平面直角坐标系知识点梳理

合集下载

《平面直角坐标系》知识点大全

《平面直角坐标系》知识点大全

《平面直角坐标系》知识点大全3.1确定位置:在平面内,确定一个物体的位置一般需要两个数据。

3.2平面直角坐标系1、有序数对:我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对,即:(a,b)2、平面直角坐标系:在平面内,两条互相垂直、且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向竖直的数轴称为y 轴或纵轴,习惯上取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0;第二象限:x<0,y>0第三象限:x<0,y<0;第四象限:x>0,y<0x 轴上的点:(x ,0)y 轴上的点:(0,y )4、距离问题:点(x ,y )距x 轴的距离为y点(x ,y )距y 轴的距离为x坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为21x x -点A (0,y 1)点B (0,y 2),则AB 距离为21y y -5、角平分线问题若点(x ,y )在第一、三象限角平分线上,则x=y若点(x ,y )在第二、四象限角平分线上,则x=-y6、对称问题:对称点坐标的特征:P(a,b)关于x 轴对称的点的坐标为(a,-b);P(a,b)关于y 轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)7、平行于坐标轴的直线上的点:平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同。

8、中点坐标:点A (1x ,0)点B (2x ,0),则AB 中点坐标为(221x x +,0)。

有关平面直角坐标系的知识点及考点归纳

有关平面直角坐标系的知识点及考点归纳

数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。

(完整版)平面直角坐标系知识点总结(可编辑修改word版)

(完整版)平面直角坐标系知识点总结(可编辑修改word版)

温馨提示(a , b )与(b , a )顺序不同,含义就不同。

例如:用(3 , 5) 表示第 3 列的第 5 位同学,那么(5 , 3) 就表示第 5 列的第 3 位同学。

夯实基础平面直角坐标系平面直角坐标系的有关概念一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数 a 与b 组成的数对,叫做有序数对,记作(a , b )。

例 1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上, 如果把“5 排 8 号”简记为(5,8),那么“4 排 9 号”如何表示?(8,3)表示什么含义?二.平面直角坐标系相关概念具体内容平面直角坐标系定义在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系两轴水平的数轴叫做 x 轴或横轴,取向右为正方向;垂直的数轴叫做 y 轴或纵轴,取向上为正方向 原点 两轴的交点O 为平面直角坐标系的原点 坐标平面坐标系所在的平面叫做坐标平面三.象限x 轴和 y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。

y第二象限第三象限第一象限Ox第四象限y b • Oax例 2:设M (a , b ) 为平面直角坐标系中的点。

(1) 当a > 0, b < 0 时,点M 位于第几象限?(2) 当ab > 0 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点 A ,过点 A 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a 、b 分别叫做点 A 的横坐标和纵坐标,有序数对(a , b )叫做点 A 的坐标,记作A (a , b ) ,如图。

1. 已知坐标平面内的点,确定点的坐标先由已知点 P 分别向 x 轴、 y 轴作垂线,设垂足分别为 A 、 B ,再求出垂足 A 在 x 轴上的坐标 a 与垂足 B 在 y 轴上的坐标b ,最后按顺序写成(a , b )即可。

(完整版)平面直角坐标系知识点总结

(完整版)平面直角坐标系知识点总结

平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。

我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。

水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。

平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。

在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。

横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。

(完整版)平面直角坐标系知识点归纳

(完整版)平面直角坐标系知识点归纳

X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负b YC点C、D的横坐标都等于n ;,nD 'XX7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a)若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,贝Um基本练习:练习 仁在平面直角坐标系中,已知点 P ( m 5,m2 )在x 轴上,贝U P 点坐标为 _________2练习2 :在平面直角坐标系中,点P ( m 2, 4 ) 一定在 _____________ 象限;2练习3 :已知点P ( a 1, a 9)在x 轴的负半轴上,则 P 点坐标为___________________ ;练习4 :已知X 轴上一点A (3 , 0) , y 轴上一点B ( 0 , b ),且AB=5,则b 的值为 ______________ ; 练习5 :点M (2 , - 3)关于x 轴的对称点N 的坐标为 _______________ ;关于y 轴的对称点P的坐标为 ________ ;关于原点的对称点 Q 的坐标为 ___________ 。

平面直角坐标系知识点归纳

平面直角坐标系知识点归纳

平面直角坐标系知识点归纳1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,)一一对应;其中,a 为横坐标,b 为纵坐标;3、已知点的坐标找出该点的方法: 分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x 轴y 轴的的垂线,两垂线的交点即为要找的点。

4、已知点求出其坐标的方法: 由该点分别向x 轴yx 轴上的坐标是改点的横坐标,垂足在y 5、x (横)轴上的点,纵坐标等于0;y 坐标轴上的点不属于任何象限; 6、 四个象限的点的坐标具有如下特征: 第一象限:(+,+);第二象限:(-,+) 第三象限:(-, -);第四象限:(+,-) 7、点P (x,y )的几何意义:在平面直角坐标系中,已知点P ),(ba ,则 (1) 点P 到x 轴的距离为b ; (2)点P 到y 轴的距离为a ;(3) 点P 到原点O 的距离为PO = 22b a +8、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。

9、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横纵坐标互为相反数。

10、对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;bX X X -11、同一数轴上两点间的距离:等于坐标之差的绝对值。

12、平行于坐标轴的两点间的距离:(1)平行于x 轴的两点间的距离等于这两点横坐标之差的绝对值(2)平行于y 轴的两点间的距离等于这两点纵坐标之差的绝对值13、平面上任意两点间的距离:设A (11,y x )、B (22,y x ),则:221221)()(y y x x AB -+-=14、线段中点坐标:设A (11,y x )、B (22,y x ),则:AB 中点C 的坐标为)2,2(2121y y x x ++ 基本练习:1、在平面直角坐标系中,已知点P (2,5-+m m )在x 轴上,则P 点坐标为2、在平面直角坐标系中,点P (4,22-+m )一定在 象限;3、已知点P ()9,12--a a 在x 轴的负半轴上,则P 点坐标为 ;4、已知x 轴上一点A (3,0),y 轴上一点B (0,b ),且AB=5,则b 的值为 ;5、点M (2,-3)关于x 轴的对称点N 的坐标为 ; 关于y 轴的对称点P的坐标为 ;关于原点的对称点Q 的坐标为 。

平面直角坐标系知识点归纳总结

平面直角坐标系知识点归纳总结

平面直角坐标系知识点归纳总结一、知识网络结构二、知识要点1、有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对,记做(a,b )。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P ,过P 分别向x 轴,y 轴作垂线,垂足分别在x 轴,y 轴上,对应的数a,b分别叫点P 的横坐标和纵坐标,记作P(a ,b);点P(a ,b)到x 轴的距离是 |b| ,到y 轴的距离是 |a| 。

点P(a ,b)到x 轴或横坐标轴的距离是 |b| (纵坐标的绝对值),到y 轴或纵坐标轴的距离是 |a| (横坐标的绝对值)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点 ①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点 ①x 轴正半轴上的点:横坐标 0,纵坐标 0;②x 轴负半轴上的点:横坐标 0,纵坐标 0;③y 轴正半轴上的点:横坐标 0,纵坐标 0;④y 轴负半轴上的点:横坐标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。

(填“>”、“<”或“=”x 轴上的点:纵坐标 0,y 轴上的点:横坐标 08、对称点的坐标特点 ①关于x 轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y 轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

9、点P(2,3) 到x 轴的距离是 ; 到y 轴的距离是 ;点P(2,3) 关于x 轴对称的点坐标为( , );点P(2,3) 关于y 轴对称的点坐标为( , )。

平面直角坐标系知识点总结

平面直角坐标系知识点总结

平面直角坐标系知识点总结一、知识点框架图二、知识点整理1、有序数对两个数a 、b 组成的有顺序的数对即为有序数对,记作(a ,b )。

ps :有序,即强调(a ,b )和(b ,a )的区别 2、平面直角坐标系三要素:x 轴(横轴)、y 轴(纵轴)、原点O 。

四象限:第一、二、三、四 象限ps :x 轴、y 轴方向要死记 3、点的坐标写点的坐标:写出A 点的坐标(a ,b ),过A 做x 轴y 轴的垂线,点A 到y 轴的距离为a ,点A 到x 轴的距离为b 。

确定平面内点的坐标建立平面直角坐标系点P 坐标 (有序数对(x ,y ))画两条数轴 ①数轴 ②有公共原点1)写点的坐标时,横轴在前(a),纵轴在后(b)2)注意各象限中a、b的正负号4、点坐标的特征1)四象限中点的特征:2)数轴上点的特征:x轴上点的纵坐标为0,写为(a,0)y轴上点的横坐标为0,写为(0,b)ps:坐标轴上的点不属于任一象限!!!3)象限角分线上点的坐标:4)对称点坐标的特点:点A(a,b):5)平行于坐标轴的直线上的点三、平面直角坐标系的应用:1、坐标表示地理位置a)建立坐标系,选择原点,确定下x、y轴b)由具体问题建立适当的比例,标单位长度c)在坐标平面内画出点,写出坐标ps:即为,建系、定长度、写坐标2、用坐标表示平移a)点的平移:b)图形的平移:图形平移即为点平移,且为图形上的点的整体平移。

四、坐标系中的重点&难点重点:建立坐标系,点坐标的特征;难点:点的平移和图形的平移1:如图,在X轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作X轴的垂线,与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a >0,则图中阴影部分的面积是()A.12.5B.25C.12.5aD.25a2:在平面直角坐标系中,已知3个点的坐标分别为A1(1,1) 、A2(0,2)、A3(-1,1),一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P 2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______ ,_______).1、考点分析:此题包括坐标系、一次函数以及图形面积的求法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

00
1本周我们所学的知识主要是平面直角坐标系,其中有以下主要知识点(需熟记)
一、点的坐标:⑴在坐标系中已知点标出它的坐标:过点分别作x 轴与y 轴的垂线,在x 轴上的垂足所表示的数即是点的横坐标,在y 轴上的垂足所表示的数即是纵坐标,坐标需写成(x,y),(横坐标在前,纵坐标在后。

⑵已知点的坐标在坐标
系中描出点。

分别在x 轴与y 轴上找到表示横坐标与纵坐标的点,过这两点分别作x 轴y 轴的垂线,两线的交点即是所求的点。

练习:如图1,请在坐标系中写出下点A 、B 的坐标,并描出点C (5,2),D (-4,-3) 二、不同位置下点的坐标特征:(如图2) a 、象限点:第一象限点(+,+),第二象限点(-,+)第三象限点(-,-)第四象限点(+,-) b 、坐标轴上的点:x 轴上点(x,0),y 轴上点(0,y)
注:坐标轴上的点不属于任何象限
例、若A (a,b)为第二象限点,则M (-a,b+1)在第 象限。

分析:方法一:推理法,点A 为第二象限的点,所以a 为负数,b 为正数,所以可推知M(-a,b+1)中,-a 为正数,b+1为正数,即M (+,+)所以M 在第一象限。

方法二:取特殊值
法:若A (a,b)为第二象限点则a 为负数,b 为正数,不妨设
a=-1。

,b=1,代入横、纵坐标得-a=-(-1)=1,b+1=1+1=2,即此时M
坐标为(1,2)在第一象限,故可判定M (-a.b+1)在第一象限。

类似的,点P (-a 2-1,|b|+2)一定在第 象限。

例、若A(x,y),x+y<0,xy>0,则点A 在第 象限。

分析:xy>0说明x 与y 同号,(两数相乘,同号得正,异号得负),又x+y<0,所以x 与y 应同为负,(同号两数相加,取相同的符号)即A (-,-)在第三象限。

类似的,若A (x,y),xy=0,那么A 在 ,
分析:xy=0,说明x 与y 至少有一个是0,分为三种情况:1、x=0,y ≠0(y 轴上),2、x ≠0,y=0(x 轴上),3、x,y 均为0(原点)。

所以答案为:点A 在坐标轴上。

三、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。

即A(x,y),到x 轴的距离=|y|,到y 轴的距离=|x|
例、若点A 到x 轴的距离为5,到y 轴的距离为4则A 的坐标为
分析 :到x 轴的距离为5说明点A 的|纵坐标|=5,则纵坐标为5或-5,到y 轴的距离为4,说明|横坐标|=4,则横坐标为4或-4。

综述,点A 的坐标为(4,5)、(4,-5)、(-4,5)、(-4,-5)。

类似的,若点M 到x 轴的距离为3,到y 轴的距离为6,且在第二象限,则点M 坐标为 (前两个条件的分析方法一样,可和四个分类,再加上点M 在第二象限,可知点M 坐标符号为(-,+),便可确定答案。


四、对称两点的坐标特征:1、关于x 轴对称两点:横坐标相同,纵坐标互为相反数。

2、关于y 轴对称两点:横坐标互为相反数,纵坐标相同。

3、关于原点对称两点:横、纵坐标均互为相反数。

即:若A (a,b) ,B(a,-b), 则A 与B 关于x 轴对称,若A (a,b), B(-a,b),则A 与B 关于y 轴对称。

若A (a,b),B(-a,-b),则A 与B 关于原点对称。

例 点A (3,-4)关于x 轴的对称点坐标为 关于y 轴的对称点坐标为 ,
图2
y x 1
23
4
5
-1-2
-3
-4
-512345-1-2-3-4-5A
o
B C D y
x
1
2
345
-1-2
-3
-4-512345-1-2-3-4-5A B
o D C y x
12345-1-2
-3
-4
-512345-1-2-3-4-5D B
o A C 关于原点的对称点坐标为 。

例 点M 关于x 轴的对称点为N (-3,-5)则M 坐标为 。

五、同一水平线(平行于x 轴的直线)、铅直线(平行于y 轴的直线)上点的坐标特征:1、同一水平线(平行于x 轴的直线)上的点:纵坐标相同,2、同一铅直线(平行于y 轴的直线)上的点:横坐标相同。

即若A (a,b), B(a,c)则点A 、B 在同一水平线(平行于x 轴的直线)上,若M (a,b),N(c,b),则点M 、N 在同一铅直线(平行于y 轴的直线)上。

例 如图3:矩形ABCD 两组对边分别平行于坐标轴,若点A
(3.2,1.9),点C(-4,-2),则点B 坐标为 ,点D 坐标为 分析:点B 坐标的确定:左右看,同一水平线上有点A (3.2,1.9),所以点B 纵坐标为1.9(同一水平线上的点:纵坐标相同),上下看,同一铅直线上有点C (-4,-2),所以,点B 的横坐标为-4(同一铅直线上的点:横坐标相同),综述,点B 坐标为(-4,1.9),另点D 亦可同理得到坐标为(3.2,-2)。

类似的,如图若A (-5,3.4),B(-3,0),C(4,0),则点D 坐标为 分析:原理与例1相同,不过还要加上平行四边形对边的长度相同一致这一性质。

六、水平线段(在水平线上的线段)与铅直线段(在铅直线上的线段)的长度:水平线段长度=两端点横坐标之差的绝对值,铅直线段长度=两端点纵坐标之差的绝对值,即如图 B (-3,1),C(-4,1),A(2,3),D(2,1)则BC=|(-3)-4|=7, AD=|3-1|=2 例:如图5,若B (-3,1),C(-4,1),A(2,3),求S ∆ABC
分析:作AD ⊥BC 于D ,则S ∆ABC =,BC ×AD ,BC 为水平线段,所以BC=|(-3)-4|=7,AD 是铅直线段,所以AD=|3-1|=2
故S ∆ABC =,BC ×AD = ×7×2=7
七、用坐标表示平移:1、点的平移规则:平移a 个单位长度:向左平移→横坐标减a,向右平移→横坐标+a,向上平移→纵坐标+a,向下平移→纵坐标-a,反之亦然。

2、图形的整体平移:找到所有关键点(如多边形的顶点,线段的端点等)进行平移
例:如图6,若将点A 平移至A 1(-4,-2),请画出平移后的图形。

分析:首先要从图形中的对应点的坐标分析出平移过程,然后确定各关键点的坐标及对应点的坐标,再画出平移后的图形。

解:由图可知A (4,3),B (3,1)C (1,2)
∴当A 移至A1(-4,-2)时(横坐标-8,纵坐标-5),B1(-5,-4)C1(-7,-3)则△A1B1C1如图所示(图形略)
以上为本章节中主要知识点,需理解记忆,灵活运用。

本章节中另外有些常见题型的解法也应熟记,如下:
图3 图4 图5 12
12
12
图6
题型1:如图7,若湖心亭(-2,3)狮虎园(5,1)则其它地点的坐标分别是多少? 分析:首先应分析出坐标系的位置,两地的|横坐标之差|=7,又两地在图中的水平距离=7个单位长
度,所以,可知本
图中横轴上每个
单位长度表示1个单位长度为y 题型2:如图9,若(3,135)表示点A 的位置,那么点B 的位置应用用序数对 来表示。

分析:用有序数对来表示某个位置,需首先分析出有序数对中约定好的每个数的实际意义,不难发现,A
(3,1350
)表示的意义是,点A 在由内到外的第三个
圆周上,在1350
方向线上,因此,本题的约定就是:有序数对的第1个数表示点所在的圆(由内到外的数),
第2个数表示点所在的方向线,因此,点B 的位置应用有序数对(5,45)来表示。

题型3求网格中多边形的面积 例:如图10,若B (-3,1),C(-4,1),A(2,3),求S ∆ABC 过程见知识点六 类似的,如图11根据图形条件求S 四边形ABCD
分析:经过如图切割,S 四边形ABCD=S △ABO +S △BMC +S △CND +S 矩形MONC
分别用图10例的方法去求即可。

相关文档
最新文档