高中物理思想和方法
一、高考物理中的“八大”解题思想方法

第二部分应考技巧指导——超常发挥,决胜高考一、高考物理中的“八大”解题思想方法现如今,高考物理更加注重考查考生的能力和科学素养,其命题越加明显地渗透着对物理方法、物理思想的考查。
在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”。
.估算法半定量计算(估算)试题在近几年各地高考题中屡见不鲜,如2018年全国卷ⅡT15结合高空坠物情境估算冲击力。
此类试题是对考生生活经验的考查,要求考生在分析和解决问题时,要善于抓住事物的本质特征和影响事物发展的主要因素,忽略次要因素,从而使问题得到简捷的解决,迅速获得合理的结果。
【针对训练】1.高空坠物极其危险。
设想一个苹果从某人头部正上方45 m 高的楼上由静止落下,苹果与人头部的作用时间约为 4.5×10-4s,则头部受到的平均冲击力约为()A.1×102 NB.1×103 NC.1×104 ND.1×105 N解析苹果做自由落体运动,则h=12gt2,苹果从静止下落到与人头部作用的全程根据动量定理有mgt-FΔt=0-0,其中Δt=4.5×10-4s,取g=10 m/s2,一个苹果的质量m≈150 g=0.15 kg,联立并代入数据解得F=1×104 N,选项C正确。
答案 C2.如图1所示,某中学生在做引体向上运动,从双臂伸直到肩部与单杠同高度算1次,若他在1分钟内完成了10次,每次肩部上升的距离均为0.4 m,g取10 m/s2,则他在1分钟内克服重力所做的功及相应的功率约为()图1A.200 J ,3 WB.2 000 J ,600 WC.2 000 J ,33 WD.4 000 J ,60 W解析 中学生的质量约为50 kg ,他做引体向上运动,每次肩部上升的距离均为0.4 m ,单次引体向上克服重力所做的功约为W 1=mgh =50×10×0.4 J =200 J , 1分钟内完成了10次,则1分钟内克服重力所做的功W =10W 1=2 000 J ,相应的功率约为P =W t =2 00060 W =33 W ,选项C 正确。
高中物理思想方法总结

高中物理思想方法总结引导语:物理是一门很多学生都掌握不好的学科,其实学好物理是非常需要方法的,接下来是小编为你带来收集整理的高中物理思想方法总结,欢迎阅读!1.微元法与极限法它本是高等数学中的知识领域问题,但在高中物理中只是思想方法领域的问题。
在高中也根本不可能把具体知识体系教给学生,但作为思想方法,它的地位反而更高。
虽然对问题的分析都是定性的,却反应了思维的质量和深度。
在处理匀变速直线运动的位移、瞬时速度,曲线运动速度方向、万有引力由“质点”向“大的物体”过渡、变力做功,等等,要大力向学生渲染这种思想方法。
2.隔离法除前面提到的对物体系统进行隔离的例子,还有对问题的过程或问题性质进行隔离的思想方法问题。
例如我们把电源隔离成无阻理想电源和电阻串联的两部分;把碰撞问题分隔成纯粹碰撞阶段和纯粹运动阶段──很多教师说“碰撞瞬间完成,还没来得及运动,忽略其位移”,其实这话不严密:不是没位移,而是把位移成分(哪怕很微小的位移)在运动阶段中体现了。
再如,在讨论卫星运行中的变轨问题时,往往分隔成变速、变轨,再变速、稳定在另一轨道等等几个理想段,实际中这些过程并不是界限分明分阶段进行的,而是交融在一起、伴随在一起的。
隔离法的运用,不是忽略了什么,也不是允许了什么误差,而是思维的一种方法与技巧。
运用这种方法,研究的结果是精确的。
3.忽略次要因素思想很多学生在讨论问题时,有两个误区:一是看问题不全面,类似的如电路中的功率等于电压与电流二者的积,电压增大为原来二倍时,有的学生就说功率就变为原来二倍;二是不知道多个因素影响中,需要忽略无穷小的和次要的因素。
例如随温度的增加导体的电阻究竟增加还是减小?再如在研究光学的成像时不用考虑色散、在研究干涉问题时不考虑衍射影响、在研究声速时不考虑温度影响等。
对此,应该让学生归纳出理性化的思绪:第一,精确度方面。
例如,研究铁球的自由落体运动,不做精确测量时,不考虑空气阻力。
但要进行精确研究,即便下落的是铁球,也要考虑空气阻力。
高中物理-高中物理思想方法

思想方法1 极限思维法1.极限思维法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的,那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维方法.极限思维法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度(1)公式v =Δx Δt 中,当Δt →0时,v 是瞬时速度.(2)公式a =Δv Δt 中,当Δt →0时,a 是瞬时加速度.思想方法2 巧解匀变速直线运动问题的六种方法运动学问题的求解一般有多种方法,除直接应用公式外,还有如下方法:1.平均速度法定义式v -=x t 对任何性质的运动都适用,而v -=12(v 0+v )适用于匀变速直线运动.2.中间时刻速度法利用“任一时间t ,中间时刻的瞬时速度等于这段时间t 内的平均速度”,即v t2=v-,适用于任何一个匀变速直线运动,有些题目应用它可以避免常规解法中用位移公式列出的含有t2的复杂式子,从而简化解题过程,提高解题速度.3.比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特征的比例关系,用比例法求解.4.逆向思维法把运动过程的“末态”作为“初态”的反向研究问题的方法,一般用于末态已知的情况.5.图象法应用v-t图象,可以使比较复杂的问题变得形象、直观和简单,尤其是用图象定性分析,可避开繁杂的计算,快速得出答案.6.推论法在匀变速直线运动中,两个连续相等的时间T内的位移之差为一恒量,即Δx=x n+1-x n=aT2,若出现相等的时间间隔问题,应优先考虑用Δx=aT2求解.数学技巧1物理中的函数图象1.问题概述物理图象是借助数形结合,将物体运动的函数关系与几何图线相结合,来描述两个物理量之间的依存关系,是近几年高考物理试卷中考查的热点问题之一.2.表现形式根据物理情景从同一角度或从不同角度设计物理图象,让学生判断哪些图象能正确描述物理情景.3.处理方法分析物理情景及所给图象,根据相应的物理原理写出数学表达式,最后根据数学表达式选出正确答案,或根据所给选项图象确定其运动性质是否符合题意.思想方法3临界条件在摩擦力突变问题中的应用1.问题特征当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性,对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力突变为滑动摩擦力.(2)滑动摩擦力突变为静摩擦力.思想方法4动态平衡问题的分析方法1.动态平衡:是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.2.基本思路:化“动”为“静”,“静”中求“动”.3.分析方法(1)解析法①列平衡方程求出未知量与已知量的关系表达式.②根据已知量的变化情况来确定未知量的变化情况.(2)图解法①根据已知量的变化情况,画出平行四边形边、角的变化.②确定未知量大小、方向的变化.。
物理学科思想和方法

物理学科思想和方法物理学是一门基础自然科学,它所研究的是物质的基本结构、最普遍的相互作用、最一般的运动规律以及所使用的实验手段和思维方法。
物理学的基本概念和基本规律具有极大的普遍性,它为很多自然科学、工程技术提供了理论基础和实验技术。
物理学的思想和方法对自然科学的研究和工程技术的发展有指导作用。
高中物理的性质:高中物理是普通高中科学学习领域的一门基础课程,与九年义务教育物理或科学课程相衔接,旨在进一步提高学生的科学素养。
高中物理课程有助于学生继续学习基本的物理知识与技能;体验科学探究过程,了解科学研究方法;增强创新意识和实践能力,发展探索自然、理解自然的兴趣与热情;认识物理学对科技进步以及文化、经济和社会发展的影响;为终身发展,形成科学世界观和科学价值观打下基础。
物理学的主要特点:1、物理学是一门实验学科,它是观察、实验和科学思维相结合的产物。
基本概念的形成和基本规律的发现都是通过观察、实验和科学思维与抽象建立起来的。
2、物理学的基本结构是由基本概念、基本定律、基本思想、基本方法和基本精神五部分组成的。
在这“五基”中,基本概念结构体系是核心。
基本定律是基本概念之间的本质联系。
基本思想是物理学家建立基本概念结构体系所遵从的指导思想,是物理学的灵魂。
基本方法是物理学家建立基本概念结构体系所用的研究方法、途径和手段,是科学素质的集中体现。
基本精神是物理学家建立基本概念结构体系所表现出来的优秀品质和崇高的科学精神,它是推动物理学向前发展的动力。
(3)物理学与数学和辩证唯物主义哲学有着密切的关系。
物理学是一门定量的科学,它比其他任何科学都更需要数学;物理学的发展又将大大促进数学的发展。
高中物理主要思想和方法:1、图形/图象图解法:图形/图象图解法就是将物理现象或过程用图形/图象表征出后,再据图形表征的特点或图象斜率、截距、面积所表述的物理意义来求解的方法。
尤其是图象法对于一些定性问题的求解独到好处。
2、极限思维方法:极限思维方法是将问题推向极端状态的过程中,着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的表现或者说极限值下一般规律的表现,从而对问题进行分析和推理的一种思维办法。
高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。
高中物理实验的十种思想方法

高中物理实验的十种思想方法物理实验是高中物理学习的重要组成部分,也是培养学生实践能力的过程。
为了让学生更好地完成实验,学校和教师应该在学习物理实验时,采用一些特定的思想方法。
首先,了解物理实验的目的,以及实验需要采用的操作方法,才能够继续进行实验工作。
在这一步,学生需要学会分析实验题目,仔细查看实验内容,搞清楚实验的所需设备,及时了解相关的实验过程,以便为建立合理的实验方案打下基础。
其次,认真观察实验现象。
实验前,学生应该对实验所用设备和实验现象进行观察,以确定实验所需要的设备、现象或原理,以便为实验制定合理的实验方案。
第三,分析实验。
实验分析是实验研究的核心内容,它要求学生结合自己的实验结果,能够准确判断实验结果,以便更好地完成实验。
第四,推理实验。
推理是学习的重要组成部分,它鼓励学生把所学的知识贯穿于实验活动当中,也可以提高学生实践能力。
第五,获取实验信息和实验结果。
实验过程中需要科学地获取实验信息和实验结果,以便在实验现场作出准确的推断和分析。
第六,持续观察实验现象。
实验的每一次观察都是学生深入理解物理实验的重要组成部分,学生应该思考实验结果及其可能的原因,以便更加深刻地理解物理实验的本质。
第七,协调各种信息。
物理实验是一个整体研究,学生需要将实验过程中获取的信息进行协调,以便形成一个完整的实验方案。
第八,形成实验报告。
学习实验报告是学习物理实验的重要组成部分,它要求学生能够准确描述实验所得到的结果,并将实验结果与实验目标形成一个完整的实验报告。
最后,总结实验经验。
实验结束后,学生应该做出客观的总结,归纳总结实验中的重要知识点,形成一个完整的实验总结,以便下次实验时可以有更好的准备。
以上就是高中物理实验的十种思想方法。
学习物理实验时,采取以上的方法,可以让学生学会更加科学地完成实验,从而更好地发挥实践能力。
高中物理思想方法指导教案

高中物理思想方法指导教案教学目标:1. 理解和应用科学思维方式和方法2. 发展自主探究的能力3. 培养对物理学的兴趣和热爱教学重点:1. 探究问题的思想方法2. 分析和解决物理问题的能力3. 培养科学思维和方法教学难点:1. 理解和应用物理学的基本原理2. 运用科学思维方式解决问题教学过程:一、导入(5分钟)通过提出一个引人入胜的问题或者情景,引导学生进入物理思维的世界。
二、探究问题(15分钟)1. 提出一个具体的物理问题或实验现象,让学生自主思考和提出解决方法。
2. 学生分组讨论并展示他们的探究结果,引导他们思考问题的不同角度和解决方法。
三、理论学习(15分钟)1. 教师讲解相关物理学原理和概念,并结合学生的探究结果进行讨论和引导。
2. 引导学生建立物理学相关概念和原理的框架,培养他们的科学思维方式。
四、实践应用(15分钟)1. 学生根据已学到的理论知识,尝试解决提出的物理问题或者进行相关实验操作。
2. 学生展示实验结果和结论,让他们积极参与探究过程。
五、总结回顾(10分钟)1. 教师引导学生总结探究过程和结果,提出问题和不足之处,促进学生思考和反思。
2. 帮助学生归纳物理学的思想方法和解决问题的能力,培养他们对物理学的兴趣和热爱。
六、作业布置(5分钟)为学生布置相关作业,让他们继续巩固所学知识和提高解决问题的能力。
评价标准:1. 学生是否能够独立思考和提出问题;2. 学生是否能够运用所学知识解决物理问题;3. 学生是否能够学以致用,将物理学理论应用到实际生活中。
教学反思:通过本节课的教学实践,学生是否能够理解和应用物理学的思想方法和解决问题的能力,是本节课教学成功与否的关键。
同时,教师也应该不断调整教学方法和内容,以提高学生的学习兴趣和积极性。
高中物理学史和思想方法

高中物理学史和思想方法理想化工具(近似)1、 质点:在可以不考虑物理的大小和形状的情况下,把物体近似为一个“点”;2、 (计算)瞬时速度:可以把极短时间内的平均速度近似为这一瞬时的速度;3、 自由落体运动:物体只在重力作用从静止开始的运动;4、 重心:为了研究的方便,认为物体的重力集中作用于物体的重心;——等效替代法 比值法定义物理量1、 速度:位移的变化和所花时间的比值——tx v ∆∆=; 2、 加速度:速度的变化和所花时间的比值——tv a ∆∆=; m F a =是加速度的决定式; 3、 功率:力做功和时间的比值——t W P = 4、 电场强度:检验电荷受到的电场力和检验电荷电量的比之——q FE = 由电场决定E 的大小5、 磁感应强度:电流元受到的安培力和电流元的比值——ILF B =由磁场决定B 的大小; 6、 电阻:导体两端的电压和进过导体电流的比值——I U R = 由电阻本身决定Sl R ρ= 7、 比值法计算:感应电动势t ∆∆Φ=ε 常识1、 重力加速度:a=9.8m/s 2; 纬度越高,g 越大,g 北京>g 海门 ;2、 地磁场:地磁北极在地理南极;地磁南极在地理北极;地磁场从地磁北极出来到地磁南极进去,所以地表的地磁场方向向北(指北针) 北极处的地磁场向下,南极大陆处的地磁场向上;3、 四种基本相互作用:(必修1——第56页)所有物体间的——万有引力电荷间、磁体间——电磁相互作用核子(质子或中子)间——强相互作用放射现象中——弱相互作用4、 地球的第一宇宙速度:7.9km/s ;第二宇宙速度:11.2km/s ,第三宇宙速度:16.7km/s ;5、 人造地球卫星的最小周期约85分钟;6、 经典力学适用于:宏观、低速、弱引力的情况7、 电动势:干电池-1.5V ,锂电池-3~3.6V ,铅蓄电池-2V ;锌汞电池-1.2V ;积层电池-9V ;物理学史1、亚里斯多德:古希腊,(错误的认为)重的物体比轻的物体下落的快;力是维持物体运动的原因;2、伽利略(意大利):研究自由落体运动:猜想自由落体物体的下落速度对时间成正比,或速度对位移成正比;通过斜面实验证明速度和时间成正比,加速度保持不变,合理外推至自由落体运动的加速度相同;科学研究过程:对现象的一般观察——提出假设——运用逻辑(包括数学)得出推论——通过实验对推论进行检验——对假说进行修正和推广;研究力和运动的关系:小球在理想光滑水平面上将维持做匀速直线运动;3、胡克(英国)定律:弹簧弹力——F=kx4、万有引力:托勒密(古希腊)——地心说——错误哥白尼(波兰)——日心说第谷(丹麦)——观测天文数据;开普勒(德国)——计算第谷的数据,得到开普勒三定律——知道天体是怎样运动的;牛顿(英国)——万有引力定律——知道天体为什么是这样运动的;卡文迪许(英国)——测量引力常量G——证明万有引力是存在的,并使其具有实际意义—天文计算;通过钮秤实验——类似于库仑测定静电力常量k的实验G=6.67×10-11N·m2/kg2 k=9.0×109N·m2/C25、天王星和冥王星的轨道是计算出来的,也进一步印证了万有引力定律的正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、高中教学中的思想方法问题举例
1.微元法与极限法
它本是高等数学中的知识领域问题,但在高中物理中只是思想方法领域的问题。在高中也根本不可能把具体知识体系教
给学生,但作为思想方法,它的地位反而更高。虽然对问题的分析都是定性的,却反应了思维的质量和深度。在处理匀变速
直线运动的位移、瞬时速度,曲线运动速度方向、万有引力由“质点”向“大的物体”过渡、变力做功,等等,要大力向学生渲
染这种思想方法。
2.隔离法
除前面提到的对物体系统进行隔离的例子,还有对问题的过程或问题性质进行隔离的思想方法问题。例如我们把电源隔
离成无阻理想电源和电阻串联的两部分;把碰撞问题分隔成纯粹碰撞阶段和纯粹运动阶段──很多教师说“碰撞瞬间完成,还
没来得及运动,忽略其位移”,其实这话不严密:不是没位移,而是把位移成分(哪怕很微小的位移)在运动阶段中体现了。
再如,在讨论卫星运行中的变轨问题时,往往分隔成变速、变轨,再变速、稳定在另一轨道等等几个理想段,实际中这些过
程并不是界限分明分阶段进行的,而是交融在一起、伴随在一起的。
隔离法的运用,不是忽略了什么,也不是允许了什么误差,而是思维的一种方法与技巧。运用这种方法,研究的结果是
精确的。
3.忽略次要因素思想
很多学生在讨论问题时,有两个误区:一是看问题不全面,类似的如电路中的功率等于电压与电流二者的积,电压增大
为原来二倍时,有的学生就说功率就变为原来二倍;二是不知道多个因素影响中,需要忽略无穷小的和次要的因素。例如随
温度的增加导体的电阻究竟增加还是减小?再如在研究光学的成像时不用考虑色散、在研究干涉问题时不考虑衍射影响、在
研究声速时不考虑温度影响等。
对此,应该让学生归纳出理性化的思绪:第一,精确度方面。例如,研究铁球的自由落体运动,不做精确测量时,不考
虑空气阻力。但要进行精确研究,即便下落的是铁球,也要考虑空气阻力。第二,在关注点方面。例如还是铁球下落,看你
关注的是什么。如果你关注的是空气阻力影响,就不能忽略空气阻力。再如一个物体既有平动又有转动,当关注平动时就忽
略转动,当关注转动时就忽略平动。第三,为了思维推演的简化,认可一定的误差存在。例如在研究理想气体时,忽略分子
体积。
4.单位制中的思想方法
单位制的统一,也存在思想方法问题。例如,教师可以大讲特讲以前的单位制多么的混乱、讲讲各个国家及各个地区用
的单位的不同有多麻烦、说说我们国家以前的教材“力”和“质量”单位都用“千克”给学生的学习带来多大的困惑,讲一下美国
1999年发射的火星探测器失踪就是因为单位换算错误造成的,讲讲为了避免麻烦国际上多次开会进行单位制的统一等。让学
生换位思维,你是世界知名科学家你感觉是否有必要统一单位制?
在这些渲染和铺垫下,再展开国际单位制的概念,其中有主单位,有大大小小的换算单位,有几个基本单位,有几十、
几百个的导出单位等。甚至给学生渗透点“量纲”的内容也未尝不可。
5.理想化模型
高中物理的重要特点就是理想模型用的多。对理想模型的概念,要让学生明确三点:概念、特点、目的。如质点,概念:
有质量的几何点;特点:有质量,无尺寸,现实中不存在,假想的,虚构的;目的:用它代替现实中的实际物体,使问题难
度降低和容易表述。对于学生,某一理想模型定义的本身并不重要,而人们之所以要引入它的目的却十分重要。如无内阻的
理想电源、理想气体、光滑表面、点电荷、磁感线等等,在教学的应用中要经常让学生体会和感受它的目的性,更要让学生
知道,这种思维方法是简捷的、高明的。
对理想模型运用的意义有二。第一,是抽象思维训练的重要方法。这种训练,有个循序渐进的过程,就像语文课上背诗
词一样,是个逐渐熏陶而成的过程。第二,是解决实际问题的基础。实际问题是复杂繁琐的,不能直接研究,必须先从理想
模型入手,再向实际问题过渡。例如,研究理想气体是研究真实气体的第一步。
也有一些物理量,是从理想模型角度引入的。例如,磁通量的引入,纯粹是为了思维上的方便而先入为主引入的,不免
有些理想模型的味道。再如平均速度、电压有效值等等一些概念的引入,完全是为了人的主观思维需要,而且是理想化了的
模型。
6.代换法
力的分解与合成、交流电的有效值、理想无阻电源与内阻的串联等,是用到了代换法思维。用质点代替实际物体、把平
抛用两个直线运动代替、用一个字母代替一个表达式,也都是用到代换法。电学的画等效电路图、把摄氏温标转换成开氏温
标、用圆周运动的射影代替简谐振动,也体现了代换法思想。从简单到复杂,代换法渗透在高中物理的各个角落。
7.比值定义法
小学就学除法,但高中大多数学生对除法的意义以及意义的延伸,却很少去问津。很多小学生都知道“去书店买书,算一
下每本书的单价”,而高中学生却轻视了这里面思想方法的问题。
然而我们教师在教学中,特别是在老教材下,感到有些难度、颇费口舌。新教材很好:在处理电场强度概念时候,在分
析出电场力F与电荷量q成正比后,直接给出F=Eq,后面接着指出其中的E是“比例常数”,是“与电场有关的”比例常数,它
反应了电场的性质,电荷放到不同点,发现E不同等。之后,引出E的概念,定义它为E=F/q。由“与电场有关”到“它反应了
电场性质”再到“比值定义法”──单位电荷量在该位置的受力。这种思维过程,不但使问题简化,而且显得很自然、能使学生
更深刻的理解比值定义法。
8.变化率问题
变化率问题,又是除法意义的延伸。在此,教师更要重视“由具体到抽象”的教学。例如,不但让学生知道位移X对时间
t的变化率是速度V、速度V对时间t的变化率是加速度A。电流I对电压U的变化率是电导(R的倒数),更要重视在这些
具体的问题中,进行抽象和提升,教学生把具体的位移X、速度V、时间t、电流I、电压U等等抽象为函数Y与自变量X,
提升到“一个函数对其自变量的变化率问题”层面上。特别是对变化率的变化率、变化率的变化率的变化率……,进行深入的
理解,会使学生更理性和聪颖起来。
9.对物理规定的理解
物理问题,一类是实验和推演得出的,一类是规定的。规定的东西,是一群人中彼此达成一致的约定。可能一群人和另
一群人的约定不同,当不同约定的两群人交流时候,中间还需要翻译。当然,整个人群的约定都统一了,省了中间的翻译,
更好。例如,小磁针指向北面的一极叫N极、原子核内带的电性为正、使质量为一千克的物体产生1m/s2加速度的力叫做1
牛顿、在一个大气压下水的沸点为100℃,以及坐标正方向的规定、太阳升起的方向叫东方,等等,都是人为的规定。而“同
性相斥、异性相吸”“摩擦力与正压力成正比”却是实验的结果。热力学温度的“零”(即-273.15℃)就不是规定的,而是推演
出来的。而它的一个单位刻度(即1K的大小)和摄氏度相同,却是人们规定的。
10.矢量叠加中的思想方法
第一,不能不承认,“平行四边形定则”是知识内容,但把它作为矢量运算的法则来看待,却是思想方法问题。把代数运
算与矢量运算两者并列起来,把两种法则进行大大的渲染,给学生打上深刻的烙印。第二,矢量的“加”与代数的“加”意义具
有相同性:就是几个量的“累积”或“罗列”。作为标量,没有方向,只是大小的累积或罗列。而矢量,是在保证大小和方向的
前提下进行的累积或罗列。例如二力的合成,无非是在两个力在保证大小和方向不变的前提下平移首尾相连,罗列起来。多
个力的“和”,也就是把这些力都保证大小和方向的前提下,依次首尾相连,罗列起来。第三,可以向学生说,矢量的乘法和
除法运算也有自己特定的法则,在大学会学到。