氮的氧化物实验

合集下载

氮氧化物的测定实验报告(一)

氮氧化物的测定实验报告(一)

氮氧化物的测定实验报告(一)实验报告:氮氧化物的测定实验目的•理解氮氧化物的产生和危害•掌握氮氧化物的测定方法实验原理氮氧化物即NOx,是一类由氮气和氧气在高温下反应产生的气态污染物。

其中NO是一氧化氮,NO2是二氧化氮,两者的总和称为NOx。

氮氧化物的来源多种多样,如汽车尾气、工业废气、燃煤烟气等。

它们不仅对人类健康造成威胁,还会对环境产生严重影响。

本实验采用化学吸收法测定氮氧化物的含量。

具体原理为:用硫酸和硝酸反应生成硝酸离子,将离子吸收到草酸溶液中,草酸与硝酸反应生成一氧化二碳,再用比色法测定产生的一氧化二碳的含量,即可间接计算出氮氧化物的含量。

实验步骤1.用草酸溶液洗净试管、瓶塞等玻璃器皿,并将瓶塞塞好。

2.用滴管向瓶中加入一定量的硫酸和硝酸,轻轻摇匀。

3.密闭瓶子,并沉淀30分钟以上,使沉淀物脱水。

4.用滴管向密闭瓶中加入草酸溶液,轻轻摇匀,将草酸与硝酸反应得到一氧化二碳。

5.用积分泵向草酸溶液中通入空气,稀释一氧化二碳,之后用比色皿比色,测定产生的一氧化二碳的含量。

6.根据计算公式,计算出氮氧化物的含量。

实验结果使用上述方法,我们测得采样点的氮氧化物的浓度为30mg/m3。

实验结论本实验使用化学吸收法能够测定出样品中氮氧化物的含量,这是一种间接计算方法,其原理简单易懂,操作相对较容易。

但是此测定方法存在许多局限性,如不适用于高浓度氮氧化物的测定。

参考文献1.周卫, 赵兰英, 王荣芝. 环境质量监测技术与方法. 科学出版社,2014.2.环境质量标准. GB 3095-2012. 国家标准出版社, 2012.实验注意事项•操作过程中要佩戴手套和口罩,避免吸入有害气体和接触有害化学制剂。

•实验器材要先用草酸清洗干净,以避免对测定结果产生影响。

•采样点要选择典型的污染源,以保证实验结果的准确性。

•草酸溶液制备过程中需注意草酸的浓度,过高或过低均会影响测定结果。

实验结果分析本实验测定结果显示,采样点氮氧化物的含量为30mg/m3,属于较高的范围。

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告一、实验目的。

本实验旨在通过实验方法测定大气中氮氧化物的含量,进一步了解大气污染情况,为环境保护和治理提供科学依据。

二、实验原理。

大气中的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2),这两种氮氧化物是大气污染的主要来源之一。

本实验采用化学吸收法,通过将大气中的氮氧化物溶解在吸收液中,再通过化学反应得到的产物进行测定,从而得到氮氧化物的含量。

三、实验步骤。

1. 准备实验设备和试剂,包括吸收瓶、吸收液、分析仪器等;2. 在大气污染较为严重的地区选择实验点,设置吸收瓶,将大气中的氮氧化物吸收到吸收液中;3. 将吸收液中的氮氧化物与试剂进行反应,生成化学物质;4. 采用分析仪器对生成的化学物质进行测定,得出氮氧化物的含量;5. 对实验结果进行统计分析,得出大气中氮氧化物的含量数据。

四、实验结果。

经过实验测定,我们得到了大气中氮氧化物的含量数据。

根据统计分析,我们发现在工业区和交通密集区,氮氧化物的含量明显高于其他地区。

尤其是在高峰时段,氮氧化物的含量更是达到了较高水平,这表明工业排放和交通尾气是大气中氮氧化物的主要来源。

五、实验分析。

大气中的氮氧化物是一种有害的气体污染物,其对人体健康和环境造成了严重的影响。

高浓度的氮氧化物不仅会导致雾霾天气的形成,还会对人体的呼吸系统造成危害,引发呼吸道疾病。

因此,我们需要采取有效的措施来减少氮氧化物的排放,保护大气环境和人民健康。

六、实验总结。

通过本次实验,我们成功测定了大气中氮氧化物的含量,并对其来源和危害进行了分析。

我们应当加强对工业和交通尾气排放的治理,推广清洁能源,减少氮氧化物的排放。

同时,也需要加强大气环境监测,及时掌握大气污染情况,采取有效措施保护环境和人民健康。

七、参考文献。

1. 环境保护部. 大气环境质量标准[S]. GB 3095-2012.2. 郭美玲, 张晓英. 大气污染物的化学测定[M]. 北京: 化学工业出版社, 2008.以上就是本次实验的全部内容,希望对大家有所帮助。

氮氧化物的测定 定电位电解法

氮氧化物的测定 定电位电解法

氮氧化物的测定定电位电解法氮氧化物是一类空气污染物,包括氮氧化物(NOx)和氧化亚氮(NO)。

测定氮氧化物的浓度是评估空气质量和控制污染的重要指标之一。

定电位电解法是一种常用的方法来测定氮氧化物的浓度。

该方法基于氮氧化物在电极上的反应产生的电流与浓度之间的关系。

在定电位电解法中,一种常用的电极是气体扩散电极(gas diffusion electrode),该电极可以使气态氮氧化物在电解质溶液中转化为可测的电流。

测定过程中,首先将氮氧化物样品与适当的电解质溶液接触,然后将电极浸入溶液中。

通常会施加一个特定的电位到电极上,并测量由氮氧化物反应产生的电流。

测定氮氧化物的浓度需要事先进行校准,一般使用标准气体或标准溶液来制备一系列浓度的标准曲线。

通过将待测样品的电流与标准曲线进行比较,可以确定氮氧化物的浓度。

定电位电解法具有以下优点:1. 灵敏度高:可以测定低至ppb (parts per billion)级别的氮氧化物浓度。

2. 准确性高:通过使用标准曲线进行校准,可以得到准确的浓度结果。

3. 简便易行:测定过程相对简单,不需要复杂的设备和操作。

然而,定电位电解法也存在一些局限性:1. 受电解液pH值和温度等因素影响:电解液酸碱度和温度的变化可能会影响氮氧化物的浓度测定结果。

2. 要求样品处理:需要将氮氧化物样品与电解质溶液接触,可能需要对样品进行预处理或适当的稀释。

3. 适用性受限:该方法适用于氨气(NH3)、氮氧化物(NOx)等具有一定可溶性的氮气体。

总的来说,定电位电解法是一种可靠且常用的测定氮氧化物浓度的方法,但在具体测定时需要考虑实际样品特性和一些实验条件。

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告

一、实验目的1. 掌握大气中氮氧化物(NOx)的测定方法。

2. 了解实验原理和实验操作步骤。

3. 学会使用分光光度计进行定量分析。

二、实验原理大气中的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2)。

测定大气中的氮氧化物浓度,通常采用盐酸萘乙二胺分光光度法。

该方法的原理是:先将NO氧化成NO2,然后NO2与吸收液中的对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料。

通过比色定量,计算空气中的氮氧化物浓度。

三、实验仪器与试剂1. 仪器:多孔玻板吸收管、双球玻璃管(内装三氧化铬-砂子)、空气采样器、分光光度计、容量瓶、移液管、烧杯、玻璃棒等。

2. 试剂:三氧化铬-砂子、冰乙酸、对氨基苯磺酸、盐酸萘乙二胺、亚硝酸钠标准溶液、蒸馏水等。

四、实验步骤1. 准备工作:称取5.0g对氨基苯磺酸,置于容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解。

继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。

2. 采样:将制备好的吸收原液与等体积的水混合,配成采样用吸收液。

用空气采样器以每分钟300毫升的速度采集空气样品,采样时间根据实验要求确定。

3. 氧化:将采样后的样品放入装有双球玻璃管(内装三氧化铬-砂子)的容器中,将空气样品中的NO氧化成NO2。

4. 显色:将氧化后的样品溶液倒入比色皿中,用分光光度计在波长540nm处测定吸光度。

5. 标准曲线绘制:用亚硝酸钠标准溶液配制一系列不同浓度的标准溶液,按照与样品溶液相同的步骤进行显色,绘制标准曲线。

6. 计算结果:根据样品溶液的吸光度,从标准曲线上查得对应的NO2浓度。

根据NO2与NO的转换系数0.76,计算空气样品中的氮氧化物浓度。

五、实验结果与分析1. 实验结果:通过实验,测定出空气样品中的氮氧化物浓度为X mg/m³。

2. 分析:本次实验采用盐酸萘乙二胺分光光度法测定大气中氮氧化物浓度,实验结果与理论值基本相符,说明实验方法可靠。

大气中氮氧化物的测定

大气中氮氧化物的测定

大气中氮氧化物的测定(盐酸萘乙二胺分光光度法)一、原理大气中的氮氧化物主要是一氧化氮和二氧化氮。

在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。

二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。

因为NO2(气)转变为NO2—(液)的转换系数为0.76,故在计算结果时应除以0.76。

二、仪器1.多孔玻板吸收管。

2.双球玻璃管(内装三氧化铬-砂子)。

3.空气采样器:流量范围0-1L/min。

4.分光光度计。

三、试剂所有试剂均用不含亚硝酸根的重蒸馏水配制。

其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005。

1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0.05g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。

保存时应密封瓶口,防止空气与吸收液接触。

采样时,按4分吸收原液与1份水的比例混合配成采样用的吸收液。

2.三氧化铬-砂子氧化管:筛取20-40目海砂(或河沙),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。

将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。

制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。

称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。

采样时将氧化管与吸收管用一小段乳胶管相接。

3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。

此溶液每毫升含100.0μgNO2—,贮存于棕色瓶内,冰箱中保存,可稳定三个月。

氮氧化物测定方法

氮氧化物测定方法

氮氧化物测定方法
氮氧化物(NOx)是指包括一氧化氮(NO)和二氧化氮(NO2)在内的氮氧化合物的总称。

测定氮氧化物的方法主要有以下几种:
1. 化学法:这是一种常用的氮氧化物测定方法。

其中,Griess法是一种测定一氧化氮的方法,通过与硫酸和二氧化硫反应生成红色偶氮染料,测定偶氮染料的吸光度来求得一氧化氮的含量。

至于二氧化氮的测定,一般通过将样品中的NO 转化为NO2,再使用Griess法进行测定。

2. 光谱分析法:氮氧化物在紫外-可见光谱范围内有吸收特征,在特定的波长下可以吸收特定的光线。

因此,通过测量氮氧化物溶液在特定波长下的吸光度,可以推算出其浓度。

3. 电化学法:氮氧化物可以通过电化学方法测定,其中最常见的是使用电化学气体传感器或电极。

以氮氧化物传感器为例,氮氧化物进入传感器后与电极上的氧化剂反应,产生电荷转移,电流的变化与氮氧化物浓度成正比。

4. 质谱法:质谱法是通过将样品中的氮氧化物离子化,然后通过质谱仪进行离子分析。

这种方法通常适用于对氮氧化物浓度非常低的情况下的测定。

除了以上方法外,还有一些其他较少使用的方法,如化学发光法、比色法、荧光光谱法等。

选择合适的测定方法需要根据具体的测定要求、实验条件和预算等因
素进行综合考虑。

氮氧化合物的测定

氮氧化合物的测定

氮氧化合物的测定一、实验原理大气中的氮氧化物主要是一氧化氮和二氧化氮。

在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。

3NO+2CrO3→3NO2+Cr2O3(1—1)二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。

因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。

三、试剂的配置1.亚硝酸钠标准溶液:吸取贮备液5.00mL于100mL容量瓶中,用水稀释至标线。

此溶液每毫升含5.0μgNO2。

2.三氧化铬-砂子氧化管:筛取20—40目河砂,用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。

将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。

称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。

采样时将氧化管与吸收管用一小段乳胶管相接。

3.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL 水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。

保存时应密封瓶口,防止空气与吸收液接触。

采样时,按4份吸收原液与1份水的比例混合配成采样用吸收液。

4.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h 以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。

此溶液每毫升含100.0μgNO2-,贮于棕色瓶内,冰箱中保存。

二、实验仪器和试剂仪器:多孔玻板吸收管、大气采样器、三氧化铬氧化管、棕色瓶、分光光度计、20-40目筛子、容量瓶、烧杯等。

药品试剂:对氨基苯磺酸、冰乙酸、盐酸萘乙二胺、三氧化铬-砂子、粒状亚硝酸钠、盐酸等。

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告一、实验目的。

本实验旨在通过化学方法测定大气中氮氧化物的含量,了解大气污染物的浓度情况,为环境保护和大气污染治理提供数据支持。

二、实验原理。

大气中的氮氧化物包括一氧化氮(NO)和二氧化氮(NO2),它们是大气污染物的重要组成部分。

在本实验中,我们将通过化学方法将大气中的氮氧化物转化为硝酸盐,然后利用分光光度计对其浓度进行测定。

三、实验步骤。

1. 收集大气样品,利用气囊或其他采样装置收集大气样品,避免污染和损失。

2. 转化为硝酸盐,将收集到的大气样品中的氮氧化物转化为硝酸盐,通常采用硫酸吸收法或硝酸铜法。

3. 分光光度计测定,将转化后的样品置于分光光度计中,利用特定波长下的吸光度测定样品中硝酸盐的浓度。

4. 计算含量,根据吸光度测定值,结合标准曲线或标准溶液的浓度,计算出大气中氮氧化物的含量。

四、实验结果。

经过实验测定,我们得到了大气中氮氧化物的含量为X mg/m³,其中一氧化氮占Y%,二氧化氮占Z%。

五、实验分析。

通过本实验的测定,我们可以了解到大气中氮氧化物的含量情况,为环境保护和大气污染治理提供了重要数据支持。

同时,我们也可以根据实验结果,评估大气污染的程度,制定相应的治理措施。

六、实验结论。

本实验通过化学方法测定了大气中氮氧化物的含量,得出了具体的浓度数据。

这些数据对于环境保护和大气污染治理具有重要的参考价值,为相关工作提供了科学依据。

七、实验注意事项。

1. 在实验过程中,应严格遵守安全操作规程,避免接触有毒有害物质。

2. 实验设备应保持清洁,避免杂质干扰实验结果。

3. 实验数据的准确性和可靠性对于实验结果的判断至关重要,应严格控制实验条件,确保实验结果的准确性。

八、参考文献。

1. XXX,XXX.《环境监测与分析方法》.XXX出版社,XXXX年。

2. XXX,XXX.《大气污染物测定技术与方法》.XXX出版社,XXXX年。

以上就是本次大气中氮氧化物的测定实验报告的全部内容,谢谢阅读。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、实验器材: 主要有50mL、25ml注射器、三通管、导气 管、止水夹、泡沫支架、脱脂棉、油桶的下 半部、稀HNO3、Cu,H2O2、MnO2等。
实验原理:
3Cu + 8HNO3(稀) = 3Cu(NO3)2 +2NO↑+ 4H2O 2NO + O2 = 2NO2 3NO2 + H2O = 2HNO3 + NO 4NO + 3O2 + 2H2O = 4HNO3
欢迎各位专家、
老师莅临指导
课题: 氮的氧化物实验
参赛者: 肖丽 张庆 罗社高
1、实验在教材中所处的地位与作用:
该知识位于人教版必修1第四章《非 金属及其化合物》,它是让学生掌握氮
氧化合物与水反应以及浓、稀硝酸氧化
性。
2、实验原型及不足之处:
教材并未对此知识点设计实验,但是学生 对于此类知识点的理解缺乏经验知识,所以 有必要在此设计实验教学,为学生提供理解 所需的直观形象知识,达到更好的掌握效果。
⑤等反应一段时间后,打开弹簧夹1,将反应的剩余液体 抽出,关闭弹簧夹1,打开弹簧夹2,将气体用排水法收 集到到注满水的注射器5中12mL,再向其中慢慢注入9mL 氧气。 ⑥ 待反应进行完再将注射器2的气体全部推入注射器5中, 并且注入水,待气体全部排入注射器5中,向其中加入氧 气,将未反应完的NO全部转化为硝酸,消除环境污染。
3、实验创新与改进之处:
整套装置采用水封,达到了良好的隔绝空气的 效果,可以让学生清晰的观察到Cu与稀HNO3 反应的实验现象。 让学生从直观的角度理解了4NO + 3O2 + 2H2O = 4HNO3。 注射器取用药品操作简洁方便,整个体系处于 一个密封的状态,杜绝了氮的氧化物带来的环 境污染问题; 实验微型化,药品用量少,有明显的实验效果。 让该实验能真正的服务于教学。
5、实验原理及装置说明:
注射器2 弹簧夹1 弹簧夹2 弹簧夹3 三通管 注射器1 油桶的下端
创新装置图
6、实验过程:
①检查装置的气密性; ②用注射器1取好纯净的氧气; ③向注射器2入适量的铜片并吸入40mL水并排气, 另外向注射器3吸入40mL水并排气,连接好装置,打开 弹簧夹将装置中的空气全部排出充满水。 ④关闭弹簧夹1、2,用注射器4入20mL稀HNO3,打开 弹簧夹1将稀硝酸注入注射器3发生反应,关闭弹簧夹1。
Hale Waihona Puke 8、自我评价: 这个实验经我们改进后与教材的原型实验相 比具备了以下的优点: 实验操作简单化,实验过程绿色化, 实验发生可控制化,实验现象明了化。
相关文档
最新文档