Solubility of Carbon Dioxide in 30 mass % Monoethanolamine and 50 mass % Methyldiethanolamine Soluti
三乙醇胺MSDS

穿防毒物渗透工作服。
手防护
戴橡胶手套。
九、理化特性
主要成分
纯品。
外观与性状
无色油状液体或白色固体,稍有氨的气味。
熔点(℃)
20
沸点(℃)
335
相对密度(水=1)
1.12
相对蒸汽密度(空气
=1)
5.14
饱和蒸气压(kPa)
0.67(190℃)
闪点(℃)
185
溶解性
易溶于水。
主要用途
化验分析用。
三乙醇胺MSDS
一、化学品标识
化学品中文名称
三乙醇胺
化学品英文名称
Triethanolamine
化学品分子式
C6H15NO3
化学品分子量
149.19
二、成分/组成信息
有害物成分
含量
三乙醇胺
--Байду номын сангаас
三、危险性概述
健康危害
本品对局部有刺激作用。皮肤接触可致皮炎和湿疹,与过敏有关。本
品蒸汽压低,工业接触中吸入中毒的可能性不大。
十、稳定性和反应活性
禁配物
氧化剂、酸类。
十一、废弃处置
废弃处置方法
处置前应参阅本公司废弃物控制程序。处置应符合国家和地方有关法规。
废物贮存参见“储运注意事项”。
十二、运输信息
运输注意事项
运输前应先检查包装容器是否完整、密封,运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与氧化剂、酸类、食用化学品等混装混运。运输车船必须彻底清洗、消毒,否则不得装运其它物品。船运时,配装位置应远离卧室、厨房,并与机舱、电源、火源等部位
六、泄漏应急处理
应急处理
迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。若是液体,防止流入下水道、排洪沟等限制性空间。
单乙醇胺msds

单乙醇胺化学品安全技术说明书(MSDS)1.化学品名称化学品中文名称:乙醇胺化学品英文名称: monoethanolamine中文名称2: 2-氨基乙醇英文名称2: 2-aminoethanol技术说明书编码: 1594CAS No.: 141-43-5分子式: C2H7NO分子量: 61.083.危险性概述3.1危险性类别:8.2类碱性腐蚀品3.2侵入途径:吸入、食入、经皮吸收。
3.3健康危害:蒸气对眼、鼻有刺激性。
眼接触液状本品,造成眼损害;皮肤接触引起刺痛、灼伤。
口服损害口腔和消化道。
3.4燃爆危险:本品可燃,具腐蚀性、刺激性,可致人体灼伤。
4.急救措施4.1皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。
就医。
4.2眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。
就医。
4.3吸入:迅速脱离现场至空气新鲜处。
保持呼吸道通畅。
如呼吸困难,给输氧。
如呼吸停止,立即进行人工呼吸、就医。
4.4食入:用水漱口,给饮牛奶或蛋清。
就医。
5.消防措施5.1危险特性:遇明火、高热可燃。
遇乙酸、乙酸酐、丙烯酸、丙烯腈、氯磺酸、环氧氯丙烷、氯化氢、氟化氢、硝酸、硫酸、乙酸乙烯等剧烈反应。
对铜、铜的化合物、铜合金和橡胶有腐蚀性。
5.2有害燃烧产物:一氧化碳、二氧化碳、氧化氮。
5.3灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。
尽可能将容器从火场移至空旷处。
喷水保持火场容器冷却,直至灭火结束。
处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。
用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。
5.4灭火剂:水、雾状水、抗溶性泡沫、干粉、二氧化碳、砂土。
6.泄漏应急处理应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。
切断火源。
建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。
尽可能切断泄漏源。
防止流入下水道、排洪沟等限制性空间。
co2在胺的溶解度

co2在胺的溶解度
CO2在胺中的溶解度取决于多个因素,包括温度、压力、吸收剂浓度、胺的类型等。
在实验条件下,CO2-吸收剂体系气液二相基本达到平衡时,CO2吸收量与体系温度、压力及吸收剂浓度的关系可用亨利定律来描述。
亨利定律认为,气体在液体中的溶解度与该气体的分压成正比,与液体中该气体的溶解度常数成正比。
为了预测CO2在胺中的溶解度,可以引入温度及压力相关因子,建立CO2在单胺溶液中的溶解度模型。
这种模型在MEA、DETA单胺溶液中的溶解度预测效果较好,与实验值比较,误差在1%以下。
对于MEA+DETA混合胺溶液,可以引入增强因子β=1.06,并以单胺在混合胺溶液中的摩尔分数为系数,将CO2在单胺溶液中的溶解度叠加,从而获得CO2在MEA+DETA混合溶液中的溶解度模型。
这种模型对MEA+DETA混合胺的预测误差在1%—10%。
需要注意的是,这些模型都是在一定的实验条件下得出的,所以预测结果可能会有一定的局限性。
在实际应用中,还需要考虑具体的使用环境和条件。
化妆品用三乙醇胺原料要求

化妆品用三乙醇胺原料要求附件1:化妆品用三乙醇胺原料要求(征求意见稿)为规范化妆品原料技术要求,提高化妆品卫生质量安全,根据化妆品监管相关规定,编写《化妆品用三乙醇胺原料要求》(以下称《要求》),本《要求》针对性地规定了三乙醇胺的安全性要求及检验方法,其他相关要求及检验方法按相应规定执行。
1. 基本信息1.1 原料名称三乙醇胺。
1.1.1 原料INCI名称及其ID号TRIETHANOLAMINE(ID:3256)。
1.1.2 原料INCI标准中文译名三乙醇胺。
1.1.3 化学系统命名法名称或《中国药典》中名称系统命名法:2,2′,2″-三羟基三乙胺;《中国药典》中名称:三乙醇胺。
1.1.4 常见俗名或缩写TEA。
1.2 登记号1.2.1 CAS登记号102-71-6。
1.2.2 EINECS/ELINCS登记号203-049-8(EINECS)。
1.3 原料结构式分子式:N(CH2CH2OH)3结构式:分子量:149.191.4 在化妆品中的使用目的三乙醇胺是化妆品中常用的有机碱,具有胺和醇的性质。
可与脂肪酸反应,如和硬脂酸反应生成硬脂酸三乙醇胺皂;可与各种硫酸酯中和而成各种阴离子铵盐类表面活性剂。
常作为化妆品中pH调节剂使用,也常在反应后作为乳化剂使用。
2. 技术要求2.1 适用产品范围可作为化妆品的pH调节剂、乳化剂、稳定剂等使用。
2.2 使用限量要求三乙醇胺在非淋洗类化妆品中最大允许使用浓度2.5%。
2.3 安全性限制要求2.3.1 纯度要求三乙醇胺最低纯度99.0%。
2.3.2《化妆品卫生规范》规定的化妆品禁用组分三乙醇胺中二乙醇胺最大含量0.50%;亚硝胺最大含量50μg/kg。
2.3.3 化妆品配方中该原料使用限制要求三乙醇胺不和亚硝基化体系一同使用。
2.3.4 原料储存、包装及运输要求三乙醇胺存放于钢桶或内有防护层的钢桶内。
3. 检验方法本检验方法不是唯一的检验方法,但为该原料的仲裁检验方法。
基础化学习题解答

第一章1. 为什么说化学是一门中心科学?试举几例说明化学和医学的关系。
解因为现代化学几乎与所有的科学和工程技术相关联,起着桥梁和纽带作用;这些科学和技术促进了化学学科的蓬勃发展,化学又反过来带动了科学和技术的进展,而且很多科技进步以化学层面的变革为突破口。
因此,化学是一门中学科学。
化学和医学的关系极为密切,无论是制药、生物材料、医学材料、医学检验,还是营养、卫生、疾病和环境保护,乃致对疾病、健康、器官组织结构和生命规律的认识,都离不开化学。
2. SI 单位制由哪几部分组成?请给出5个SI 倍数单位的例子。
解国际单位制由SI 单位和SI 单位的倍数单位组成。
其中SI 单位分为SI 基本单位和SI 导出单位两大部分。
SI 单位的倍数单位由SI 词头加SI 单位构成。
例如mg 、nm 、ps 、μmol、kJ 等等。
3. 下列数据,各包括几位有效数字?(1) 2.0321 g (2) 0.0215 L (3) p K HIn =6.30 (4) 0.01﹪ (5) 1.0×10-5 mol解 (1) 5位,(2) 3位,(3) 2位,(4)1位,(5)2位。
4. 某物理量的真实值T = 0.1024,实验测定值X = 0.1023,测定值的相对误差RE 是多少?运用公式T T X RE -=,以百分率表示。
解%1.0001.01024.00001.01024.01024.01023.0-=-=-=-=RE 5. 关于渗透压力的Va n ′t Hoff 公式写作cRT Π=,式中,c 是物质的量浓度,R 是摩尔气体常数,T 是绝对温度。
通过量纲分析证明渗透压力Π的单位是kPa 。
解kPa}){}{}({m N 10}){}{}({dm m N }){}{}({ L J }){}{}({K mol K J L mol }){}{}({ ])[][]([}){}{}({][}{][}{][}{2331111-T R c T R c T R c T R c T R c T R c T R c T T R R c c cRT Π⨯⨯=⋅⨯⨯⨯=⋅⋅⨯⨯=⋅⨯⨯=⨯⋅⋅⨯⋅⨯⨯=⨯⨯⋅⨯⨯=⋅⨯⋅⨯⋅==-----式中,花括号代表量的值,方括号代表量的单位。
溶出度方法学验证-7

– Quats will ion pair with carboxylic acids at 2 pH’s units above pKa
13
Specific problems with SLS
• Use in combination only with Sodium Phosphate for 6.8 pH not Potassium Phosphate—precipitates at room temp
– Anionic
– Non-ionic
Evaluate different surfactants [quantitative]
4
Official Statements
FDA
• A dissolution medium containing surfactant can better simulate the environment of the gastrointestinal tract than a medium containing organic solvents or other nonphysiological substances, making the dissolution test conditions more useful in evaluating drug quality.
• Polysorbates (Tween™) • Sodium dodecyl sulfate (sodium lauryl sulfate) • Lauryl dimethyl amine oxide • Cetyltrimethylammonium bromide (CTAB) • Polyethoxylated alcohols • Polyoxyethylene sorbitan • Octoxynol (Triton X100™) • N, N–dimethyldodecylamine– N–oxide • Hexadecyltrimethylammonium bromide (HTAB)
单乙醇胺吸收CO2拟一级反应动力学研究

单乙醇胺吸收CO2拟一级反应动力学研究耿春香;陆诗建;孙岳涛;李欣泽;赵东亚;朱全民;王琦【摘要】采用自主开发的湿壁塔装置,基于工业条件下的单乙醇胺(Monoethanolamine,MEA)水溶液,测定了MEA水溶液吸收CO2气体的动力学数据,并建立动力学模型.采用拟一级反应假设,根据两性离子机理和三分子反应机理,研究结果指出温度在303.15~323.15 K时MEA溶液吸收CO2反应级数为1.23~1.38,并随温度升高而增大.通过线性拟合计算,所得结果与国外文献基本吻合.【期刊名称】《能源工程》【年(卷),期】2018(000)004【总页数】10页(P48-56,66)【关键词】MEA;CO2;湿壁塔;反应动力学;拟一级反应【作者】耿春香;陆诗建;孙岳涛;李欣泽;赵东亚;朱全民;王琦【作者单位】中国石油大学〈华东〉化学工程学院,山东青岛266580;中国石油大学〈华东〉化学工程学院,山东青岛266580;中石化节能环保工程科技有限公司,山东东营257026;中国石油大学〈华东〉化学工程学院,山东青岛266580;中石化节能环保工程科技有限公司,山东东营257026;中国石油大学〈华东〉化学工程学院,山东青岛266580;中石化节能环保工程科技有限公司,山东东营257026;中国石油大学〈华东〉化学工程学院,山东青岛266580;中国石油大学〈华东〉化学工程学院,山东青岛266580;中国石油大学〈华东〉化学工程学院,山东青岛266580;中石化节能环保工程科技有限公司,山东东营257026【正文语种】中文【中图分类】TQ4130 引言CO2吸收动力学是研究CO2捕集过程的重要分支,因为溶剂种类的变化、混合组分不同对CO2吸收反应动力学有重要影响。
因此,测定相关动力学数据不仅可以作为选择和测试吸收剂的参考,也可以用来优化过程工艺和反应器设计。
目前,在溶剂吸收法工业捕集CO2工艺中,单乙醇胺(monoethanolamine, MEA)溶液是应用较为广泛的基础药剂,是有机醇胺溶液的典型代表。
n-甲基单乙醇胺标准

n-甲基单乙醇胺标准
n-甲基单乙醇胺(N-Methyldiethanolamine,缩写MDEA)是
一种有机化合物,化学式为C5H13NO2。
MDEA是一种无色液体,具有碱性,可与酸反应形成相应的盐。
它可用作吸收剂、溶剂和还原剂等。
美国石油学会(American Petroleum Institute,API)制定了n-
甲基单乙醇胺的质量标准。
根据API 14B标准,MDEA的99%体积分数的最低纯度应为97%,含有主要杂质二甲醚(DME; CH3OCH3)和二乙醇胺(DEA; HOCH2CH2NHCH2CH2OH)的总量不得超过2%。
此外,根据一些工业化学标准,MDEA的水分含量、硫含量、色度、比重等物理性质也有一定的要求。
这些标准的目的是确保MDEA的质量稳定和可靠性,以满足各种工业应用的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solubility of Carbon Dioxide in30mass%Monoethanolamine and 50mass%Methyldiethanolamine SolutionsSholeh Ma’mun,†Roger Nilsen,and Hallvard F.Svendsen*Department of Chemical Engineering,Norwegian University of Science and Technology,N-7491Trondheim,NorwayOlav JuliussenSINTEF Materials and Chemistry,N-7465Trondheim,NorwayThe partial pressures of carbon dioxide(CO2)over a30mass%aqueous solution of monoethanolamine(MEA)and a50mass%aqueous solution of methyldiethanolamine(MDEA)were measured.The rangeof partial pressures of CO2measured at120°C over30mass%MEA was from(7to192)kPa withloadings from(0.16to0.42).The partial pressures of CO2ranging from(66to813)kPa with loadingsfrom(0.17to0.81)over50mass%MDEA were also measured at the temperatures(55,70,and85)°C.An approximate value of the enthalpy of solution of CO2in the aqueous MDEA solution was estimatedusing the solubility data.IntroductionAqueous solutions of alkanolamines are the most com-monly used chemical absorbents for the removal of acidic gases from natural,refinery,and synthesis gas streams.Among them,aqueous monoethanolamine (H2NCH2CH2OH,MEA)solutions have been used exten-sively for this purpose due to the rapid reaction rate,low cost of the solvent,ease of reclaiming,reasonable thermal stability,low molecular weight and thus high absorbing capacity on a mass basis,and relatively low solubility of hydrocarbons in the solution.1-3The disadvantages of aqueous MEA include the high enthalpy of reaction with CO2leading to higher desorber energy consumption,the formation of a stable carbamate and also the formation of degradation products with carbon oxysulfide(COS)or oxy-gen-bearing gases,inability to remove mercaptans,vapor-ization losses because of high vapor pressure,and a higher corrosiveness than that of many other alkanolamines.2-4 Methyldiethanolamine(CH3N(CH2CH2OH)2,MDEA)so-lutions are used for high pressure CO2removal and for selective removal of hydrogen sulfide(H2S)from gas streams containing both CO2and H2S.The use of MDEA solutions was first proposed by Frazier and Kohl.5The advantages of MDEA,a tertiary amine,over primary and secondary amines are,besides the selectivity for H2S,a lower enthalpy of reaction with the acidic gases which leads to lower energy requirements for regeneration,a lower vapor pressure of the solution,a lower corrosiveness,and better thermal and chemical stability.The limitations of MDEA include a slower reaction rate with CO2and a lower absorption capacity at low concentrations of CO2.6,7A number of investigators have measured the solubility of CO2in30mass%MEA at temperatures from(0to150)°C with partial pressures of CO2ranging from0.5Pa to20MPa,as shown in Table1.Among the investigators,only Goldman and Leibush,10Lee et al.,12and Jou et al.2mea-sured the solubility of CO2in30mass%MEA at a regen-eration temperature of120°C.However,there is a scarcity of data in the loading region most applicable for regenera-tor calculations,corresponding to partial pressures between (5and200)kPa.Moreover,the data of Lee et al.12have a consistent deviation of-0.04mol of CO2/mol of MEA compared to the data of Jou et al.2The solubility of CO2in50mass%MDEA has also been determined by several investigators for temperatures between(25and200)°C with partial pressures of CO2 ranging from0.07Pa to6.6MPa,as shown in Table1. There is,however,a great scatter in the results,and no data exist for intermediate temperatures such as(55and 85)°C.The objective of the work described here is to obtain reliable data on the solubility of CO2in30mass%MEA at a regeneration temperature of120°C and50mass% MDEA at(55,70,and85)°C in the most interesting loading range which could serve as a standard for use in the modeling of vapor-liquid equilibria(VLE)in MEA and MDEA solutions.Experimental SectionSample MEA(purity>99mass%)and MDEA(purity >98.5mass%)solutions were prepared from Acros Organ-ics without further purification and deionized water.The CO2(purity>99.99mol%)and nitrogen(N2)(purity >99.999mol%)gases used were obtained from AGA Gas GmbH.MEA Apparatus.The equilibrium measurements were carried out in a VLE apparatus with recirculation of the gas phase,as shown in Figure1.The apparatus consists of three300cm3stainless steel cylinders(the equilibrium cells1,2,and3)designed to operate at pressures up to 700kPa and at temperatures up to130°C,a SERA (Seybert&Rahier GmbH)diaphragm pump(model ZR*Corresponding author.Phone:+47-73594100.E-mail:hallvard.svendsen@chemeng.ntnu.no.†Permanent address:Department of Chemical Engineering,GadjahMada University,Jl.Grafika2Jogjakarta,Indonesia55281.630J.Chem.Eng.Data2005,50,630-63410.1021/je0496490CCC:$30.25©2005American Chemical SocietyPublished on Web01/28/2005408W),a KNF Neuberger compressor (model PM 15785-145),a Bourdon pressure gauge,a Druck PTX 610pressure transducer with an accuracy of (0.3%of full scale (800kPa),four K-type thermocouples,and a Fisher-Rosemount nondispersive infrared (IR)CO 2analyzer (model BINOS 100).The data acquisition uses FieldPoint FP-1000and FP-AI-110.Before starting the experiment,N 2was flushed through the apparatus to purge the air within the cells.A preloaded 30mass %MEA solution of 200cm 3was then fed into cell 1,while cells 2and 3held 150cm 3each.The cells placed in a thermostated box were heated by oil baths,and the temperatures were measured to within (0.1°C.To prevent boiling and vaporization of the solvent during the heating,the minimum initial pressure in the cells was set to 300kPa.As the temperature reached the desired level (120°C),the compressor increased the pressure up to 700kPa and circulated the vapor.A backpressure valve was used to maintain the pressure at 700kPa.Equilibrium was ob-tained when the temperature was established at a con-stant value and the CO 2concentration in the vapor phase was constant.This took about (2to 3)h including the heating-up period.After equilibrium was obtained,a liquidsample was withdrawn from cell 3into a 75cm 3evacuated sampling cylinder such that the cylinder was completely filled by the liquid sample and then cooled to ambient temperature.The temperatures and pressures were auto-matically collected by the FieldPoint data acquisition system.The vapor bleed extracted for composition measurement was cooled to 10°C to condense water and MEA,and the CO 2content was directly determined by IR analysis.The vapor phase in the IR analyzer,therefore,consisted of N 2,CO 2,and small amounts of H 2O and MEA.The concentra-tion of CO 2in the analyzer is thenwhere n denotes molar flow and the superscript IR denotesthe vapor phase in the IR analyzer.Due to the low vaporpressure of MEA at 10°C (P °MEA )0.012kPa),21MEA in the vapor phase through the analyzer could be disregarded.The circulating vapor phase in the system at 120°C consisted of N 2,CO 2,and significant amounts of H 2O andTable 1.Literature Review of 30mass %MEA and 50mass %MDEA Solubility Dataauthort /°Cp CO 2/kPa 30mass %MEA Mason and Dodge (1936)80,25,50,75 1.387-100.2Lyudkovskaya and Leibush (1949)925,50,75255.3-4124Goldman and Leibush (1959)1075,100,120,1400.5333-472.9Lee et al.(1974)1140,1001.151-6616Lee et al.(1976)1225,40,60,80,100,1200.2-6616Nasir and Mather (1977)131000.0005-0.52Shen and Li (1992)1440,60,80,1001.1-1975Jou et al.(1995)20,25,40,60,80,100,120,1500.0012-1995450mass %MDEAJou et al.(1982)a 1525,40,70,100,1200.00161-6570Chakma and Meisen (1987)a 16100,140,160,180,200138-4930Austgen et al.(1991)a 17400.0102-93.6Robinson (1993)1840,70,100,120146.0-5327Rho et al.(1997)750,75,1000.775-140.3Rogers et al.(1998)19400.00007-1.0018Park and Sandall (2001)2025,50,75,1000.78-140.4a48.8mass%.Figure 1.Equilibrium measurements for 30mass %MEA.y CO 2IR )n CO2IRn CO2IR +n N2IR +n H2OIR +n MEAIR (1)Journal of Chemical and Engineering Data,Vol.50,No.2,2005631MEA.As noncondensable gases,the flows of CO 2and N 2were the same before and after the condenser.Equation 1together with a mole balance will give the molar flow of CO 2in the systemwhere n T ,n H 2O ,and n MEA respectively denote the total molesand the moles of H 2O and MEA in the system.The partial pressure of CO 2can then be calculated aswhere P is the total pressure.The partial pressures of H 2Oand MEA over the 30mass %MEA solution were estimated using a Wilson equation.22,23During the time of equilibration the cooling of the gas through the IR analyzer produced ∼5mL of condensed water containing small amounts of MEA.This water loss stems mainly from cell 1where the gas enters and becomes saturated.The liquid losses of cells 2and 3were negligible,and the sample for liquid phase analysis was taken from cell 3.Separate heating for the cells was used to obtain accurate temperature control.MDEA Apparatus.Figure 2shows the equilibrium apparatus for MDEA in the shaking equilibrium cells.The apparatus consists of two connected autoclaves (1000and 200cm 3)which rotate 180°with 2rpm and are designed to operate up to 2MPa and 150°C,Druck PTX 610(max 800kPa)and Schaevitz P 706-0025(max 2.5MPa)pressure transducers,and two K-type thermocouples.This apparatus was used for the MDEA tests,as the condi-tions ranged beyond those possible for the apparatus in Figure 1.The autoclaves placed in a thermostated box were heated by an oil bath.During the heating-up period,the autoclaves were purged with CO 2several times.The unloaded 50mass %MDEA solution of 200cm 3was then injected into the smaller autoclave,and finally,CO 2was injected to the desired pressure.Equilibrium was obtained when the temperature and pressure were constant to within (0.2°C and (1kPa.This took approximately (4to 30)h.After equilibrium was obtained,a liquid sample was withdrawn from the smaller autoclave using a 75cm 3evacuated sampling cylinder where an unloaded MDEA solution of25cm 3was injected into the cylinder before sampling.This was to ensure that all CO 2in the liquid sample was totally absorbed.The cylinder was then cooled to ambient tem-perature.The partial pressure of CO 2was measured by subtracting the partial pressures of H 2O and MDEA from the total pressure.As shown by Xu et al.,24it is reasonable to assume a Raoult’s law behavior for the MDEA -water system.The data acquisition system used was FieldPoint.Liquid samples containing all bound CO 2for both experiments were analyzed by the barium chloride (BaCO 3)method.The amount of hydrogen chloride (HCl)not used to dissolve BaCO 3was titrated with 0.1mol ‚L -1sodium hydroxide (NaOH)by using an automatic titrator (Metrohm 702SM Titrino)with an end point of pH 5.2.Due to solvent losses during the process at high operating temperature,the MEA concentrations were then determined by titra-tion.A liquid sample of 0.5cm 3was diluted into deionized water of 75cm 3and titrated with 0.1mol ‚L -1sulfuric acid (H 2SO 4)using a Metrohm 702SM Titrino instrument.The end point was obtained at pH 4to 5.Results and DiscussionExperimental solubility data for CO 2in 30mass %MEA solution were measured at 120°C with an expanded uncertainty of (0.5°C and in 50mass %MDEA solution at (55,70,and 85)°C with an expanded uncertainty of (0.2°C.The uncertainties of the measured temperatures were estimated from the standard deviations and the half-width of temperature precisions (e.g.,0.05°C for the MEA apparatus).25The experimental results are presented in Tables 2and 3and Figures 3and 4.The CO 2loading analyses were performed by using two to five parallel liquid samples each titrated for CO 2and MEA/MDEA contents.The relative standard uncertainty in the loadings estimated from the standard deviation of the loading measurements was (2%.The CO 2partial pressure was measured online.The IR analyzer was calibrated using the calibration gases (0.5,5,10,and 20)mol %CO 2with a relative standard un-certainty of (2%.The analyzer readings at equilibrium varied within the half-width of its display,with the resolution being always <(0.5%.The estimated relative expanded uncertainty in the CO 2partial pressures was therefore found to be (2%.Goldman and Leibush,10Lee et al.,12and Jou et al.2have measured the equilibrium solubility for CO 2in 30mass%Figure 2.Equilibrium measurements for 50mass %MDEA.n CO 2)y CO 2IR[n T -(n H 2O -n H 2OIR )-n MEA ](2)p CO 2)y CO 2IR[P -(p H 2O -p H 2OIR )-p MEA ](3)Table 2.Solubility of CO 2in 30mass %MEA Solution at 120°CCO 2loading(mol of CO 2/mol of MEA)p CO 2/kPa 0.15507.3540.17669.3140.18439.0450.208515.510.232619.620.238125.200.256027.710.290139.180.296740.400.300443.490.312551.820.319158.570.329862.880.342477.590.342474.950.350083.610.359492.790.3882137.90.4182191.9632Journal of Chemical and Engineering Data,Vol.50,No.2,2005MEA solution at 120°C.These are the only data found forthis temperature.The data from this work are compared with their data.As seen from Figure 3,the equilibrium partial pressures of this work agree well with the data of Goldman and Leibush.10The data are also in good agree-ment with the smoothed data measurements of Lee et al.12at loadings from (0.26to 0.36)and those of Jou et al.2for loadings above 0.36.Literature data for comparison of the equilibrium solu-bility of CO 2in 50mass %MDEA solution at the temper-atures used here are limited.Only at 70°C could the data directly be compared to those of Robinson.18The data were also compared to those of Jou et al.,15Rho et al.,7and Park and Sandall.20At 70°C,the measured CO 2partial pres-sures from this work are slightly higher than those of Robinson.18The data are also higher than those of Jou et al.15This is natural,as the concentration of MDEA used in this work is slightly higher than that used by Jou et al.15(48.8mass %).Rho et al.7found that the higher the concentration of amine used,the higher the partial pres-sure of CO 2measured at a fixed temperature and CO 2loading.The equilibrium partial pressures of CO 2at (55and 70)°C were then compared to those of Rho et al.7and those of Park and Sandall 20but at (50and 75)°C.The measured data at 55°C show higher partial pressures of CO 2compared to those of Rho et al.7and those of Park and Sandall 20at 50°C.This is natural in view of the temper-ature difference.Extrapolated data of Rho et al.7and of Park and Sandall 20at 75°C tend to predict higher partial pressures of CO 2at higher CO 2loadings compared to this work for a temperature of 70°C.This is because the temperature used in this work was 5°C lower than in the work of Rho et al.7and that of Park and Sandall.20An approximate value of the differential enthalpy of solution of CO 2in the aqueous 50mass %MDEA solution in such a loading was calculated by use of the following form of the Gibbs -Helmholtz equationwhere the subscript 1refers to CO 2and x 1is the mole fraction or equilibrium loading of CO 2.The enthalpy of solution is dependent on the loading.The value of ∆H s in 50mass %MDEA solution at a loading of 0.50was found to be 53.4kJ ‚mol -1of CO 2.The standard uncertainty for this value was estimated to be (5%.This value agrees well with the value 53.2kJ ‚mol -1of CO 2(at 48.8mass %MDEA)at a loading of 0.50which was proposed by Jou et al.15but is higher than the value 30kJ ‚mol -1of CO 2(30mass %MDEA)at a loading of 0.51reported by Mathonat et al.26ConclusionsThe vapor -liquid equilibrium data of CO 2in 30mass %MEA solution and in 50mass %MDEA solution were measured at 120°C and at (55,70,and 85)°C,respectively.In addition to the literature data,the VLE data of MEA at stripping conditions (120°C)should be useful for the desorber design using MEA and those of MDEA shouldbeFigure parison of the solubility of CO 2in 30mass %MEA solution at 120°C:b ,experimental data;0,Goldman and Leibush;104,Lee et al.;12O ,Jou et al.2Table 3.Solubility of CO 2in 50mass %MDEA Solution at (55,70,and 85)°C p CO 2/kPa CO 2loading(mol of CO 2/mol of MDEA)55°C 70°C85°C0.275865.750.5325172.80.6411277.40.7126388.80.7387490.50.7402485.10.7479492.30.7825585.10.7971684.90.8133779.80.236795.700.2790117.70.3582177.20.4029220.90.4718273.60.4834306.70.5259379.10.5489430.40.5858486.70.5894488.30.6058581.40.6609688.10.6786776.90.6898813.40.1658129.70.1840150.60.2609242.90.3143353.10.3269355.60.3719451.50.4112555.70.4610658.60.4887754.90.4942754.6Figure parison of the solubility of CO 2in 50mass %MDEA solution.Experimental data:9,55°C;b ,70°C;[,85°C.Literature data:4,Robinson 18(70°C);O ,Jou et al.15(70°C,48.8mass %);0,Rho et al.7(50°C);×,Park and Sandall 20(50°C);],Rho et al.7and Park and Sandall 20(75°C).∆H s R )(∂ln p 1∂(1/T ))x 1(4)Journal of Chemical and Engineering Data,Vol.50,No.2,2005633useful for the design of absorption columns using MDEA to remove CO2.Both the VLE data of MEA and those of MDEA could also serve as a standard for use in the modeling of VLE in MEA and MDEA st,the enthalpy of solution of CO2in the aqueous50mass% MDEA solution at a loading of0.50was found to be53.4 kJ‚mol-1of CO2.Literature Cited(1)Li,Y.-G.;Mather, A. E.Correlation and Prediction of theSolubility of Carbon Dioxide in a Mixed Alkanolamine Solution.Ind.Eng.Chem.Res.1994,33,2006-2015.(2)Jou,F.-Y.;Mather,A.E.;Otto,F.D.The Solubility of CO2in a30Mass Percent Monoethanolamine Solution.Can.J.Chem.Eng.1995,73,140-147.(3)Liu,Y.;Zhang,L.;Watanasiri,S.Representing Vapor-LiquidEquilibrium for an Aqueous MEA-CO2System Using the Elec-trolyte Nonrandom-Two-Liquid Model.Ind.Eng.Chem.Res.1999, 38,2080-2090.(4)Bucklin,R.W.DGA s A Workhorse for Gas Sweetening.Oil GasJ.1982,204-210.(5)Frazier,H.D.;Kohl,A.L.Selective Absorption of HydrogenSulfide from Gas Streams.Ind.Eng.Chem.1950,42,2288-2292.(6)Jou,F.-Y.;Carroll,J.J.;Mather,A.E.;Otto,F.D.The Solubilityof Carbon Dioxide and Hydrogen Sulfide in a35wt%Aqueous Solution of Methyldiethanolamine.Can.J.Chem.Eng.1993,71, 264-268.(7)Rho,S.-W.;Yoo,K.-P.;Lee,J.S.;Nam,S.C.;Son,J.E.;Min,B.-M.Solubility of CO2in Aqueous Methyldiethanolamine Solu-tions.J.Chem.Eng.Data1997,42,1161-1164.(8)Mason,J.W.;Dodge,B.F.Equilibrium Absorption of CarbonDioxide by Solutions of the Ethanolamines.Trans.Am.Inst.Chem.Eng.1936,32,27-48.(9)Lyudkovskaya,M.A.;Leibush,A.G.Solubility of Carbon Dioxidein Solutions of Ethanolamines Under Pressure.Zh.Prikl.Khim.1949,22,558-567.(10)Goldman,A.M.;Leibush,A.G.Study of the Equilibrium ofCarbon Dioxide Desorption from Monoethanolamine Solutions in the Temperature Range75-140°C.Tr.Gos.Nauchno-Issled.Proektn.Inst.Azotn.Promsti.1959,10,54-82.(11)Lee,J.I.;Otto,F.D.;Mather,A.E.The Solubility of H2S andCO2in Aqueous Monoethanolamine Solutions.Can.J.Chem.Eng.1974,52,803-805.(12)Lee,J.I.;Otto,F.D.;Mather,A.E.Equilibrium between CarbonDioxide and Aqueous Monoethanolamine Solutions.J.Appl.Chem.Biotechnol.1976,26,541-549.(13)Nasir,P.;Mather,A.E.The Measurement and Prediction of theSolubility of Acid Gases in Monoethanolamine Solutions at Low Partial Pressures.Can.J.Chem.Eng.1977,55,715-717.(14)Shen,K.-P.;Li,M.-H.Solubility of Carbon Dioxide in AqueousMixtures of Monoethanolamine with Methyldiethanolamine.J.Chem.Eng.Data1992,37,96-100.(15)Jou,F.-Y.;Mather,A.E.;Otto,F.D.Solubility of H2S and CO2in Aqueous Methyldiethanolamine Solutions.Ind.Eng.Chem.Process Des.Dev.1982,21,539-544.(16)Chakma,A.;Meisen,A.Solubility of CO2in Aqueous Methyldi-ethanolamine and N,N-Bis(hydroxyethyl)piperazine Solutions.Ind.Eng.Chem.Res.1987,26,2461-2466.(17)Austgen,D.M.;Rochelle,G.T.;Chen,C.-C.Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems.2.Representation of H2S and CO2Solubility in Aqueous MDEAand CO2Solubility in Aqueous Mixtures of MDEA with MEA or DEA.Ind.Eng.Chem.Res.1991,30,543-555.(18)Robinson,D.B.Vapor-Liquid Equilibrium Studies:GRI Project sAcid Gas Absorption;University of Oklahoma:Norman,OK, 1993.(19)Rogers,W.J.;Bullin,J.A.;Davison,R.R.FTIR Measurement ofAcid-Gas-Methyldiethanolamine Systems.AIChE J.1998,44, 2423-2430.(20)Park,M.K.;Sandall,O.C.Solubility of Carbon Dioxide andNitrous Oxide in50mass%Methyldiethanolamine.J.Chem.Eng.Data2001,46,166-168.(21)Austgen,D.M.A Model of Vapor-Liquid Equilibria for Acid Gas-Alkanolamine-Water Systems;University of Texas:Austin,TX, 1989.(22)Wilson,G.M.Vapor-Liquid Equilibrium.XI.A New Expressionfor the Excess Free Energy of Mixing.J.Am.Chem.Soc.1964, 86,127-130.(23)Park,S.-B.;Lee,H.Vapor-Liquid Equilibria for the BinaryMonoethanolamine+Water and Monoethanolamine+Ethanol Sys-tems.Korean J.Chem.Eng.1997,14,146-148.(24)Xu,S.;Qing,S.;Zhen,Z.;Zhang,C.;Carroll,J.J.Vapor PressureMeasurement of Aqueous N-Methyldiethanolamine Solutions.Fluid Phase Equilib.1991,67,197-201.(25)Chirico,R.D.;Frenkel,M.;Diky,V.V.;Marsh,K.N.;Wilhoit,R.C.ThermoML s An XML-Based Approach for Storage and Ex-change of Experimental and Critically Evaluated Thermophysical and Thermochemical Property Data.2.Uncertainties.J.Chem.Eng.Data2003,48,1344-1359.(26)Mathonat,C.;Majer,V.;Mather,A.E.;Grolier,J.-P.E.Enthalpiesof Absorption and Solubility of CO2in Aqueous Solutions of Methyldiethanolamine.Fluid Phase Equilib.1997,140,171-182.Received for review October4,2004.Accepted December5,2004. This work was supported financially by the Norwegian Research Council“Klimatek Programme”through the SINTEF Project 661292.01.JE0496490634Journal of Chemical and Engineering Data,Vol.50,No.2,2005。