初中数学竞赛 知识点和真题 第25讲 整数几何
初中数学重点整理:整数几何

整数几何知识定位数学学科中2门最古老的分支为平面几何与整数问题,这2门分支的有机结合指平面几何中的某些基本量(边长、角度、周长、面积等)为整数的几何问题,或几何问题中的计数问题等。
这些问题历来是初中数学竞赛的热点问题之一。
解决这类问题用到的几何知识并不是很难,往往要结合代数的相关知识、思想方法和整数的有关性质综合考虑,用到的数学思想方法有枚举法、筛选法、排序法、奇偶分析法、质数分析法、不等式放缩法等。
知识梳理知识梳理1:解答整数几何问题的步骤:首先,根据问题给出的几何条件,进行计算或推理,从而,得到一些数量之间的关系式——等量关系、不等关系、函数关系等。
其次,根据几何量是整数的特点,依据整数的性质来处理(如利用数的整除性、整数的表示方法、完全平方数的性质、确定整数的范围后再逐一验证等)。
知识梳理2:比较法比较法利用的是:若0,则(作差法);或若1,则(作商法)。
aa b a b a bb-==== 这也是证明恒等式的重要思路之一。
知识梳理3:分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.知识梳理4:其他解题方法及技巧除了上述方法,设k、换元等方法也可以在恒等式证明中发挥效力.例题精讲【试题来源】【题目】凸四边形ABCD边长都是正整数,任意三边的和是第四边的整数倍,证明四边形ABCD四条边中总有两条边的长度相等。
【答案】【解析】通过限制条件限制整数范围,最终推出矛盾 【知识点】整数几何 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】已知直角三角形的两条直角边边长分别为l ,m ,斜边为n ,且l 、m 、 n 均为整数,l 为质数,证明()21m l ++ 是完全平方数。
初三数学 第25章 解直角三角形复习知识精讲 华东师大版

初三数学第25章解直角三角形复习知识精讲华东师大版【同步教育信息】一. 本周教学内容:第25章解直角三角形复习二. 重点、难点:1. 重点:(1)探索直角三角形中锐角三角函数值与三边之间的关系.掌握三角函数定义式:sinA=ac,cosA=bc,tanA=ab,cotA=ba.(2)掌握30°、45°、60°等特殊角的三角函数值,并会进行有关特殊角的三角函数值的计算.(3)会使用计算器由已知锐角求它的三角函数值,•由已知三角函数值求它对应的锐角.2. 难点:(1)通过探索直角三角形边与边、角与角、边与角之间的关系,领悟事物之间互相联系的辩证关系.(2)能够运用三角函数解决与直角形有关的简单的实际问题.(3)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题,提高数学建模能力.三. 知识梳理:1. 锐角三角函数(1)锐角三角函数的定义我们规定:sinA=ac,cosA=bc,tanA=ab,cotA=ba.锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2. 特殊角的三角函数值αsinαcosαtanαcotα30º123233345º22221 160º3212333由表可知:直角三角形中,30°的锐角所对的直角边等于斜边的一半.3. 锐角三角函数的性质(1)0<sinα<1,0<cosα<1(0°<α<90°)(2)tanα·cotα=1或tanα=1cotα;(3)tanα=sincosαα,cotα=cossinαα.(4)sinα=cos(90°-α),tanα=cot(90°-α).4. 解直角三角形在直角三角形中,由已知元素求出未知元素的过程叫做解直角三角形.解直角三角形的常见类型有:我们规定:Rt△ABC,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.①已知两边,求另一边和两个锐角;②已知一条边和一个角,求另一个角和其他两边.5. 解直角三角形的应用(1)相关术语铅垂线:重力线方向的直线.水平线:与铅垂线垂直的直线,一般情况下,•地平面上的两点确定的直线我们认为是水平线.仰角:向上看时,视线与水平线的夹角.俯角:向下看时,视线与水平线的夹角.坡角:坡面与水平面的夹角.坡度:坡的铅直高度与水平宽度的比叫做坡度(坡比).一般情况下,我们用h表示坡的铅直高度,用l表示水平宽度,用i表示坡度,即:i=hl=tanα.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.如图:(2)应用解直角三角形来解决实际问题时,要注意:①计算结果的精确度要求,一般说来中间量要多取一位有效数字.②在题目中求未知时,应尽量选用直接由已知求未知.③遇到非直角三角形时,常常要作辅助线才能应用解直角三角形知识来解答.其方法可以归纳为:已知斜边用正弦或余弦,已知直角边用正切和余切,•能够使用乘法计算的要尽量选用乘法,尽量直接选用已知条件进行计算.注:解直角三角形在现实生活中有广泛的应用,它经常涉及到测量、工程、航海、航空等,其中包括了一些术语,一定要根据题意明白其术语的含义才能正确解题.【典型例题】例1. 已知tanα=34,求sin cossin cosαααα+-的值.分析:利用数形结合思想,将已知条件tanα=34用图形表示.解:如图所示,在Rt△ABC中,∠C=90°,∠A=α,设BC=3k,AC=4k,则AB22AC BC+22(4)(3)k k+5k.∴sinα=BCAB=35kk=35cosα=4455AC kAB k==,∴原式=34553455+-=-7.例2. 计算.(12sin45°-12cos60°;(2)cos245°+tan60°cos30°;(3)sin45sin30 cos45sin30︒-︒︒+︒;(4212sin30sin30 -︒+︒分析:这里考查的是同学们对特殊角的三角函数值的识记情况和关于根式的计算能力.处理办法是能够化简的要先化简后代入计算,不能化简的直接代入计算.解:(1sin45°-12cos60×2-12×12=34;(2)cos245°+tan60°cos30°=()2=2.(3)sin45sin30cos45sin30︒-︒︒+︒=122=3-;(41-sin30º=1-12=12.点拨:像上面第3题分子分母要分别处理,第4•题要特别注意先化简再代入计算.例3. 已知tanα=34,求sin cossin cosαααα+-的值.分析:可将所求式子的分子、分母都除以cosα,转化为含有sincosαα的式子,•再利用tanα=sincosαα进行转化求解.解:将式子sin cossin cosαααα+-的分子、分母都除以cosα,得原式=31tan143tan114αα++=--=-7规律总结:因为tanα=34所以α不等于90°,所以cosα≠0,因此分子分母可以同时除以cosα.实现转化的目的.例4. 等腰三角形的底边长为6cm,周长为14cm,试求底角的余切值.分析:这是一个在非直角三角形中求锐角的三角函数值的题目,根据三角函数的定义,要先恰当的作辅助线(垂线)构成直角来解决.这个题涉及到等腰三角形,•作底边上的高是解决问题常见办法.解:如图所示,作等腰三角形ABC,BC为底边,AD⊥BC于D.B AC D∵△ABC 的周长为14,底边BC =6,∴腰长AB =AC =4. 又∵AD ⊥BC ,∴BD =CD =3.在直角三角形ABD 中,∠ADB =90°,AD =22AB BD -=2243-=7cot ∠B =37BD AD==377. 答:等腰三角形底角的余切值是377.点拨:计算一个锐角的三角函数值,应在直角三角形中来考虑,如果题中没有直角三角形,那么就要通过作辅助线来构造直角三角形.例5. Rt △ABC ,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,•根据下列条件解直角三角形.(1)a =4,c =10; (2)b =2,∠A =40°; (3)c =3,∠B =58°. 分析:(1)题是已知两边解直角三角形;(2)、(3)是已知一边和一角解直角三角形.解:(1)b =22c a -=22104-=221, 由sinA =410a c ==0.4,∠A ≈°,∠B =90°-∠A =90°°°.(2)∠B =90°-∠A =90°-40°=50°,由tanA =ab ,得a =b ·tanA =2×tan40°≈2×≈1.678,由cosA =b c,得c =22cos cos 400.7660b A =≈︒≈2.611. (3)∠A =90°-∠B =90°-58°=32°, 由sinB =bc ,得b =c ·sinB =3·sin58°≈3×≈2.544, 由cosB =ac,得a =c ·cosB =3×cos58°≈3×≈1.590.点拨:在选择三角函数时,一般使用乘法进行计算,能够用三角函数求其中的未知边的问题,一般不使用勾股定理求边.例6. 如图,一艘轮船从离A 观察站的正北203海里处的B 港处向正西航行,观察站第一次测得该船在A 地北偏西30°的C 处,一个半小时后,又测得该船在A•地的北偏西︒60的D 处,求此船的速度.分析:根据速度等于路程除以时间,必须求到DC 的长,观察图形,DC =DB -CB ,•而BD在Rt △ABD 中可求,BC 在Rt △ABC 中可求.解:在Rt △ABC 中,BC =AB ×tan30°=203×33=20(海里). 在Rt △ABD 中,BD =AB ×tan60°=203×3=60(海里).所以DC =DB -CB =60-20=40(海里).船的速度是:40÷1.5=2623(海里).答:船的速度是2623海里.点拨:凡涉及方向角的问题,一定要确定中心,如上题中的方向角就是以A•为中心的.例7. 如图所示,河对岸有一座铁塔AB ,若在河这边C 、D•处分别用测角仪器测得塔顶A 的仰角为30°,45°,已知CD =30米,求铁塔的高.(结果保留根号)分析:设塔高为x 米,根据条件∠ADB =45°,可得BD =AB =x 米,在直角三角形ABC 中,根据∠C =30°,即tanC =ABBC 可求.解:设AB =x ,在Rt △ABD 中,∠ADB =45°,∴AB =BD =x .在Rt △ABC 中,∠C =30°,且BC =CD+BD =30+x ,tanC =ABBC 所以tan30°=30x x +,即33=30xx +,x =(153+15)(米).答:塔高AB 为153+15米.例8. 去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,为了方便A 、B 两地师生的交往,学校准备在相距2千米的A 、B•两地之间修筑一条笔直的公路(即图中的线段AB ),经测量,在A 地的北偏东60°方向,B 地的西偏北45°的C 处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?分析:过C 作AB 的垂线段CM ,把AM 、BM 用含x 3x ,x 表示,利用AM+MB =23=2,解出CM 的长与0.7千米进行比较,本题要体会设出CM 的长,列方程解题的思想方法.解:作CM ⊥AB ,垂足为M ,设CM 为x 千米,在Rt △MCB 中,∠MCB =∠MBC =45°,则MB =CM =x 千米. 在Rt △AMC 中,∠CAM =30°,∠ACM =60°tan ∠ACM =AMCM∴AM =CM ·tan60°=3x 千米 ∵AM+BM =2千米 ∴3x+x =2∴x =3-1 ≈ ∴∴这条公路不会穿过公园.例9. 如图是一个大坝的横断面,它是一个梯形ABCD ,其中坝顶AB =3米,经测量背水坡AD =20米,坝高10米,迎水坡BC 的坡度i =1:0.6,求迎水坡BC 的坡角∠C 和坝底宽CD .分析:分析这一个关于梯形的计算题,要用解直角三角形的知识来解决,•一般过上底顶点作下底的垂线就能够利用直角三角形知识来解决. 解:过A 、B 作AE ⊥CD 、BF ⊥CD ,垂足是E 、F ,根据题意有AE =BF =10,四边形ABFE 是矩形,EF =AB =3.在Rt △ADE 中,DE 22AD AE -222010-3(米),在Rt △BCF 中,10.6BF CF =××10=6(米)所以CD =CF+EF+DE =3+3+6=(3(米).又在Rt △BCF 中,cot ∠C =0.6,所以∠C ≈59°.例10. 如图,如果△ABC 中∠C 是锐角,BC =a ,AC =b .证明:C ab S ABC sin 21=∆问题图 D CB A证明:过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∴AC ADC =sin , ∴C b C AC AD sin sin =⋅=,又∵ADBC S ABC ⋅=∆21,∴CabSABCsin21=∆.评注:本题的结论反映出三角形的两边及其夹角与这个三角形的面积之间的关系.同理还可推出:BacAbcCabSABCsin21sin21sin21===∆(三角形面积公式)【模拟试题】(答题时间:40分钟)1. 在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为().A. 10tan50°B. 10cos50°C. 10sin50°D.10 cos50︒2. AE,CF是锐角三角形ABC的两条高,如果AE:CF=3:2,则sinA:sinC等于().A. 3:2B. 2:3C. 9:4D. 4:93. 如图,为了确定一条小河的宽度BC,可在点C左侧的岸边选择一点A,•使得AC⊥BC,若测得AC=a,∠CAB=θ,则BC的值为().A. asinθB. acosθC. atanθD. acotθ4. 在Rt△ABC中,∠C=90°,下列各式中正确的是().A. sinA=sinBB. tanA=tanBC. sinA=cosBD. cosA=cosB5. 已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,•则此等腰梯形的周长为().A. 19B. 20C. 21D. 226. 如图,秋千拉绳OB的长为3m,静止时踏板到地面的距离BE长为0.6m(•踏板的厚度忽略不计).小亮荡秋千时,当秋千拉绳从OB运动到OA时,拉绳OA•与铅垂线OE的夹角为55°,请你计算此时秋千踏板离地面的高度AD是多少米.(精确到0.1m)7. 如图,武当山风景管理区为提高游客到景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB的长为5m(BC•所在地面为水平面).(1)改善后的台阶会加长多少?(精确到0.01m)(2)改善后的台阶多占多长一段地面?(精确到0.01m)8. 如图,沿AC方向开山修渠,为了加快施工进度,•要在小山的另一边同时施工,从AC上一点B取∠ABD=135°,BD=520m,∠D=45°.如果要使A,C,E成一条直线,•那么开挖点E离D的距离约为多少米?(精确到1m)9. 如图,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动,部分同学在山脚的点A处测处山腰上一点D的仰角为30°,并测得AD的长度为180m,•另一部分同学在小山顶点B处测得山脚A的俯角为45°,山腰点D处的俯角为60°,•请你帮助他们计算小山的高度BC(计算过程和结果都不取近似值).10. 如图,汪老师要装修自己带阁楼的新居,•在搭建客厅到阁楼的楼梯AC时,为避免上升时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1.75m,他量得客厅高AB=2.8m,楼梯洞口宽AF=2m,阁楼阳台宽EF=3m,请你帮助汪老师解决下列问题,•要使墙角F 到楼梯的竖直距离FG为1.75m,楼梯底端C到墙角D的距离CD是多少米?【试题答案】1. B 点拨:直接利用三角函数关系求解.2. B3. C 点拨:根据图形找出对角关系.4. C 点拨:在锐角三角函数中,对于任意锐角的正弦值都等于它余角的余弦值.5. D6. 在Rt△AFO中,∠AFO=90°,∴cos∠AOF=OF OA,∴OF=OA·cos∠AOF.又∵OA=OB=3m,∠AOF=55°,∴OF=3·cos55°≈1.72m,∴≈1.9m.∴AD=EF=1.9m.7. 如图.(1)在Rt△ABC中,AC=AB×sin44°=5sin44°≈3.473m.在Rt△ACD中,AD=3.473sin32sin32AC=︒︒≈6.554m,∴AD-AB=6.554-5≈1.55m.即改善后的台阶会加长1.55m.(2)在Rt△ABC中,BC=AB×cos44°=5·cos44°≈3.597m.在Rt△ACD中,CD=3.473tan32tan32AC=︒︒≈5.558m,∴≈1.96m.即改善后的台阶多占1.96m长的一段地面.8. 368m.9. 过D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.∵∠DEC=90°,∴四边形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC-∠DAE=45°-30°=15°.又∵∠ABD=∠HBD-∠HBA=60°-45°=15°,∴△ADB是等腰三角形,∴AD=BD=180m.在Rt△AED中,sin∠DAE=sin30°=DE AD,∴DE=180×sin30°=180×12=90m,∴FC=90m.在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=BF BD,word11 / 11 ∴BF =180·sin60°=180×2=,∴BC =BF+FC =+90=90+1)m .故小山的高度为90+1)m .10. 根据题意有AF ∥BC ,∴∠ACB =∠GAF .又∵∠ABC =∠AFG =90°,∴△ABC ∽△GFA , ∴BC AB AF FG ,得BC =3.2(m ).CD =(2+3)-3.2=1.8(m ).【励志故事】愚钝的力量大科学家爱因斯坦曾做过一个实验:他从村子里找了两个人,一个愚钝且软弱,一个聪明且强壮.爱因斯坦找了一块两英亩左右的空地,给他俩同样的工具,让他们在其间比赛挖井,看谁最先挖到水.愚钝的人接到工具后,二话没说,便脱掉上衣干起来.聪明的人稍作选择也大干起来.两个小时过去了,两人均挖了两米深,但均未见到水.聪明的人断定选择错了,觉得在原处继续挖下去是愚蠢的,便另选了块地方重挖.愚钝的人仍在原地吃力地挖着,又两个小时过去了,愚钝的人只挖了一米,而聪明的人又挖了两米深.愚钝的人仍在原地吃力地挖着,而聪明的人又开始怀疑自己的选择,就又选了一块地方重挖.又两个小时过去了,愚钝的人挖了半米,而聪明的人又挖了两米,但两人均未见到水.这时聪明人泄气了,断定此地无水,他放弃了挖掘,离去了.而愚钝的人此时体力不支了,但他还是在原地挖,在他刚把一锨土掘出时,奇迹出现了,只见一股清水汩汩而出.比赛结果,这个愚钝的人获胜.爱因斯坦后来对学生说,看来智商稍高、条件优越、聪明强壮者不一定会得到成功,成功有时需要一种近乎愚钝的力量啊!。
初中重点竞赛知识点总结

初中重点竞赛知识点总结一、数学1. 整数整数的概念、大小比较、加减乘除、乘方、开方、有理数、小数和分数等。
2. 代数代数的概念、字母代数、多项式、方程、不等式、函数等。
3. 几何几何图形的性质、变换、相似、全等、共线、平行线、垂直线、角与角度、三角形、四边形、多边形、圆等。
4. 空间与图形空间图形的投影、棱台、棱锥、旋转体、视图、轴正交等。
5. 概率与统计概率的基本概念、概率的计算、统计表与图、抽样、调查等。
6. 逻辑推理命题、逻辑联结词、逻辑等值式、逻辑推理、逻辑谬误等。
7. 数论质数、因数、公因数、最大公因数、最小公倍数、素数、合数、整除性、同余、递归等。
8. 综合应用模型、解题方法、解题技巧、解题过程等。
二、物理1. 运动的基本概念位移、速度、加速度、匀速运动、变速运动等。
2. 力的基本概念物体的受力情况、力的合成、力的分解、力的性质等。
3. 力学物体的平衡、牛顿定律、摩擦力、弹簧力、重力、动量、能量、功率等。
4. 声音声音的产生、传播、性质、利用等。
5. 光学光的反射、折射、色散、成像、光学仪器等。
6. 电学电流、电阻、电压、电能、电功率、电路、电磁感应等。
7. 热学温度、热量、热传递、热力学循环等。
8. 物理实验实验方法、实验技术、实验仪器等。
三、化学1. 物质的基本结构原子、元素、化合物、分子等。
2. 常见物质金属、非金属、气体、液体、固体等。
3. 反应的基本类型化学反应的类型、化学方程式、反应物、生成物、反应条件等。
4. 化学元素元素的周期律、元素的性质、元素的分类、元素的应用等。
5. 化学实验实验室常见操作、实验器材的使用、实验安全知识等。
6. 化学方程式的计算化学反应的计算、物质的量的计算等。
7. 化学知识在日常生活中的应用化学知识在生产、生活、环境等方面的应用。
四、生物1. 生物的结构与功能细胞、组织、器官、器官系统、生物的营养、呼吸、排泄、生殖、运动等。
2. 生物的分类分类等级、分类方法、生物地理分布等。
初中数学竞赛辅导资料 整数解

初中数学竞赛辅导资料整数解甲内容提要1. 求方程或不等式的整数解,就是求适合等式或不等式的未知数的整数值,包括判断无整数解.2. 求整数解常用的性质、法则:①.数的运.算性质:整数+整数=整数, 整数-整数=整数,整数×整数=整数, 整数的自然数次幂=整数,整数÷(这个整数的约数)=整数.②.整系数的方程 ax 2+bx+c=0(a ≠0)只有当b 2-4ac 是完全平方数时,才有整数根. 有时用韦达定理x 1+x 2与x 1x 1 都是整数,来确定整数解,但必须检验(因为它们只是整数解必要条件).③.运用二元一次方程求整数解(见第10讲).④.用列举法.3. 判定方程或不等式没有整数解,常用反证法.即设有整数解之后,把整数按某一模m 分类,逐一推出矛盾.乙例题例1.求下列方程的正整数解:① xy+x+y=5; ② x 2+y 2=1991.解:①先写成关于x 的方程,(y+1)x=5-y.x=16116115++-=++--=+-y y y y y . 当y+1取6的约数±1,±2,±3,±6时,x 的值是整数.∵-1+16+y >0, 且x>0, y>0, ∴ 1<y+1<6 . ∴ y=1或y=2.∴原方程有正整数解⎩⎨⎧==12y x ; 或⎩⎨⎧==21y x . ① 又解:把左边写成积的形式:x(y+1)+y+1=5+1, (y+1)(x+1)=6.∵6=1×6=2×3, 而正整数y+1>1, x+1>1.∴⎩⎨⎧=+=+3121y x 或⎩⎨⎧=+=+2131y x 解得 ⎩⎨⎧==21y x ;或⎩⎨⎧==12y x .②要等式成立,x, y 必须是一奇一偶,设x=2a, y=2b -1 (a,b 都是正整数).左边x 2+y 2=(2a )2+(2b -1)2=4(a 2+a+b 2-b)+1.∴a, b 不论取什么整数值,左边的数都是除以4余1,而右边1991是除以4余3.∴等式永远不能成立.∴原方程没有正整数解.例2. 一个正整数加上38或129都是完全平方数,求这个正整数. 若把正整数改为整数呢? 解:设这个正整数为x ,根据题意,得⎪⎩⎪⎨⎧=+=+)2(129)1(3822b x a x (a,b 都是正整数). (2)-(1):b 2-a 2=91 .(b+a)(b -a)=91,∵91=1×91=7×13 且b+a>b -a.∴⎩⎨⎧=-=+191a b a b 或⎩⎨⎧=-=+713a b a b 解得,⎩⎨⎧==4645b a ; 或⎩⎨⎧==103b a . 由方程(1)知 a>38, 由方程(2)知 b>129.∴只有⎩⎨⎧==4645b a 适合.∴ x=a 2-38=1987. 答(略).如果改为整数 ,则两组的解都适合. 另一个解是:x=a 2-38=9-38=-29.例3. 一个自然数与3的和是5的倍数,与3的差是6的倍数,则这个自然数的最小值是多少? (1989年泉州市初二数学双基赛题)解法一:用列举法与3的和是5的倍数的自然数有:2,7,12,17,22,27,…与3的差是6的倍数的自然数有:3,9, 15,22,27,…∴符合条件的 最小自然数是27.解法二:设所求自然数为x,那么⎩⎨⎧=-=+bx a x 6353 (a,b 都是自然数). ∴ x= 5a -3=6b+3, ∴ a=511566+++=+b b b , ∵ a, b 都是自然数,∴ b+1是5的倍数, 其最小值是b=4.∴x=6b+3=27.例4. m 取什么整数值时,方程 mx 2+(m 2-2)x -(m+2)=0有整数解?解:设方程两个整数根为x 1, x 2. 那么它们的和、积都是整数.根据韦达定理:⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+m m m m x x m m m m x x 222221221 ∵x 1和 x 2都是整数,∴m 是2的约数, 即m=±1,±2.∵这只是整数解的必要条件,而不是充分条件,故要代入检验.当m=1时,原方程为x 2-x -3=0, 没有整数解;当m=-1 时,原方程为-x 2-x -1=0, 没有实数根;当m=2 或m=-2 时,方程有整数解.答:当m=2或 m=-2时,方程 mx 2+(m 2-2)x -(m+2)=0有整数解.例5. 已知:n 是正整数,且9n 2+5n+26的值是两个相邻正整数的积.求:n 的值. (1985年上海市初中数学竞赛题)解:设9n 2+5n+26=m(m+1), m 为正整数.m 2+m -(9n 2+5n)=26. ( 把左边化为积的形式,先配方再分解因式)(m+21)2-(3n+65)2=26+362541-, (m+21+3n+65)( m+21-3n -65)=2595, 去分母并整理得:(3m+9n+4)(3m -9n -1)=230.∵230=1×230=2×115=5×46=10×23,且3m+9n >3m -9n..∴⎩⎨⎧=--=++1193230493n m n m ; 或 ⎩⎨⎧=--=++2193115493n m n m ; 或⎩⎨⎧=--=++51946493n m n m ; 或 ⎩⎨⎧=--=++1019323493n m n m . 解方程组,正整数的值只有 n=2或 n=6.例6. 已知:方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60.求:m 的整数值.解:要使一元二次方程有整数解,必须△为完全平方数.△=[-2(m+1)]2-4m 2=8m+4=4(2m+1).即当2m+1 是完全平方数时,方程有整数解.∵12<m<60,∴25<2m+1<121,完全平方数.2m+1=36, 49, 64, 81, 100.则2m=35, 48, 63, 80, 99.∴ m 的整数值,只有24,40.检验:当m=24 时,有整数解32,18; 当m=40时,有整数解50,32.答:当m=24或 m=40时, 方程x 2-2(m+1)x+m 2=0有两个整数根.丙练习541. 已知x 2-y 2=1991, 则x, y 的正整数解是_______.2. 方程x 2+(y+1)2=5的整数解有_____________.3. 已知x 1, x 2, x 3, ……, x 2000都是正整数,写出下列方程的一组整数解:①x 1+x 2=x 1x 2 的一组解为:___________.②x 1+x 2+x 3=x 1x 2x 3 的一组解为:__________.③x 1+x 2+x 3+x 4=x 1x 2x 3x 4 的一组解为:_______________. ④x 1+x 2+x 3+……+x 2000=x 1x 2x 3……x 2000 的一组解为:__________.4. 已知100≤x(x+1) ≤150,则整数x=_____.5. 已知x 200<2300, 则正整数x=____.6. 如果x,y 都是正整数,且0<x<10,0≤y ≤9,那么 它们的和、差的范围是:0<x+y<___, ___<x -y<___.7. 已知 ⎪⎪⎩⎪⎪⎨⎧=÷=⋅=-=+Dx x Cx x B x x A x x 且A+B+C+D=100,则x=___.(1988年泉州市初二数学双基赛题)8. 已知被除数是100以内的自然数,在○和( )填上适当的数,使如下带余除法的运算成立:○÷()()()⎪⎩⎪⎨⎧===665544ΛΛΛ (1990年泉州市初二数学双基赛题)9. 已知a+2=b -2=c ×2=d ÷2 且a+b+c+d=1989. 则a=___,b=___,c=___,d=___.(1989年泉州市初二数学双基赛题)10. 若a,b,c,d 是互不相等的整数,且 abcd=4. 则a+b+c+d=_____.11. 求下列方程的整数解: ①2x+2y=xy ; ②2x+10y=1991.12. m 取什么整数值时,下列方程有正整数解?① (x -1)=4-x ; ②m 2x 2-18mx+72=x 2-6x..(1988年泉州市初二数学双基赛题)13. 已知长方形的长和宽都是整数值,且周长与面积的数值相同,求这个长方形的 长和宽.14. 方程(x -a)(x -8)-1=0有两个整数根,求a 的值.(1990年全国初中数学联赛题)15. 已知a,b 是自然数且互质,试问关于x 的方程:x 2-abx+21(a+b)=0 是否有自然数解(两解都是自然数)如果有,把它求出来,如果没有请给予证明.(1990年泉州市初二数学双基赛题)16. 两个自然数的和比积小1000,其中一个是完全平方数,求这两个自然数.练习1.x=994, y=993 2.有8个解.3①2,2 ②1,2,3 ③1,1,2,4 ④x 1=x 2=x 3=……= x 1998=1, x 1999=2,x 2000=20004. 10 11,-11,-125. 1,26. 0<x+y<19 , –9<x-y<10 x+y=1,2,3...18, x-y=-8,-7,...0,1, (9)7. 9 8. 60,14,11,9 9. 440,444,221,884 10. 011 ①6个解②12个解12①0,2,-2,4②-213.6和3;4和4 14.815.有自然数1和2(先求出a=1,b=3)16. 144和8。
初中数学(初一)竞赛讲义(知识点难点梳理、重点题型分类举一反三)(家教、补习、竞赛专用)

初一数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 质数那些事阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫作质数(也叫素数);如果能被1和本身以外的自然数整除,就叫作合数;自然数1既不是质数,也不是合数,叫作单位数.这样,我们可以按约数个数将正整数分为三类:关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4.2.1既不是质数,也不是合数;2是唯一的偶质数.3.若质数|,则必有|或|.4.算术基本定理:任意一个大于1的整数N能唯一地分解成个质因数的乘积(不考虑质因数之间的顺序关系):N=,其中,为质数,为非负数(=1,2,3,…,).正整数N的正约数的个数为(1+)(1+)…(1+),所有正约数的和为(1++…+)(1++…+)…(1++…+).例题与求解【例1】已知三个质数,,满足+++=99,那么的值等于_________________.(江苏省竞赛试题) 解题思想:运用质数性质,结合奇偶性分析,推出,,的值.【例2】若为质数,+5仍为质数,则+7为( )A.质数B.可为质数,也可为合数C.合数D.既不是质数,也不是合数(湖北省黄冈市竞赛试题) 解题思想:从简单情形入手,实验、归纳与猜想.【例3】求这样的质数,当它加上10和14时,仍为质数.(上海市竞赛试题) 解题思想:由于质数的分布不规则,不妨从最小的质数开始进行实验,另外,需考虑这样的质数是否唯一,按剩余类加以深入讨论.【例4】⑴将1,2,…,2 004这2 004个数随意排成一行,得到一个数,求证:一定是合数.⑵若是大于2的正整数,求证:-1与+1中至多有一个质数.⑶求360的所有正约数的倒数和.(江苏省竞赛试题) 解题思想:⑴将1到2 004随意排成一行,由于中间的数很多,不可能一一排出,不妨找出无论怎样排,所得数都有非1和本身的约数;⑵只需说明-1与+1中必有一个是合数,不能同为质数即可;⑶逐个求解正约数太麻烦,考虑整体求解.【例5】设和是正整数,≠,是奇质数,并且,求+的值.解题思想:由题意变形得出整除或,不妨设.由质数的定义得到2-1=1或2-1=.由≠及2-1为质数即可得出结论.【例6】若一个质数的各位数码经任意排列后仍然是质数,则称它是一个“绝对质数”[如2,3,5,7,11,13(31),17(71),37(73),79(97),113(131,311),199(919,991),337(373,733),…都是质数].求证:绝对质数的各位数码不能同时出现数码1,3,7,9.(青少年国际城市邀请赛试题) 解题思想:一个绝对质数如果同时含有数字1,3,7,9,则在这个质数的十进制表示中,不可能含有数字0,2,4,5,6,8,否则,进行适当排列后,这个数能被2或5整除.能力训练A级1.若,,,为整数,=1997,则=________.2.在1,2,3,…,这个自然数中,已知共有个质数,个合数,个奇数,个偶数,则(-)+(-)=__________.3.设,为自然数,满足1176=,则的最小值为__________.(“希望杯”邀请赛试题) 4.已知是质数,并且+3也是质数,则-48的值为____________.(北京市竞赛试题) 5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( )A.4B.8C.12D.06.在2 005,2 007,2 009这三个数中,质数有( )A.0个B.1个C.2个D.3个(“希望杯”邀请赛试题) 7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有()A.1个B.3 个C.5个D.6 个(“希望杯”邀请赛试题) 8.设,,都是质数,并且+=,<.求.9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题)11.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为cm规格的地砖,恰用块,若选用边长为cm规格的地砖,则要比前一种刚好多用124块,已知,,都是正整数,且(,)=1,试问这块地有多少平方米?(湖北省荆州市竞赛试题)B级1.若质数,满足5+7=129,则+的值为__________.2.已知,均为质数,并且存在两个正整数,,使得=+,=×,则的值为__________.3.自然数,,,,都大于1,其乘积=2 000,则其和++++的最大值为__________,最小值为____________.(“五羊杯”竞赛试题) 4.机器人对自然数从1开始由小到大按如下的规则染色:凡能表示为两个合数之和的自然数都染成红色,不合上述要求的自然数都染成黄色,若被染成红色的数由小到大数下去,则第1 992个数是_______________.(北京市“迎春杯”竞赛试题) 5.若,均为质数,且满足+=2 089,则49-=_________.A.0B.2 007C.2 008D.2 010(“五羊杯”竞赛试题) 6.设为质数,并且7+8和8+7也都为质数,记=77+8,=88+7,则在以下情形中,必定成立的是()A.,都是质数B.,都是合数C.,一个是质数,一个是合数 D.对不同的,以上皆可能出现(江西省竞赛试题) 7.设,,,是自然数,并且,求证:+++一定是合数.(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足:⑴6个数中任意两个都互质;⑵6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数,都是质数,并且7+与+11也都是质数,试求的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.专题01 质数那些事例1 34例2 C例3 3符合要求提示:当p=3k+1时,p+10=3k+11,p+14=3(k+5),显然p+14是合数,当p=3k+2时,p+10=3(k+4)是合数,当p=3k时,只有k=1才符合题意.例4 (1)因1+2+…+2004=×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n是大于2的正整数,则-1≥7,-1、、+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除,故-1与+1中至多有一个数是质数.(3)设正整数a的所有正约数之和为b,,,,…,为a的正约数从小到大的排列,于是=1,=a.由于中各分数分母的最小公倍数=a,故S===,而a=360=,故b=(1+2++)×(1+3+)×(1+5)=1170.==.例5 由=,得x+y==k.(k为正整数),可得2xy=kp,所以p整除2xy且p为奇质数,故p整除x或y,不放设x=tp,则tp+y=2ty,得y=为整数.又t与2t-1互质,故2t-1整除p,p为质数,所以2t-1=1或2t-1=p.若2t-1=,得t=1,x=y=p,与x≠y矛盾;若2t-1=p,则=,2xy=p(x+y).∵p是奇质数,则x +y为偶数,x、y同奇偶性,只能同为xy=必有某数含因数p.令x=ap,ay=,2ay=ap+y.∴y=,故a,2a-1互质,2a-1整除p,又p是质数,则2a-1=p,a=,故x==,∴x+y=+=。
初中数学竞赛知识点归纳(定理)

7.、塞瓦定理:
设△ABC 的三个顶点 A、B、C 的不在三角形的边或它们的延长线上的一点 S 连接面成的三条直线,分别与边 BC、CA、AB 或它们的延长线交于点 P、Q、R, 则 BPPC×CQQA×ARRB()=1.
初中竞赛需要,重要
8.塞瓦定理的应用定理:
设平行于△ABC 的边 BC 的直线与两边 AB、AC 的交点分别是 D、E,又设 BE 和 CD 交于 S,则 AS 一定过边 BC 的中心 M
证明:如图 1,过 C 作 CP 交 BD 于 P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得 AC:BC=AD:BP,AC·BP=AD·BC ①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得 AC:CD=AB:DP,AC·DP=AB·CD ②。①+②得 AC(BP+DP)=AB·CD+AD·BC.即 AC·B D=AB·CD+AD·BC.
初中联赛常用数学公式、定理
1.中线定理:(巴布斯定理)
设三角形 ABC 的边 BC 的中点为 P,则有 AB2+AC2=2(AP2+BP2) 初中竞赛需要,重要
2.托勒密定理:
设四边形 ABCD 内接于圆,则有 AB×CD+AD×BC=AC 初中竞赛需要,重要
3.梅涅劳斯定理:
设△ABC 的三边 BC、CA、AB 或其延长线和一条不经过它们任一顶点的直线 的交点分别为 P、Q、R 则有 BPPC×CQQA×ARRB=1
15.圆的外切四边形的两组对边的和相等
16.弦切角定理
弦切角等于它所夹的弧对的圆周角
17.推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 18.相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积 相等
初中数学培优竞赛讲座第25讲--奇数、偶数与奇偶分析

第二十五讲 奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m 、n 是整数,则m 土n ,n m ±的奇偶性相同. 5.设m 是整数,则m 与m ,m n 的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】 三个质数之和为86,那么这三个质数是 . (“希望杯”邀请赛试题) 思路点拨 运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注: 18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】 如果a 、b 、c 是三个任意的整数,那么222a c c b b a +++、、( ). A .都不是整数 B .至少有两个整数 C .至少有一个整数 D .都是整数(2001年TI 杯全国初中数学竞赛题)思路点拨 举例验证或从a 、b 、c 的奇偶性说明.【例3】 (1)设1,2,3,…,9的任一排列为a l ,a 2,a 3…,a 9.求证:(a l l 一1)( a 2 —2)…(a 9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨 (1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、Λ321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n Λ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可. 因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上. 理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动:第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上.注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个 奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的. 注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数? 如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】(苏州市中考题)将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】(2000年山东省竞赛题)如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】(第江苏省竞赛题)已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填入“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定(第16届江苏省竞赛题)7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 . 10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .(全国初中数学联赛试题)11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ;q = .(第15届“希望杯”邀请赛试题)13.设a ,b 为整数,给出下列4个结论:(1)若a+5b 是偶数,则a 一3b 是偶数; (2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数; (4)若a+5b 是奇数,则a 一3b 是奇数其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .3 ( “五羊杯”竞赛题)15.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a 1,a 2,…a 24,则(a 1一a 2)( a 3一a 4)…(a 23一a 24)为( ).A .奇数B .偶数C .奇数或偶数D .质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.(太原市竞赛题)18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?( “华杯赛”决赛题) 19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.(汉城国际数学竞赛题)参考答案。
竞赛专题:奇数、偶数及奇偶分析

奇数、偶数及奇偶分析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是_________数.2.能不能在下式的各个方框中分别填入“+”号或“一”号,使等式成立?答:_________.3.已知三个质数a、b、c满足a+b+c+abc=99,那么|a﹣b|+|b﹣c|+|c﹣a|的值等于_________.4.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是_________.5.1,2,3,…,98共98个自然数中,能够表示成两整数的平方差的个数是_________.6.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有_________名选手参加.7.已知p、q、pq+1都是质数,且p﹣q>40,那么满足上述条件的最小质数p=_________,q=_________.8.三个质数之和为86,那么这三个质数是_________.二、选择题(共10小题,每小题3分,满分30分)9.已知n为整数,现有两个代数式:(1)2n+3,(2)4n﹣1,其中,能表示“任意奇数”的()A.只有(1)B.只有(2)C.有(1)和(2)D.一个也没有10.如果a,b,c都是正整数,且a,b是奇数,则3a+(b﹣1)2c是()A.只当c为奇数时,其值为奇数B.只当c为偶数时,其值为奇数C.只当c为3的倍数,其值为奇数D.无论c为任何正楚数,其值均为奇数11.设a,b为整数,给出下列4个结论:(1)若a+5b是偶数,则a﹣3b是偶数;(2)若a+5b是偶数,则a﹣3b是奇数;(3)若a+5b是奇数,则a﹣3b是偶数;(4)若a+5b是奇数,则a﹣3b是奇数,其中结论正确的个数是()A.0个B.2个C.4个D.1个或3个12.下面的图形,共有()个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸)A.0 B.1 C.2 D.313.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1﹣a2)(a3﹣a4)…(a23﹣a24)为()A.奇数B.偶数C.奇数或偶数D.质数14.如a、b、c是三个任意整数,那么、、()A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数15.(2001•荆州)将正偶数按下表排成五列:第1列第2列第3列第4列第5列第1行 2 4 6 8第2行16 14 12 10第3行18 20 22 24………28 26根据上面排列规律,则2000应在()A.第125行第1列B.第125行第2列C.第250行第1列D.第250行第2列16.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a,右图轮子上方的箭头指着的数字为b,数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对的参数为m,则m/n等于()A.B.C.D.17.已知a、b、c中有两个奇数、一个偶数,n是整数,如果S=(a+2n+1)(b+2n+2)(c+2n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶性不能确定三、解答题(共16小题,满分88分)18.(1)是否有满足方程x2﹣y2=1998的整数解x和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?19.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A作1,J,Q,K分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?20.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?21.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.22.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?23.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.24.(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)(a2﹣2)…(a9﹣9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.25.已知x1、x2、x3、…、x n都是+1或﹣1,并且,求证:n是4的倍数.26.游戏机的“方块”中共有下面7种图形.每种“方块”都由4个l×l的小方格组成.现用这7种图形拼成一个7×4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?27.桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下_________(能或不能)?28.在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数_________?29.“元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.30.桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.31.在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1﹣6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.32.有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?33.黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?新课标七年级数学竞赛培训第25讲:奇数、偶数及奇偶分析参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是奇数.考点:整数的奇偶性问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25讲 整数几何
感觉到数学的美,感觉到数与形的协调,感觉到几何
的优雅,这是所有真正的数学家都清楚的真实的美的感觉。
——庞加莱知识方法扫描
整数几何问题指某些几何量(如长度—多边形的边长,周长,角度,面积,体积是整数的几何问题。
它是数学竞赛中常出现的一种题型。
解答此类问题,需要综合运用几何知识和数论的知识
解答整数几何的问题的步骤是:
首先应该根据这个问题给出的几何条件,进行计算或推理,从而得到一些数量之间关系式----等量关系,不等关系,函数关系等
然后根据这些几何量是整数的特点,根据整数的性质来处理,如利用数的整除性,利用整数的表示方法,利用完全平方数的性质,或确定整数的范围后再逐一验证等。
经典例题解析
例1 (2001年《初中生数学学习》杂志有奖问题征解题)凸四边形ABCD 的边长都是正整数,任意三边的和是第四边的整数倍,证明四边形ABCD 的四条边中总有两条边的长度相等。
证明 设四边形四边的长为a 1,a 2,a 3,a 4.周长为s, 且
234111342212433
12344
a a a p a a a a p a a a a p a a a a p a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩, (本题中所有的字母都表示正整数)于是
s= a 1+a 2+a 3+a 4=(p 1+1)a 1=(p 2+1)a 2=(p 3+1)a 3=(p 4+1)a 4
若结论不成立,则四边均不相等,不妨设a 1<a 2<a 3<a 4.则p 1>p 2>p 3>p 4 因a 1+a 2+a 3>a 4,即p 4a 4>a 4,于是p 4>1.
p 4+1= 12344a a a a a +++< 44
4a a =4, 故1<p 4<3, p 4=2. 所以p 3≥3,p 2≥4,p 1≥5。
于是a 1= 116s s p ≤+, a 2= 215s s p ≤+, a 3= 314s s p ≤+, a 4= 113
s s p =+ s= a 1+a 2+a 3+a 4≤6543s s s s +++=1920
s ,矛盾。
所以四条边中总有两条边的长度相等
例2(江苏省第十七届初中数学竞赛试题)现有长为150cm 铁丝,要截成
B n(n>2)小段,每段的长为不小于1(cm)的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值,此时有几种方法将该铁丝截成满足条件的n 段。
解 因为n 段之和为一个定值150 cm ,故要n 尽可能大,必须每段的长度尽可能的小,而每段的长为不小于1的整数,且任意3小段都不能拼成三角形,因此这些小段的长度只可能是1,1,2,3,5,8,13,21,34,55,89,… 但 1+1+2+3+5+8+13+21+34+55=143<150,
1+1+2+3+5+8+13+21+34+55+89=232>150
故n 的最大值为130。
将长为150cm 铁丝分为满足条件的10段共有以下7种方式:
1,1,2,3,5,8,13,21,34,62;
1,1,2,3,5,8,13,21,35,61;
1,1,2,3,5,8,13,21,36,60;
1,1,2,3,5,8,13,21,37,59;
1,1,2,3,5,8,13,22,35,60;
1,1,2,3,5,8,13,21,36,59;
1,1,2,3,5,8,13,21,34,58。
例3(1995年武汉市初二数学竞赛试题) 一个菱形两条对角线的长度a,b 都是小于10的整数, 用a,b 构成一个四位整数aabb (这里的aabb 表示千位,百位
数字相同的四位数),当这个四位数是一个完全平方数时,求这个菱形的面积.
解 设aabb =n 2 (n 是正整数) ,即11×(100a+b)=n 2, 于是可设100a+b=11m 2(m 是正整数) ,但100a+b=99a+(a+b), 于是a+b 是11的倍数,而a,b 都是小于10的整数,且不为0,于是 a+b=11。
逐一验证209,308,407,506,605,704,803,902,仅有704=11×82是11m 2形式的数,于是a=7,b=4.
故菱形的面积为12
ab=14. 例4 (1985年上海市初中数学竞赛试题)已知直角三角形的两条直角边长分别为l,m ,斜边长为n ,且l.m.n 均为正整数,l 为质数,证明2(l+m +1)是完全平方数。
证明 ∵l 2+m 2=n 2,∴l 2 =n 2-m 2=(n+m ) (n-m )。
∵l 为质数,且n+m > n-m >0,∴n+m= l 2, n-m =1.于是l 2=2m +1,2m = l 2-1
∴2(l+m +1)=2 l+2m +2= l 2+2 l +1=( l +1)2, 即2(l+m +1)是完全平方数。
例5(1989年浙江省初中数学竞赛试题)已知△ABC 中,∠B 是锐角,从顶点A 向BC 边或它的延长线引垂线交于H 点, 从顶点C 向AB 边或它的延长线引垂
线交于K 点,试问:当22,BH BK BC AB
都是整数时,△ABC 是怎样的三角形?并证明之. 解 如图,设BC=a,AB=c (a,c 为正实数),又设2BH BC
2BK AB =n (m,n 为正整数)于是BH=2ma ,BK=2
nc .因即2ma <c ,2nc <a. 故4
mnac <ac ,即mn<4,于是m,n 有如下
五组解:11m n =⎧⎨=⎩;12m n =⎧⎨=⎩;21m n =⎧⎨=⎩;13m n =⎧⎨=⎩;31
m n =⎧⎨=⎩。
分别讨论如下:
(1) 当m=n=1时,BH=2a ,BK=2
c , 此时三角形是等边三角形 (2)当m=1,n=2时,BH=2
a ,BK=c,此时三角形是以∠A 为直角的等腰直角三角形;
(3)当m=2,n=1时,与(2)的讨论类似,三角形是以∠C 为直角的等腰直角三角形;
(4)当m=1,n=3时,BH=2a ,BK=32
c ,此时三角形是∠A=120º的等腰三角形; (5)当m=3,n=1时,与(4)的讨论类似,此时三角形是∠C=120º的等腰三角形.
例6 (2002年全国初中数学竞赛试题)如图,在Rt △ABC 中, ∠BCA=90º,CD 是高,已知Rt △ABC 的三边长都是整数,且BD=113,求Rt △BCD 与Rt △ACD 的周长之比。
解 如图,设BC=a ,CA=b ,AB=c ,
由Rt △BCD ∽Rt △BAC ,得,BC BD BA BC
= 即 BC 2=BD •BA ,
所以a 2=113c.因a 2是完全平方数,且11是质数,令c=11k 2(k 为正整数),
则a=112k ,于是,由勾股定理,得11=.
因b 是整数,所以k 2-112.是完全平方数,令k 2-112=m 2,
则(k+m )(k -m) =112.
因为k+m >k -m >0,且11为质数,所以
211,1
k m k m ⎧+=⎨-=⎩ 解之,得61,60k m =⎧⎨=⎩ 于是a=112×61,b=11×61×60.
因为Rt △BCD ∽Rt △CAD.所以,它们的周长比等于它们的相似比,即211611111616060
a b ⨯==⨯⨯ 例7(1994年全国初中数学联赛试题)周长为6面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明共有几个?
解 这样的直角三角形存在,恰有一个.设此直角三角形斜边为c ,两直角边分别为a ,b ,面积为S ,则 a ≤b <c <a +b , ①
a +
b +
c =6, ②
222c b a =+, ③。