m,0),∴M(m,m-2),Q(m,-m2+m+2),∵CQMD是平行四边形,∴QM∥CD,∴QM=CD=4,当点P在OB上运动时QM=-m2+m+2-(m-2)=-m2+m+4=4,解得m1=0(舍去),m2=2,∴当m=2时,四边形CQMD为平行四边形;(3)由(2)可知Q(m,-m2+m+2),且B(4,0),D(0,-2),∴BQ2=(m-4)2+(-m2+m+2)2,DQ2=m2+[(-m2+m+2)+2]2,BD2=20,①当以点B为直角顶点时,则有DQ2=BQ2+BD2,∴m2+[(-m2+m+2)+2]2=(m-4)2+(-m2+m+2)2+20,解得m1=3,m2=4,∴点Q坐标为(4,0)(舍)或(3,2);②当以D为直角顶点时,同理可求m3=-1,m4=8,∴点Q坐标为(-1,0)或(8,-18);综上可知存在满足条件的点Q,其坐标为(3,2)(-1,0)或(8,-18).【解析】(1)可先求得C点坐标,再根据对称可求得D点坐标,再结合抛物线解析可求得B点坐标,利用待定系数法可求得直线BD解析式;(2)用P点坐标可分别表示出M、Q的坐标,利用平行四边形的性质可得到关于m的方程,可求得m的值;(3)由(2)中点Q的坐标,利用勾股定理可分别表示出BQ、BD、DQ,再利用直角三角形的判定可得到关于m的方程,可求得点Q的坐标.本题为二次函数的综合应用,涉及待定系数法、平行四边形的性质、勾股定理、方程思想及分类讨论思想等知识点.在(1)中求得B、D坐标是解题的关键,在(2)中用m表示出QM的长是解题的关键,在(3)中用m分别表示出BQ、DQ的长是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年济南市市中区九年级第一次模拟考试数学试题(2017.03)
一、选择题(本大题共15小题,每小题3分,共45分) 1.-2的绝对值是() A .-12 B .12
C .-2
D .2
2.数字3300用科学计数法表示为() A .0.33×104 B .
3.3×103
C .3.3×104
D .33×103
3.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于() A .24° B .34° C .56° D .124°
4.若2(a +3)的值与4互为相反数,则a 的值为() A .12
B .-5
C .-7
2
D .-1
5.如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是()
A .
B .
C .
D .
6.下列运算正确的是()
A .x 2+x 3=x 5
B .(x -2)2=x 2-4
C .(x 3)4=x 7
D .2x 2 x 3=2x 5 7.下面四个手机应用图标中是中心对称图形的是()
A .
B .
C .
D .
8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数、众数分别是() A .4,5 B .5,4 C .4,4,
D .5,5
9.如图,在10×6的网格中,每个小方格的边长都,1个单位,将△ABC 平移到
△DEF 的位置,下面正确的平移步骤是( ) A .先向左平移5个单位,再向下平移2个单位 B .先向右平移5个单位,再向下平移2个单位 C .先向左平移5个单位,再向上平移2个单位 D .先向右平移5个单位,再向下平移2个单位是()
10.化简m -1m ÷1-m
m 2是()
b
A .m
B .-m
C .1
m
D .-1m
11.如图,直线l 经过第二、三、四象限,l 的解析式为y =(m -2)x +n ,则m 的取值范围在数轴上表示为()
A .
B .
C .
D .
12.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于点E ,则sin ∠E 的值是() A .12
B .13
C .55
D .32
13.已知关于x 的二元一次方程组⎩⎨
⎧3x +y =3m -5x -y =m -1
,若x +y >3,则m 的取值范围是()
A .m >1
B .m <2
C .m >3
D .m >5
14.对于实数x ,我们规定[x ]表示不等于x 的最大整数,如[4]=4,[3]=1,[-2.5]=-3.现对82进行如下操作: 82
[82
82
]=9[93]=3
[
3
3
]=1,这样 这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1() A .1 B .2 C .3
D .4
15.如图所示,直线y =12x +2与y 轴交于点A ,与直线y =-1
2x 交于点B ,以AB 为边向右作菱形ABCD ,点C 恰与原点O 重合,抛物线y =(x -h )2+k 的顶点在直线y =-1
2x 上移动,若抛物线与菱形的边AB 、BC 都有公共点,则h 的取值范围是()
A .-2≤h ≤12
B .-2≤h ≤1
C .-1≤h ≤32
D .-1≤h ≤1
2
二、填空题(本大题共6小题,每小题3分,共18分)
16.因式分解:xy 2-4x =____________. 17.计算:25-(-1)2=____________.
18.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是___________.
19.方程3x =2x -2
的解是______________.
20.如图,A 、B 是双曲线y =k
x 上的两点,过点A 作AC ⊥x 轴,交OB 于点D ,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为______________.
21.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C ′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB =3,BC =4,则折痕EF 的长为_________.
三、解答题(本大题共7小题,共57分) 22.(本题满分7分)
(1)先化简,再求值:(x +1)2+x (2-x ),其中x = 2
(2)解不等式组⎩⎨⎧2x -4<x
x +9>4x
,并把解集表示在数轴上.
(1)如图,C是AB的中点,AD=BE,CD=CE.
求证:∠A=∠B.
(2)如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.
24. (本题满分8分)
如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
25.(本题满分8分)
商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同._____;(1)若他去买一瓶饮料,则他买到奶汁的概率是
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
如图1,已知双曲线y =k
x (k >0)与直线y =k ′x 交于A 、B 两点,点A 在第一象限,试回答下列问题: (1)若点A 的坐标为(3,1),则点B 的坐标为__________;当x 满足:________时,k
x ≤k ′x ; (2)如图2,过原点O 作另一条直线l ,交双曲线y =k
x (k >0)于P ,Q 两点,点P 在第一象限. ①四边形APBQ 一定是___________;
②若点A 的坐标为(3,1),点P 的横坐标为1,求四边形APBQ 的面积.,
(3)设点A ,P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出m ,n 应满足的条件;若不可能,请说明理由。
27. (本题满分9分)
如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°,点P 为射线BD ,CE 的交点. (1)求证:BD =CE ;
(2)若AB =2,AD =1,把△ADE 绕点A 旋转, ①当∠EAC =90°时,求PB 的长; ②直接写出旋转过程中线段PB 的最小值.
如图,二次函数y =12x 2+bx -3
2的图象与x 轴交于A (-3,0)和B ,以AB 为边在x 轴上方做正方形,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y 轴交于点E . (1)请直接写出点D 的坐标:___________;
(2)当点P 在线段AO (点P 不与A 、O 重合)上运动至何处时,线段OE 的长有最大值,求出这个最大值; (3)是否存在这样的点P ,使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED 与正方形ABCD 重叠部分的面积;若不存在,请说明理由.。