2014届高三函数性质

合集下载

江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)(学生版)

江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)(学生版)

江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)填空题1 .(江苏省盐城市2013届高三10月摸底考试数学试题)函数ln ,(0,)y x x x =-∈+∞的单调递减区间为________.2 .(江苏省徐州市2013届高三期中模拟数学试题)若函数52++=x mx y 在[2,)-+∞上是增函数,则m 的取值范围是____________.3 .(江苏省无锡市2013届高三上学期期中考试数学试题)函数))(1()(a x x x f +-=为奇函数,则)(x f 的减区间为______________.4 .(江苏省苏州市五市三区2013届高三期中考试数学试题 )已知函数)(x f 在定义域),0(+∞上是单调函数,若对任意),0(+∞∈x ,都有2]1)([=-x x f f , 则)51(f 的值是____________.5 .(江苏省苏州市五市三区2013届高三期中考试数学试题 )函数xx y +-=11的单调递减区间为__________________. 6 .(江苏省南京市2013届高三9月学情调研试题(数学)WORD 版)已知函数f (x )=⎩⎨⎧e x -k ,x ≤0,(1-k )x +k ,x >0是R 上的增函数,则实数k 的取值范围是_______.7 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))函数2()||f x x x t =+-在区间[-1,2]上最大值为4,则实数t=____________________.8 .(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))给定函数①1y x -=,②121(1),y og x =+③|1|,y x =-④12,x y +=其中在区间(0,1)上单调递减的函数序号为______________________________.9 .(江苏省南通市、泰州市、扬州市、宿迁市2013届高三第二次调研(3月)测试数学试题)设实数x 1,x 2,x 3,x 4,x 5均不小于1,且x 1·x 2·x 3·x 4·x 5=729,则max{x 1x 2,x 2x 3,x 3x 4,x 4x 5}的最小值是 ▲ .10.(苏北老四所县中2013届高三新学期调研考试)已知定义在R 上的奇函数)(x f 在区间),0(+∞上单调递增,若0)21(=f ,△ABC 的内角A 满足0)(cos <A f ,则A 的取值范围是11.(2010年高考(江苏))设函数f(x)=x(e x +ae -x ),x ∈R,是偶函数,则实数a =________________ 12.(江苏省徐州市2013届高三期中模拟数学试题)1()21x f x a =--是定义在(,1][1,)-∞-+∞上的奇函数, 则()f x 的值域为________._13.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)设f (x )奇函数,当0x ≥时, f (x )=2x -x 2,若函数f (x )(x ∈[a ,b ])的值域为[1b ,1a],则b 的最小值为____. 14.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)下列函数为奇数函数的是_______.①.2x y = ; ②3x y =;③ x y 2=;④ x y 2log =.15.(江苏省南京市四校2013届高三上学期期中联考数学试题)若函数()f x =是偶函数,则实数a 的值为 ________.16.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))已知2234,0(),0x x x f x ax bx x ⎧-≥⎪⎨+<⎪⎩为偶函数,则ab=______________________.17.(江苏省2013届高三高考模拟卷(二)(数学) )定义在R 上的函数f (x )满足f (x )=⎩⎨⎧3x -1,x ≤0,f (x -1)-f (x -2),x >0,则f (2013)=________.18.(江苏省2013届高三高考压轴数学试题)已知函数()13log )12a x f x x a =+++-(0,1a a >≠),如果()3log 5fb =(0,1b b >≠),那么13log f b ⎛⎫ ⎪⎝⎭的值是______.19.(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)已知函数2221 0 () 0ax x x f x x bx c x ⎧--⎪=⎨++<⎪⎩,≥,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交 于四个不同点A ,B ,C ,D .若AB BC =,则实数t 的值为______.20.(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设函数f(x)是定义在R 上的奇函数,且f(a)>f(b), 则f(-a)_________ f(-b)(填“>”或:“<”)21.(南通市2013届高三第一次调研测试数学试卷)定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =,则(2013)f =________.解答题22.(江苏海门市2013届高三上学期期中考试模拟数学试卷)求函数y .江苏省2014届一轮复习数学试题选编3:函数的基本性质(单调性、最值、奇偶性、周期性)参考答案 填空题1. (0,1)2.410≤≤m 3. 11[,]22- 4. 65. ),1(),1,(+∞---∞6. [12,1)7. 2或1548. ①②③9. 910. ),32()2,3(ππππ . 11. —1 12. 3113[,)(,]2222-- 13. 1- 14. ②15. 2 ;16. 1217. -1318. 3- .19. 74- 20. <21.答案:14. 本题考查一般函数的性质——周期性在解题中的应用.解答题22.因为22y =≤22[1][12]33x x +-++=⨯∴y ≤3 ,= “=”号,即当0x =时,max 3y =。

北京市2014届高三理科数学一轮复习试题选编3:函数的性质(单调性、最值、奇偶性与周期性)(学生版) 2

北京市2014届高三理科数学一轮复习试题选编3:函数的性质(单调性、最值、奇偶性与周期性)(学生版) 2

北京市2014届高三理科数学一轮复习试题选编3:函数的性质(单调性、最值、奇偶性与周期性)一、选择题错误!未指定书签。

.(2013北京高考数学(文))下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是 ( )A .1y x=B .x y e-=C .21y x =-+D .lg ||y x =错误!未指定书签。

.(北京市海淀区2013届高三5月查缺补漏数学(理))下列函数中,在其定义域内既是奇函数又是减函数的是 ( )A .e x y =B .sin2y x =C .3y x =-D .12log y x =错误!未指定书签。

.(2012年高考(陕西文))下列函数中,既是奇函数又是增函数的为 ( )A .1y x =+B .2y x =-C .1y x=D .||y x x =错误!未指定书签。

.(北京四中2013届高三上学期期中测验数学(理)试题)定义在R 上的函数满足,当时,,则 ( )A .B .C .D .错误!未指定书签。

.(2013湖南高考数学(文))已知()f x 是奇函数,()g x 是偶函数,且(1)+g f -(1)=2,(1)+g f -(1)=4,则g (1)等于____( )A .4B .3C .2D .1错误!未指定书签。

.(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+错误!未指定书签。

.(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+错误!未指定书签。

.(北京市海淀区2013届高三上学期期中练习数学(理)试题)下列函数中,在定义域内是减函数的是 ( )A .1()f x x=-B .()f x x =C .1()2xf x =D .()tan f x x =错误!未指定书签。

2014届高考二轮复习课件:常考问题1 函数、基本初等函数的图象与性质 (1)

2014届高考二轮复习课件:常考问题1 函数、基本初等函数的图象与性质 (1)

满足f(a+x)=f(x)(a不等于0),则其周期T=ka(k∈Z)的绝对
值.
知识与方法 热点玉提升 审题与答题
3.求函数最值(值域)常用的方法
(1)单调性法:适合于已知或能判断单调性的函数;
(2)图象法:适合于已知或易作出图象的函数; (3)基本不等式法:特别适合于分式结构或两元的函数;
(4)导数法:适合于可求导数的函数.
0,f(1)=1,f(2)=2,所以在一个周期内有f(1)+f(2)+„+
f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+„+f(2012)= f(1)+f(2)+335×1=335+3=338,选B. 答案 (1)B (2)B
知识与方法
热点玉提升
审题与答题
热点二 函数的图象及其应用 x [例 2] (1)函数 y=2-2sin x 的图象大致是 ( ).
1 5 a=f-2=f2,当
x2>x1>1 时,[f(x2)-f(x1)](x2-
x1)<0 恒成立,等价于函数 f(x)在(1,+∞)上单调递减,所 以 b>a>c.选 D.
知识与方法
热点玉提升
审题与答题
方法点评
根据函数图象的对称性可以把位于对称轴两侧
的函数值转化为同一侧的函数值, 这样就可以使用函数在对 称轴一侧的单调性比较函数值的大小, 因此在解决比较大小 问题时这是常用的解题思路.
x≤0,

图象如图所示. f(x)=x 解的个数即 y=f(x)与 y=x 图象的交点个数.由图知 两图象有 A,B,C 三个交点,故方程有 3 个解.
答案 (1)D (2)3
知识与方法 热点玉提升 审题与答题
热点三

2014届高三数学最后一课试题拆解:函数

2014届高三数学最后一课试题拆解:函数

函数1.已知函数⎩⎨⎧><=,0,ln ,0,)(x x x e x f x 则)]1([e f f =( ) A .e 1 B .e C .-e 1D .-e【答案】A【答案】D【解析】令()2cos 22cos 22sin .6662g x f x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦3.已知函数()log (2)a f x x a =-在区间12[,]23上恒有()0f x >,则实数a 的取值范围是 。

【答案】1(,1)3【解析】当01a <<时, 函数()log (2)a f x x a =-在区间12[,]23上是减函数,所以4log ()03a a ->,即4013a <-<,解得113a <<;当1a >时, 函数()log (2)a f x x a =-在区间12[,]23上是增函数,所以log (1)0a a ->,即11a ->,解得0a <,此时无解.综上所述,实数a 的取值范围是1(,1)3.4.给出下列五个命题:①当01x x >≠且时,有1ln 2ln x x +≥;②ABC ∆中,A B >是sin sin A B >成立的充分必要条件;③函数xy a =的图像可以由函数2xy a =(其中01a a >≠且)的图像通过平移得到;④已知n S 是等差数列{}n a 的前n 项和,若75S S >,则93S S >;⑤函数(1)y f x =+与函数(1)y f x =-的图像关于直线1x =对称。

其中正确命题的序号为 。

【答案】②③④6.已知()f x 在R 上是奇函数,且满足(2)(),f x f x +=-当(0,2)x ∈时,2()2f x x =,则(2011)f 等于 ( )A. 2-B.2C. -98D. 98 【答案】A【解析】因为(2)(),f x f x +=-所以(4)(2)[()]()f x f x f x f x +=-+=--=,所以4是()f x 的周期,所以(2011)f =(20083)(3)f f +==(12)(1)f f +=-=-2,故选A.7.对任意的实数,a b ,记{}()max ,()a a b a b b a b ≥⎧=⎨<⎩,若{}()max (),()()F x f x g x x R =∈,其中奇函数()y f x =在1x =时有极小值2-,()y g x =是正比例函数,函数()(0)y f x x =≥与函数()y g x =的图象如图所示,则下列关于函数()y F x =的说法中,正确的是( )A .()y F x =为奇函数B .()y F x =有极大值(1)F 且有极小值(1)F -C .()y F x =的最小值为2-且最大值为2D .()y F x =在(3,0)-上不是单调函数【答案】D当x 变化时,)(),(x f x f '的变化情况如下:极小值是.0)(=e f 6分(2)由x x a x x g 2ln )(2++=,得222)(x x a x x g -+=' 8分又函数x x a x x g 2ln )(2++=为[1,4]上的单调减函数。

2014届高考第一轮总复习:对数与对数函数

2014届高考第一轮总复习:对数与对数函数

2 答案 3
答案
ቤተ መጻሕፍቲ ባይዱ
3
1 1 (3)2 = 5 = 10,则 + = ________. a b 答案 1
a b
解析 ∵ 2a= 5b= 10 ∴ a=log210, b= log510 1 1 ∴ =lg2, = lg5 a b 1 1 ∴ + = lg2+ lg5=1. a b
3.log0.70.8,log1.10.9 与 1.10.9 的大小关系是 ________.
题型二 对数大小的比较 例 2 (1)(2010· 全国卷Ⅰ )设 a= log32,b=
ln 2, c= 5 2,则( A.a< b< c C.c< a< b

1
) B.b< c< a D.c< b< a
ln 2 【解析】 a= log32= <ln 2= b,又 c ln 3 1 1 1 1 - =5 2= < ,a= log32> log3 3= ,因此 c 2 5 2 <a< b,故选 C.
【解析】 解法一 因为 C1、C2 为增函数,可 知它们的底数都大于 1,又当 x>1 时,图象越靠近 x 轴,其底数越大,故 C1、C2 对应的 a 值分别为 2、 3,又因为 C3、 C4 为减函数,可知它们的底数都小 于 1,此时 x>1 时,图象越靠近 x 轴,其底数越小, 1 1 所以 C3、C4 对应的 a 分别 , ,综上可得 C1、C2、 3 2 1 1 C3、 C4 的 a 值依次为 2,3, , . 3 2 解法二 可以画直线 y= 1,看交点的位置自左 向右,底数由小到大.
课时作业(八)
当a>1,0<x<1时,logax<0
当0<a<1,0<x<1时,logax>0 当0<a<1,x>1时,logax<0

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)3.3三角函数图象和性质课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)3.3三角函数图象和性质课件 新人教A版

a, c 的大小关系是 b,
(
)
A.a<b<c C.b<a<c
B.c<a<b D.b<c<a
解析: (1)作出 y=|tan x|的图象, 观察图象可知, y=|tan x|
π 的增区间是kπ,kπ+2 ,k∈Z. π (2)f(x)=sin x+ 3cos x=2sin x+3 ,因为函数
3 答案:5 π+2kπ,k∈Z 4
1.求三角函数的单调区间时,应先把函数式化成y
=Asin(ωx+φ)(ω>0)的形式,再根据三角函数的单调
区间,求出x所在的区间.应特别注意,考虑问题应在 函数的定义域内.注意区分下列两种形式的函数单调 性的不同:
π π (1)y=sinωx-4 ;(2)y=sin4 -ωx.
1 cos x- 的定义域为________. 2 (2)函数 y=sin2x+sin x-1 的值域为
(
)
A.[-1,1]
5 C.-4,1
5 B.-4,-1 5 D.-1,4
sin x>0, [自主解答] (1)要使函数有意义必须有 1 cos x-2≥0, sin x>0, 即 1 cos x≥2, 2kπ<x<π+2kπ, 解得 π (k∈Z), π -3+2kπ≤x≤3+2kπ
π +kπ,0 2
y=tan x 奇函数
kπ ,0 2 (k∈Z)
(kπ,0)
∈Z)
(k∈Z)
函数 对称轴 方程 周期
y=sin x
y=cos x
y=tan x
π x= +kπ 2 (k∈Z) x=kπ (k∈Z)

2014届高考江苏专用(理)一轮复习第四章第3讲三角函数的图象与性质

2014届高考江苏专用(理)一轮复习第四章第3讲三角函数的图象与性质

π 2x π π 故由 2kπ- ≤ - ≤2kπ+ 2 3 4 2 3π 9π ⇒3kπ- ≤x≤3kπ+ (k∈Z), 8 8
π 2x π 3π 由 2kπ+ ≤ - ≤2kπ+ 2 3 4 2 9π 21π ⇒3kπ+ ≤x≤3kπ+ (k∈Z), 8 8 3π 9π ∴函数的递减区间为3kπ- 8 ,3kπ+ 8 (k∈Z), 9π 21π 递增区间为3kπ+ 8 ,3kπ+ 8 (k∈Z).
②作出 y=|tan x|的图象,观察图象可知,y=|tan x|的增 π π 区间是 kπ,kπ+2,k∈Z,减区间是 kπ-2,kπ,k∈ Z.最小正周期 T=π. (2)f(x)= 3sin 2x+1-2sin2x-1 π = 3sin 2x+cos 2x-1=2sin2x+6 -1. π π π π 2π 因为 x∈-6,4,所以 2x+ ∈-6, 3 , 6 π π π 所以当 2x+ =- ,即 x=- 时,f(x)min=-2; 6 6 6 π π π 当 2x+ = ,即 x= 时,f(x)max=1. 6 2 6 π π 故函数 f(x)在区间- 6,4 上的最小值为-2,最大值为 1.
π π f(x)在区间-12,2 上的范围为________.
解析 法一
(1)要使函数有意义,必须使 利用图象.在同一坐标系中
sin x-cos x≥0.
画出[0,2π]上y=sin x和y=cos x的图
象,如图所示.
π 5π 在[0,2π]内,满足 sin x=cos x 的 x 为 , ,再结合正 4 4 弦、余弦函数的周期是 2π,
式).
(3)求三角函数的定义域经常借助两个工具,即单位圆中 的三角函数线和三角函数的图象,有时也利用数轴. (4)求三角函数最值,可以转化为y=Asin(ωx+φ)或二次函 数在某个区域内的最值问题.

2014届高考数学常考问题1 函数、基本初等函数的图象与性质

2014届高考数学常考问题1 函数、基本初等函数的图象与性质

第一部分 17个常考问题专项突破常考问题1 函数、基本初等函数的图象与性质(建议用时:50分钟)1.(2013·北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ).A .y =1xB .y =e -xC .y =-x 2+1D .y =lg |x | 解析 y =1x 为奇函数;y =e -x 为非奇非偶函数;函数y =-x 2+1是偶函数,且在(0,+∞)上递减.答案 C2.设函数f (x )=⎩⎨⎧x ,x ≥0, -x ,x <0,若f (a )+f (-1)=2,则a 等于 ( ).A .-3B .±3C .-1D .±1 解析 依题意,得f (a )=2-f (-1)=2--(-1)=1.当a ≥0时,有 a =1,则a =1;当a <0时,有-a =1,a =-1.综上所述,a =±1.答案 D3.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是 ( ).解析 因为函数f (x ),g (x )都为偶函数,所以f (x )·g (x )也为偶函数.所以图象关于y 轴对称,排除A ,D.f (x )·g (x )=(-x 2+2)log 2|x |,当0<x <1时,f (x )·g (x )<0,排除B ,选C.答案 C4.(2013·天津卷)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2 a )+f (log 12a )≤2f (1),则a 的取值范围是( ). A .[1,2]B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]解析 ∵f (x )在R 上是偶函数,∴f ⎝ ⎛⎭⎪⎫log 12a =f (-log 2a )=f (log 2a ), 由题设,得2f (log 2a )≤2f (1),即f (log 2a )≤f (1),又f (x )在[0,+∞)上单调递增,∴|log 2a |≤1,解之得12≤a ≤2.答案 C5.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则下列结论中正确的是 ( ).A .f (4.5)<f (7)<f (6.5)B .f (7)<f (4.5)<f (6.5)C .f (7)<f (6.5)<f (4.5)D .f (4.5)<f (6.5)<f (7)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.∴f (4.5)=f ⎝ ⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12,f (7)=f (4+3)=f (3)=f (1), f (6.5)=f ⎝ ⎛⎭⎪⎫4+52=f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫32. 又f (x )在[0,2]上为增函数.所以f ⎝ ⎛⎭⎪⎫32>f (1)>f ⎝ ⎛⎭⎪⎫12,故有f (4.5)<f (7)<f (6.5).答案 A6.已知f (x )=ln(1+x )的定义域为集合M ,g (x )=2x +1的值域为集合N ,则M ∩N =________.解析 由对数与指数函数的知识,得M =(-1,+∞),N =(1,+∞),故M ∩N =(1,+∞).答案 (1,+∞)7.(2013·济南模拟)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.解析 f ′(x )=3x 2+1>0,∴f (x )在R 上为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知,f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0,令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,可得⎩⎨⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23. 答案 ⎝ ⎛⎭⎪⎫-2,23 8.已知函数y =f (x )是R 上的偶函数,对∀x ∈R 都有f (x +4)=f (x )+f (2)成立.当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,给出下列命题: ①f (2)=0;②直线x =-4是函数y =f (x )图象的一条对称轴;③函数y =f (x )在[-4,4]上有四个零点;④f (2 014)=0.其中所有正确命题的序号为________.解析 令x =-2,得f (-2+4)=f (-2)+f (2),解得f (-2)=0,因为函数f (x )为偶函数,所以f (2)=0,①正确;因为f (-4+x )=f (-4+x +4)=f (x ),f (-4-x )=f (-4-x +4)=f (-x )=f (x ),所以f (-4+x )=f (-4-x ),即x =-4是函数f (x )的一条对称轴,②正确;当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,说明函数f (x )在[0,2]上是单调递减函数,又f (2)=0,因此函数f (x )在[0,2]上只有一个零点,由偶函数知函数f (x )在[-2,0]上也只有一个零点,由f (x +4)=f (x ),知函数的周期为4,所以函数f (x )在(2,6]与[-6,-2)上也单调且有f (6)=f (-6)=0,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f (2)=f (6)=f (10)=…=f (2 014)=0,④正确.答案 ①②④9.已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )的图象上任意一点P 关于原点对称的点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.解 (1)设P (x ,y )为g (x )图象上任意一点,则Q (-x ,-y )是点P 关于原点的对称点,因为Q (-x ,-y )在f (x )的图象上,所以-y =log a (-x +1),即y =-log a (1-x )(x <1).所以g (x )=-log a (1-x )(x <1).(2)f (x )+g (x )≥m ,即log a 1+x 1-x≥m . 设F (x )=log a 1+x 1-x,x ∈[0,1). 由题意知,只要F (x )min ≥m 即可.因为F (x )在[0,1)上是增函数,所以F (x )min =F (0)=0.故m 的取值范围是(-∞,0].10.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围.解 (1)∵f (-1)=0,∴a -b +1=0,∴b =a +1,∴f (x )=ax 2+(a +1)x +1.∵f (x )≥0恒成立,∴⎩⎨⎧a >0,Δ=(a +1)2-4a ≤0,即⎩⎨⎧a >0,(a -1)2≤0.∴a =1,从而b =2,∴f (x )=x 2+2x +1,∴F (x )=⎩⎨⎧x 2+2x +1 (x >0),-x 2-2x -1 (x <0).(2)由(1)知,g (x )=x 2+2x +1-kx =x 2+(2-k )x +1.∵g (x )在[-2,2]上是单调函数,∴k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.所以k 的取值范围是(-∞,-2]∪[6,+∞).11.已知函数f (x )=e x -e -x (x ∈R 且e 为自然对数的底数). (1)判断函数f (x )的奇偶性与单调性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x 都成立?若存在,求出t ;若不存在,请说明理由.解 (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x ,且y =e x 是增函数,y =-⎝ ⎛⎭⎪⎫1e x 是增函数,所以f (x )是增函数.由于f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),所以f (x )是奇函数.(2)由(1)知f (x )是增函数和奇函数,所以f (x -t )+f (x 2-t 2)≥0对一切x ∈R 恒成立⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 恒成立⇔x 2-t 2≥t -x 对一切x ∈R 恒成立⇔t 2+t ≤x 2+x 对一切x ∈R 恒成立⇔⎝ ⎛⎭⎪⎫t +122≤⎝ ⎛⎭⎪⎫x +122min 对一切x ∈R 恒成立⇔⎝ ⎛⎭⎪⎫t +122≤0⇔t =-12. 即存在实数t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x 都成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014届高三数学一轮复习试题
——函数的概念和性质
1.函数y =的定义域为 ( ) A .[4,1]- B .[4,0)- C .(0,1] D .[4,0)(0,1]-
2. 定义在R 上的函数f(x)满足f(x)= ⎩⎨⎧>---≤-0
),2()1(0),4(log 2x x f x f x x ,则f (3)的值为( )
A.-1
B. -2
C.1
D. 2
3.若函数x x x f -+=33)(与x x x g --=33)(的定义域均为R ,则
A. )(x f 与)(x g 与均为偶函数
B.)(x f 为奇函数,)(x g 为偶函数
C. )(x f 与)(x g 与均为奇函数
D.)(x f 为偶函数,)(x g 为奇函数
4.已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)= ( )
A .-2
B .2
C .-98
D .98
5.奇函数)(x f 在区间)0,(-∞上单调递减,0)2(=f ,则不等式0)1()1(>+-x f x 的解集为( )
A .)2,1()1,2( --
B 。

),2()1,3(+∞-
C 。

)1,3(--
D .)
,2()0,2(+∞-
6.已知R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).
A.(25)(11)(80)f f f -<<
B. (80)(11)(25)f f f <<-
C. (11)(80)(25)f f f <<-
D. (25)(80)(11)f f f -<<
7.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为( )
A .2-
B .1-
C .1
D .2
8.设函数⎩⎨⎧<+≥+-=0
,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )
A.),3()1,3(+∞⋃-
B.),2()1,3(+∞⋃-
C.),3()1,1(+∞⋃-
D.)3,1()3,(⋃--∞
9.函数f (x )=4x 2
-mx +5在区间[-2,+∞]上是增函数,在区间(-∞ ,-2)上是减函数,则f (1)等于( )
A .-7
B .1
C .17
D .25
10、已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( )
A .f (-1)<f (9)<f (13)
B .f (13)<f (9)<f (-1)
C .f (9)<f (-1)<f (13)
D .f (13)<f (-1)<f (9)
11.函数2lg(421)y x x =--的单调递减区间是 ..
12.若函数2)1(2)(2
+-+=x a x x f 在区间(-∞,4] 上是减函数,那么实数a 的取值范围是______
13.设奇函数]1,1[)(-在x f 上是增函数,且12)(,1)1(2+-≤-=-at t x f f 若函数对所有的]1,1[-∈a ,]1,1[-∈x 都成立,则t 的取值范围是____________________________,
14.定义在R 上的偶函数()(1)(),f x f x f x +=-满足且在[—1,0]上是增函数,给出下列关于()f x 的判
断; ①()f x 是周期函数;②()f x 关于直线1x =对称;③()f x 是[0,1]上是增函数;
④()f x 在[1,2]上是减函数;⑤(2)(0)f f =,其中正确的序号是 。

15.已知向量1(1,cos ),(sin )4a x b x ==-- ;
(1)当[0,]4x π∈时,若a b ⊥ ,求x 的值; (2)定义函数()(),,()f x a a b x R f x =⋅-∈ 求的最小正周期及最大值。

16、函数f (x )对任意的实数m,n ,有f (m+n )=f (m )+f (n ),当x >0时,有f (x )>0。

①求证:0)0(=f ②求证:f (x )在(-∞,+∞)上为增函数.
③若f (1)=1,解不等式f (4x -2x )<2.
17.已知函数()f x 是定义域在R 上的偶函数,且在区间(,0)-∞上单调递减,求满足
22(23)(45)f x x f x x ++>---的x 的集合.。

相关文档
最新文档