新版高中数学人教A版必修5习题:第二章数列 习题课2 含解析

合集下载

最新人教a版高中数学必修五:第二章《数列》习题课(2)(含答案)

最新人教a版高中数学必修五:第二章《数列》习题课(2)(含答案)

最新人教版数学精品教学资料习题课(2)课时目标1.能由简单的递推公式求出数列的通项公式; 2.掌握数列求和的几种基本方法.1.等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列前n 项和公式: (1)当q =1时,S n =na 1;(2)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.3.数列{a n }的前n 项和S n =a 1+a 2+a 3+…+a n ,则a n =⎩⎪⎨⎪⎧S 1 n =1S n -S n -1 n ≥2.4.拆项成差求和经常用到下列拆项公式:(1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12(12n -1-12n +1); (3)1n +n +1=n +1-n .一、选择题1.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56 C.16 D.130答案 B解析 ∵a n =1n (n +1)=1n -1n +1,∴S 5=(1-12)+(12-13)+…+(15-16)=1-16=56.2.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为( )A .11B .99C .120D .121 答案 C解析 ∵a n =1n +n +1=n +1-n ,∴S n =n +1-1=10,∴n =120.3.数列112,214,318,4116,…的前n 项和为( )A.12(n 2+n +2)-12nB.12n (n +1)+1-12n -1C.12(n 2-n +2)-12nD.12n (n +1)+2(1-12n ) 答案 A解析 112+214+318+…+(n +12n )=(1+2+…+n )+(12+14+…+12n )=n (n +1)2+12(1-12n )1-12=12(n 2+n )+1-12n =12(n 2+n +2)-12n . 4.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a nn所确定的数列{b n }的前n项之和是( )A .n (n +2) B.12n (n +4) C.12n (n +5) D.12n (n +7)答案 C解析 a 1+a 2+…+a n =n2(2n +4)=n 2+2n .∴b n =n +2,∴b n 的前n 项和S n =n (n +5)2.5.已知S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50等于( ) A .0 B .1 C .-1 D .2 答案 B解析 S 17=(1-2)+(3-4)+…+(15-16)+17=9, S 33=(1-2)+(3-4)+…+(31-32)+33=17, S 50=(1-2)+(3-4)+…+(49-50)=-25, 所以S 17+S 33+S 50=1.6.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n 等于( )A .2n -1B .2n -1-1 C .2n +1 D .4n -1 答案 A解析 由于a n -a n -1=1×2n -1=2n -1, 那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=1+2+…+2n -1=2n -1. 二、填空题 7.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,那么这个数列的第5项是________. 答案 -68.在数列{a n }中,a n +1=2a n2+a n,对所有正整数n 都成立,且a 1=2,则a n =______.答案 2n解析 ∵a n +1=2a n 2+a n ,∴1a n +1=1a n +12.∴⎩⎨⎧⎭⎬⎫1a n 是等差数列且公差d =12.∴1a n =1a 1+(n -1)×12=12+n -12=n 2, ∴a n =2n.9.在100内所有能被3整除但不能被7整除的正整数之和是________. 答案 1 473解析 100内所有能被3整除的数的和为:S 1=3+6+…+99=33×(3+99)2=1 683.100内所有能被21整除的数的和为:S 2=21+42+63+84=210. ∴100内能被3整除不能被7整除的所有正整数之和为 S 1-S 2=1 683-210=1 473.10.数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n ≥1),则a n =____________.答案 ⎩⎪⎨⎪⎧1, n =113·⎝⎛⎭⎫43n -2, n ≥2解析 a n +1=13S n ,a n +2=13S n +1,∴a n +2-a n +1=13(S n +1-S n )=13a n +1,∴a n +2=43a n +1 (n ≥1).∵a 2=13S 1=13,∴a n =⎩⎪⎨⎪⎧1, n =113·⎝⎛⎭⎫43n -2, n ≥2.三、解答题11.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n .所以,a n =2n +1,S n =n 2+2n . (2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1) =14·⎝⎛⎭⎫1n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n 4(n +1), 即数列{b n }的前n 项和T n =n4(n +1).12.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1, ①从而22·S n =1·23+2·25+3·27+…+n ·22n +1. ②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].能力提升13.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 答案 A解析 ∵a n +1=a n +ln ⎝⎛⎭⎫1+1n , ∴a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n=ln(n +1)-ln n . 又a 1=2,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+[ln 2-ln 1+ln 3-ln 2+ln 4-ln 3+…+ln n -ln(n -1)]=2+ln n -ln 1=2+ln n .14.已知正项数列{a n }的前n 项和S n =14(a n +1)2,求{a n }的通项公式.解 当n =1时,a 1=S 1,所以a 1=14(a 1+1)2,解得a 1=1.当n ≥2时,a n =S n -S n -1=14(a n +1)2-14(a n -1+1)2=14(a 2n -a 2n -1+2a n -2a n -1), ∴a 2n -a 2n -1-2(a n +a n -1)=0, ∴(a n +a n -1)(a n -a n -1-2)=0. ∵a n +a n -1>0,∴a n -a n -1-2=0. ∴a n -a n -1=2.∴{a n }是首项为1,公差为2的等差数列. ∴a n =1+2(n -1)=2n -1.1.递推公式是表示数列的一种重要方法.由一些简单的递推公式可以求得数列的通项公式.其中主要学习叠加法、叠乘法以及化归为等差数列或等比数列的基本方法.2.求数列前n 项和,一般有下列几种方法:错位相减、分组求和、拆项相消、奇偶并项等,学习时注意根据题目特点灵活选取上述方法.。

高中数学 人教A版 必修5 第二章 数列 高考复习习题(解答题1-100)含答案解析

高中数学 人教A版 必修5 第二章 数列 高考复习习题(解答题1-100)含答案解析

高中数学人教A版必修5 第二章数列高考复习习题(解答题1-100)含答案解析学校:___________姓名:___________班级:___________考号:___________一、解答题1.已知数列满足,设。

(Ⅰ)证明:数列是等差数列,并求数列的通项公式;(Ⅱ)求数列的前项和。

2.已知数列{a n}中,a1=1,a1+2a2+3a3+…+na n=(n∈N*)(Ⅰ)证明当n≥2时,数列{na n}是等比数列,并求数列{a n}的通项a n;(Ⅱ)求数列{n2a n}的前n项和T n;(Ⅲ)对任意n∈N*,使得恒成立,求实数λ的最小值.3.设函数(为常数且),已知数列是公差为2的等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)当时,求证:. 4.已知正项数列{a n}的前n项和为S n,且a n和S n满足:4S n=(a n+1)2 (n=1,2,3……),(1)求{a n}的通项公式;(2)设b n=,求{b n}的前n项和T n;(3)在(2)的条件下,对任意n∈N*,T n都成立,求整数m的最大值.5.已知数列满足a1=2,a n+1=3a n+2,(1)证明:是等比数列,并求的通项公式;(2)证明: .6.已知二次函数满足,且对一切实数恒成立. (1)求;(2)求的解析式;(3)求证:.7.若无穷数列满足:①对任意,;②存在常数M,对任意,,则称数列为“T数列”.(1)若数列的通项为,证明:数列为“T数列”;(2)若数列的各项均为正整数,且数列为“T数列”,证明:对任意,;(3)若数列的各项均为正整数,且数列为“T数列”,证明:存在,数列为等差数列.8.各项均为正数的数列中,设,,且.(1)设,证明:数列是等比数列;(2)设,求集合.9.(本小题满分12分)设公差不为的等差数列的首项为,且构成等比数列.(1)求数列的通项公式,并求数列的前项和为;(2)令,若对恒成立,求实数的取值范围.10.数列满足:,()(1)求证:数列是等差数列;(2)求数列的前999项和.11.已知数列{a n}满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.12.已知数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.13.已知数列的前项和满足.(1)求数列的通项公式;(2)设,求数列的前项和.14.设是由正整数组成的等比数列,且,是其前项和,证明:.15.已知数列为等比数列,,公比为,且,为数列的前项和.(1)若,求;(2)若调换的顺序后能构成一个等差数列,求的所有可能值;(3)是否存在正常数,使得对任意正整数,不等式总成立?若存在,求出的范围,若不存在,请说明理由.16.已知数列满足,(Ⅰ)证明:当时,;(Ⅱ)证明:();(Ⅲ)证明:为自然常数.17.设数列的首项,前项和满足关系式.(1)求证:数列是等比数列;(2)设数列的公比为,作数列,使,求数列的通项公式;(3)数列满足条件(2),求和:. 18.在直角坐标系中,椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)若斜率存在,纵截距为的直线与椭圆相交于、两点,若直线的斜率均存在,求证:直线的斜率依次成等差数列.19.已知数列中,().(1)求数列的通项公式及前项和;,求证:.(2)(此问题仅理科作答)设-(2)(此问题仅文科作答)设, 求数列的最大项和最小项. 20.设数列的前项的和为,且满足,对,都有(其中常数),数列满足.(1)求证:数列是等比数列;(2)若,求的值;(3)若,使得,记,求数列的前项的和.21.在数列中, 已知,且数列的前项和满足, .(1)证明数列是等比数列;(2)设数列的前项和为,若不等式对任意的恒成立, 求实数的取值范围.22.已知函数的图象经过点和,记(1)求数列的通项公式;(2)设若,,,求的最小值;(3)求使不等式对一切均成立的最大实数23.已知数列的前项和,其中.(Ⅰ)求数列的通项公式.(Ⅱ)若数列满足,.(ⅰ)证明:数列为等差数列.(ⅱ)求数列的前项和.24.在数列中,,,,。

2018-2019学年高中数学人教A版必修五练习:第二章 数列2.2.1 Word版含答案

2018-2019学年高中数学人教A版必修五练习:第二章 数列2.2.1 Word版含答案
a4-a3=(11-λ)(6-λ)(2-λ)=-24.
这与{an}为等差数列矛盾.
所以不存在λ,使数列{an}是等差数列.
∴b15=6×15=90.
答案:C
4在等差数列{an}中,a1+3a8+a15=120,则2a9-a10的值为().
A.24B.22C.20D.-8
解析:设公差为d,∵a1+3a8+a15=120,
∴a1+3(a1+7d)+a1+14d=120,
∴5a8=120.∴a8=24.
∴2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24.
(2)数列{an}不可能为等差数列.证明如下:
由a1=1,an+1=(n2+n-λ)an,
得a2=2-λ,a3=(6-λ)(2-λ),
a4=(12-λ)(6-λ)(2-λ).
若存在λ,使{an}为等差数列,则a3-a2=a2-a1,
即(5-λ)(2-λ)=1-λ.
解得λ=3.于是a2-a1=1-λ=-2,
分析转化为证明lgan+1-lgan是一个与n无关的常数.
证明设bn=lgan=lg7n+2=(n+2)lg7,
则bn+1=[(n+1)+2]lg7=(n+3)lg7,
则bn+1-bn=(n+3)lg7-(n+2)lg7=lg7为常数.
所以数列{bn}是等差数列,
即数列{lgan}是等差数列.
能力提升
1若log32,log3(2x-1),log3(2x+11)成等差数列,则x的值为().

高中数学必修5第二章课后习题解答新版

高中数学必修5第二章课后习题解答新版

新课程标准数学必修5第二章课后习题解答第二章 数列2.1数列的概念与简单表示法 练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N n a n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33) 1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,(,2;n a =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+. 习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72n n a =⨯+﹪.3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列 练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立. 习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s. 习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略. 2.3等差数列的前n 项和 练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩ 3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-.(2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++ 126(6)(6)(6)a d a d a d =++++++ 126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km.4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1na n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4等比数列练习(P52) 1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++ . 令,1,2,k i b a i +== ,则数列12,,k k a a ++ 可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++ 是等比数列. (2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a aq k a a a +-===== ≥. 所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列. (3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a , 则1112231111121110(1)k k a a aq k a a a +-===== ≥ 所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅=所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯= 还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩ ①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪. 那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n q --=.那么数列{}n a12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为50505013100.052 5.6310 m m 5.6310 m a a q ==⨯≈⨯=⨯ 这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-=- 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10. 习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅. 2.5等比数列的前n 项和 练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a qS q----===----. 2、设这个等比数列的公比为q(第3题)所以 101256710()()S a a a a a a =+++++++ 555S q S =+55(1)q S =+50= 同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元) 习题2.5 A 组(P61) 1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=--(2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n nn n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++ ……①则 212(1)n n n xS x x n x nx -=+++-+ ……②①-②得,21(1)1n n n x S x x x nx --=++++- ……③当1x =时,(1)1232n n n S n +=++++= ;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=- 所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n =6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列 习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n bb b a b a a a b b a a b a a a b a+++---+++=+++==-- 2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m ) 4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略 5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++= ﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元) 故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+;(3)7(101)9n n a =-; (4)n a =n a3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n nS a a a a n d a n d a n d ++=+++=++++++ 2121()22n a a a n n d S n d =++++⨯=+ 容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-.因此,当工作时间小于10天时,选用第一种付费方式.10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b += 所以111502n n a a -=+,115003502n n n b a a -=-=- 如果1300a =,则2300a =,3300a =,…,10300a =6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯.由以上两式得,11437(1)13n n n a --=⨯+-⨯ 所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)。

人教a版必修5学案:第2章《习题课1-常见的数列求和及应用》(含答案)

人教a版必修5学案:第2章《习题课1-常见的数列求和及应用》(含答案)

第二章 习题课1 常见的数列求和及应用自主学习知识梳理1.等差数列的前n 项和公式:S n =____________=____________.2.等比数列前n 项和公式:①当q =1时,S n =________;②当q ≠1时,S n =____________=____________.3.常见求和公式有:①1+2+…+n =____________.②1+3+5+…+(2n -1)=________.③2+4+6+…+2n =________.*④12+22+32+…+n 2=16n (n +1)(2n +1). *⑤13+23+33+…+n 3=14n 2(n +1)2.自主探究拆项成差求和经常用到下列拆项公式,请补充完整.①1n (n +1)=________________. ②1(2n -1)(2n +1)=________________. ③1n (n +1)(n +2)=____________________. ④1n +n +1=________________. ⑤1a +b=________________. 对点讲练知识点一 分组求和例1 求和:S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2.总结 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.变式训练1 求数列1,1+a,1+a +a 2,…,1+a +a 2+…+a n -1,…的前n 项和S n (其中a ≠0).知识点二 拆项相消例2 求和:122-1+132-1+142-1+…+1n 2-1,(n ≥2).总结 如果数列的通项公式可转化为f (n +1)-f (n )的形式,常采用拆项求和法.变式训练2 求和:1+11+2+11+2+3+…+11+2+3+…+n.知识点三 奇偶并项例3 求和:S n =-1+3-5+7-…+(-1)n (2n -1).变式训练3 已知数列-1,4,-7,10,…,(-1)n ·(3n -2),…,求其前n 项和S n .求数列前n 项和,一般有下列几种方法.1.错位相减(前面已复习)适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.2.分组求和把一个数列分成几个可以直接求和的数列.3.拆项相消有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和.4.奇偶并项当数列通项中出现(-1)n 或(-1)n +1时,常常需要对n 取值的奇偶性进行分类讨论.5.倒序相加例如,等差数列前n 项和公式的推导方法.课时作业一、选择题1.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a n n所确定的数列{b n }的前n 项之和是( )A .n (n +2) B.12n (n +4) C.12n (n +5) D.12n (n +7) 2.已知数列{a n }为等比数列,前三项为a ,12a +12,13a +13,则T n =a 21+a 22+…+a 2n 等于( )A .9⎣⎡⎦⎤1-⎝⎛⎭⎫23nB .81⎣⎡⎦⎤1-⎝⎛⎭⎫23n C .81⎣⎡⎦⎤1-⎝⎛⎭⎫49n D.815⎣⎡⎦⎤1-⎝⎛⎭⎫49n 3.设数列1,(1+2),(1+2+4),…,(1+2+22+…+2n -1)的前m 项和为2 036,则m的值为( )A .8B .9C .10D .114.在50和350之间末位数是1的所有整数之和是( )A .5 880B .5 539C .5 280D .4 8725.已知S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50等于( )A .0B .1C .-1D .2题 号1 2 3 4 5 答 案二、填空题6.(1002-992)+(982-972)+…+(22-12)=________. 7.在100内所有能被3整除但不能被7整除的正整数之和是________.8.若1+3+5+…+(2x -1)11·2+12·3+13·4+…+1x (x +1)=132 (x ∈N *),则x =________. 三、解答题9.求和S n =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1).10.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0. (1)求{a n }的通项;(2)求{nS n }的前n 项和T n .习题课1 常见的数列求和及应用知识梳理1.n (a 1+a n )2 na 1+n (n -1)2d 2.na 1 a 1(1-q n )1-q a 1-a n q 1-q 3.n (n +1)2n 2 n 2+n 自主探究①1n -1n +1 ②12⎝⎛⎭⎫12n -1-12n +1 ③12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2) ④n +1-n ⑤1a -b(a -b) 对点讲练例1 解 当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2 =⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n 当x =±1时,S n =4n.综上知,S n =⎩⎪⎨⎪⎧ 4n , x =±1(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n , x ≠±1. 变式训练1 解 当a =1时,则a n =n ,于是S n =1+2+3+…+n =n (n +1)2. 当a ≠1时,a n =1-a n 1-a =11-a(1-a n ). ∴S n =11-a[n -(a +a 2+…+a n )] =11-a ⎣⎢⎡⎦⎥⎤n -a (1-a n )1-a =n 1-a -a (1-a n )(1-a )2. ∴S n =⎩⎪⎨⎪⎧n (n +1)2 (a =1),n 1-a -a (1-a n)(1-a )2 (a ≠1). 例2 解 ∵1n 2-1=1(n -1)(n +1) =12⎝⎛⎭⎫1n -1-1n +1, ∴原式=12⎣⎡ ⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15⎦⎤+…+⎝⎛⎭⎫1n -1-1n +1 =12⎝⎛⎭⎫1+12-1n -1n +1=34-2n +12n (n +1).变式训练2 解 ∵a n =11+2+…+n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, ∴S n =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1.例3 解 当n 为奇数时,S n =(-1+3)+(-5+7)+(-9+11)+…+[(-2n +5)+(2n -3)]+(-2n +1)=2·n -12+(-2n +1)=-n. 当n 为偶数时,S n =(-1+3)+(-5+7)+…+[(-2n +3)+(2n -1)]=2·n 2=n. ∴S n =(-1)n n (n ∈N *).变式训练3 解 n 为偶数时,令n =2k (k ∈N *), S n =S 2k =-1+4-7+10+…+(-1)n (3n -2)=(-1+4)+(-7+10)+…+[(-6k +5)+(6k -2)]=3k =32n ; 当n 为奇数时,令n =2k +1 (k ∈N *).S n =S 2k +1=S 2k +a 2k +1=3k -(6k +1)=-3n +12. ∴S n =⎩⎨⎧ -3n +12 (n 为奇数),3n 2 (n 为偶数).课时作业1.C [∵a 1+a 2+…+a n =n 2(2n +4)=n 2+2n . ∴b n =n +2,∴b n 的前n 项和S n =n (n +5)2.] 2.D [由⎝⎛⎭⎫12a +122=a ⎝⎛⎭⎫13a +13, 解得a =3(a =-1舍去).∴a 1=3,a 2=2,a 3=43,∴{a 2n }是以a 21=9为首项,以49为公比的等比数列, ∴T n =9⎣⎡⎦⎤1-⎝⎛⎭⎫49n 1-49=815⎣⎡⎦⎤1-⎝⎛⎭⎫49n .] 3.C [a n =2n -1,S n =2n +1-n -2,代入选项检验,即得m =10.]4.A [S =51+61+…+341=30×(341+51)2=5 880.]5.B [S 17=(1-2)+(3-4)+…+(15-16)+17=9, S 33=(1-2)+(3-4)+…+(31-32)+33=17, S 50=(1-2)+(3-4)+…+(49-50)=-25,所以S 17+S 33+S 50=1.]6.5 050解析 (1002-992)+(982-972)+…+(22-12)=100+99+…+2+1=100×(100+1)2=5 050. 7.1 473解析 100内所有能被3整除的数的和为S 1=3+6+…+99=33×(3+99)2=1 683. 100内所有能被21整除的数的和为S 2=21+42+63+84=210. ∴100内能被3整除不能被7整除的所有正整数之和为S 1-S 2=1 683-210=1 473.8.11解析 1+3+5+…+(2x -1)11·2+12·3+…+1x (x +1)=x 21-1x +1=x 2xx +1=x (x +1)=132,∴x =11. 9.解 考察通项a n =1+12+14+…+12n -1=1-(12)n 1-12=2-12n -1 ∴S n =(2-120)+(2-121)+(2-122)+…+(2-12n -1) =2n -(1+121+122+…+12n -1) =2n -1-12n 1-12=2n -2+12n -1 ∴S n =2n -2+12n -1. 10.解 (1)由210S 30-(210+1)S 20+S 10=0, 得S 30-S 20S 20-S 10=1210,设公比为q , 则a 1(1-q 30)1-q -a 1(1-q 20)1-q a 1(1-q 20)1-q -a 1(1-q 10)1-q=1210,即q 10=1210, 所以q =12,所以a n =12·⎝⎛⎭⎫12n -1=12n , 即a n =12n ,n =1,2,…. (2)因为{a n }是首项a 1=12,公比q =12的等比数列. 所以S n =12⎝⎛⎭⎫1-12n 1-12=1-12n ,nS n =n -n 2n . 则数列{nS n }的前n 项和T n =(1+2+…+n )-⎝⎛⎭⎫12+222+…+n 2n ① T n 2=12(1+2+…+n ) -⎝ ⎛⎭⎪⎫122+223+…+n -12n +n 2n +1② ①-②,得T n 2=12(1+2+…+n )-⎝⎛⎭⎫12+122+…+12n +n 2n +1=n (n +1)4-12⎝⎛⎭⎫1-12n 1-12+n 2n +1, 即T n =n (n +1)2+12n -1+n 2n -2.。

人教a版必修5学案:第2章《习题课2-简单的递推数列及应用》(含答案)

人教a版必修5学案:第2章《习题课2-简单的递推数列及应用》(含答案)

第二章 习题课2 简单的递推数列及应用自主学习知识梳理在实际考查中常常涉及求一些简单的递推数列的通项公式问题. 1.累加法:a n +1=a n +f (n ) (f (n )可求和) a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =a 1+f (1)+f (2)+…+f (n -1) 2.累乘法:a n +1=a n ·f (n ) (f (n )为含n 的代数式)a n =a 1·a 2a 1·a 3a 2·…·a na n -1=a 1·f (1)·f (2)·…·f (n -1)3.转化法:a n +1=pa n +q (pq ≠0,p ≠1)方法一 设a n +1-x =p (a n -x ),则a n +1=pa n +(1-p )x∴(1-p )x =q ,∴x =q1-p .∴a n -q 1-p =⎝⎛⎭⎫a 1-q 1-p ·p n -1∴a n =⎝⎛⎭⎫a 1-q 1-p p n -1+q 1-p.方法二 ∵a n +1=pa n +q ,∴a n =pa n -1+q∴a n +1-a n =p (a n -a n -1)=…=p n -1(a 2-a 1)转化为迭加法求解. 4.S n 与a n 的混合关系式有两个思路:(1)消去S n ,转化为a n 的递推关系式,再求a n ;(2)消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n .自主探究1.试写出用累加法推导等差数列通项公式的过程.2.试写出用累乘法推导等比数列通项公式的过程.对点讲练知识点一 累加法与累乘法求通项例1 已知:a 1=2,a n +1=a n +(2n +1),求a n .变式训练1 已知:a 1=1,a n +1=2n ·a n ,求a n .知识点二 化为基本数列求通项例2 已知:a 1=1,a n +1=2a n +3,求a n .变式训练2 设数列{a n }满足:a 1=1,a 2=53,a n +2=53a n +1-23a n (n =1,2,…).令b n =a n+1-a n .(1)求证:数列{b n }是等比数列,并求b n ; (2)求数列{a n }的通项公式.知识点三 已知a n 与S n 的混合关系式,求a n .例3 已知{a n }是各项为正的数列,且S n =12⎝⎛⎭⎫a n +1a n .求a n 与S n .变式训练3 设数列{a n }的前n 项和为S n ,若对任意的n ∈N *,都有S n =2a n -3n . (1)求数列{a n }的首项a 1及递推关系式a n +1=f (a n ); (2)求通项公式a n .1.近几年高考常以递推公式为依托,设计出一些新颖灵活、难度适中、富有时代气息的试题.在学习时对递推公式及其应用应给予适当的重视.2.递推公式是表示数列的一种重要方法.由一些简单的递推公式可以求得数列的通项公式.本课时主要学习了累加法、累乘法以及化归为等差数列或等比数列的基本方法.课时作业一、选择题1.数列{a n }满足a n +1=a n +n ,且a 1=1,则a 5的值为( ) A .9 B .10 C .11 D .122.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( )A .13B .10C .9D .63.在数列{a n }中,a 1=1,a n +1=a n +2n -1,则a n 的表达式为( )A .3n -2B .n 2-2n +2C .3n -1 D .4n -34.数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 11的值为( )A .1 B.12 C.13 D.145.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1-a n -2 (n ≥3).那么S 2 011的值是( ) A .1 B .2 C .3 D .4题 号1 2 3 4 5 答 案二、填空题6.数列{a n }中,a 1=1,a n +1a n =a 2n+(-1)n +1 (n ∈N *),则a 4a 2=________. 7.已知数列{a n }满足a 1=1,a n +1=nn +1a n,则a n =________.8.在数列{a n }中,a n +1=2a n 2+a n,对所有正整数n 都成立,且a 7=12,则a 5=______.三、解答题9.已知S n =4-a n -12n -2,求a n 与S n .10.某地区位于沙漠边缘,人与沙漠进行长期不懈的斗争,到2002年底全地区的绿化率已达到30%,从2003年开始,每年将出现以下变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.(1)设全区面积为1,2002年底绿洲面积为a 1=310,经过1年(指2003年底)绿洲面积为a 2,经过n 年绿洲面积为a n +1,求证:数列{a n -45}为等比数列;(2)问:至少经过多少年的努力才能使全区的绿洲面积超过60%(年数取正整数).习题课2 简单的递推数列及应用自主探究1.解 ∵a n +1-a n =d∴⎭⎪⎬⎪⎫a 2-a 1=da 3-a 2=d … …a n-a n -1=d n -1个式子相加得:a n -a 1=(n -1)d ,∴a n =a 1+(n -1)d .或a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =a 1+(n -1)d .2.解 ∵a n +1a n=q (q ≠0),∴⎭⎪⎬⎪⎫a 2a 1=q a 3a 2=q ……an an -1=q n -1个式子相乘得: a n a 1=q n -1,∴a n =a 1q n -1或a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=a 1q n -1. 对点讲练例1 解 a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+3+5+…+(2n -1)=1+3+5+…+(2n -1)+1=n 2+1.变式训练1 解 a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·21·1=21+2+3+…+(n -1)=2n (n -1)2.例2 解 方法一 ∵a 1=1,a 2=5,a 2-a 1=4.a n +1-a n =2(a n -a n -1)=2n -1(a 2-a 1)=2n +1 ∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+22+23+…+2n =21+22+…+2n -1=2n +1-3.方法二 设a n +1-x =2(a n -x ),则a n +1=2a n -x . ∴x =-3,a n +1+3=2(a n +3).∴a n +3=(a 1+3)·2n -1=2n +1,∴a n =2n +1-3.变式训练2 (1)证明 ∵b n +1=a n +2-a n +1=⎝⎛⎭⎫53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ∴b n +1b n =23(n =1,2,3,…) ∴{b n }是等比数列,公比q =23,首项b 1=a 2-a 1=23.∴b n =⎝⎛⎭⎫23n.(2)解 a n +1-a n =⎝⎛⎭⎫23n.∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+b 1+b 2+…+b n -1=1+⎝⎛⎭⎫23+⎝⎛⎭⎫232+…+⎝⎛⎭⎫23n -1 =3⎣⎡⎦⎤1-⎝⎛⎭⎫23n . 例3 解 ∵S n =12⎝⎛⎭⎫a n +1a n ,∴2S n =a n +1a n , ∴2S n =S n -S n -1+1S n -S n -1,∴S n +S n -1=1S n -S n -1,∴S 2n -S 2n -1=1, ∴{S 2n }是一个等差数列,公差为1,首项为S 21, 易求得S 21=1. ∴S 2n =1+(n -1)×1=n .∴S n =n , ∴a n =n -n -1.变式训练3 解 (1)a 1=S 1=2a 1-3,∴a 1=3. ∵S n =2a n -3n ,∴S n +1=2a n +1-3(n +1). ∴S n +1-S n =2a n +1-2a n -3.∴a n +1=2a n +1-2a n -3,∴a n +1=2a n +3. (2)∵a n +1=2a n +3,∴a n +1+3=2(a n +3).∴{a n +3}是等比数列,公比为2,首项为a 1+3=6.∴a n +3=(a 1+3)·2n -1=6·2n -1=3·2n , ∴a n =3·2n -3. 课时作业1.C [a 5=a 4+4=a 3+3+4=a 2+2+3+4 =a 1+1+2+3+4=11.]2.D [∵a n =2n -12n =1-12n ,∴S n =n -⎝⎛⎭⎫12+122+…+12n =n -1+12n ,又∵S n =32164=5+164,∴n -1+12n =5+164,∴n =6.]3.B [a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+5+…+(2n -3)=1+(n -1)2=n 2-2n +2.]4.B [设数列⎩⎨⎧⎭⎬⎫1a n +1的公差为d ,则1a 7+1=1a 3+1+4d , ∴12=13+4d ,d =124,1a 11+1=1a 7+1+4d , ∴1a 11+1=12+16=23,∴a 11+1=32,∴a 11=12.]5.A [∵a n +1=a n -a n -1=(a n -1-a n -2)-a n -1, ∴a n +1=-a n -2,∴a n +3=-a n . ∴a n +6=-a n +3=-(-a n )=a n . ∴{a n }是周期数列且T =6. ∵a 1+a 2+a 3+a 4+a 5+a 6=(a 1+a 4)+(a 2+a 5)+(a 3+a 6)=0,∴S 2 010=0,∴S 2 011=S 2 010+a 2 011=a 2 011=a 1=1.] 6.1312解析 a 2=2,a 3=32,a 4a 2=a 4a 3a 2a 3=a 23+1a 22-1=1312.7.1n解析 由a n +1a n =n n +1得:a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n =1n ,∴a n a 1=1n ,a n =1n 或(n +1)a n +1=na n =…=2a 2=a 1=1,∴a n =1n . 8.1解析 ∵a n +1=2a n2+a n,∴1a n +1=1a n +12. ∴⎩⎨⎧⎭⎬⎫1a n 是等差数列且公差d =12.∴1a 7=1a 5+2d =1a 5+1=2,∴a 5=1. 9.解 ∵S n =4-a n -12n -2,∴S n -1=4-a n -1-12n -3∴S n -S n -1=a n =a n -1-a n +12n -3-12n -2∴a n =12a n -1+⎝⎛⎭⎫12n -1,∴a n⎝⎛⎭⎫12n -a n -1⎝⎛⎭⎫12n -1=2. ∴2n a n -2n -1a n -1=2.∴{2n a n }是等差数列,d =2,首项为2a 1.∵a 1=S 1=4-a 1-12-1=2-a 1,∴a 1=1.∴2n a n =2+2(n -1)=2n ,∴a n =n ·⎝⎛⎭⎫12n -1. ∴S n =4-a n -12n -2=4-n ·12n -1-12n -2=4-n +22n -1.10.(1)证明 因为2002年底绿洲面积为a 1=310,所以2002年底的沙漠面积为1-a 1=710,经过n -1年后绿洲面积为a n ,沙漠面积为1-a n , 由题意得,再过一年,即经过n 年后,绿洲面积为a n +1=(1-a n )×16%+a n (1-4%),即a n +1=45a n +425.所以a n +1-45=45(a n -45).又因为a 1-45=310-45=-12,所以数列{a n -45}是以45为公比,-12为首项的等比数列.(2)解 由(1)知,a n -45=⎝⎛⎭⎫-12×⎝⎛⎭⎫45n -1,所以a n =45-12·⎝⎛⎭⎫45n -1, 设经过n 年的努力可使全区的绿洲面积超过60%,即a n +1>60%.所以45-12·⎝⎛⎭⎫45n >35,所以⎝⎛⎭⎫45n <25. 验证n =1,2,3,4时,⎝⎛⎭⎫45n >25.当n =5时,⎝⎛⎭⎫455=1 0243 125<25,故至少需要5年的努力,全区的绿洲面积超过60%.。

新版高中数学人教A版必修5习题:第二章数列 习题课2

新版高中数学人教A版必修5习题:第二章数列 习题课2

习题课(二)数列求和课时过关·能力提升基础巩固1设数列{a n}的前n项和为S n,如果a nAC解析:∵a n∴S5答案:B2若数列{a n}的通项公式为a n=2n+2n-1,则数列{a n}的前n项和为().A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2解析:S n=(2+22+…+2n)+(1+3+5+…+2n-1)答案:C3数列{a n}的通项公式a nA.11B.99C.120D.121解析:∵a n∴S n∴n=120.答案:C4数AC解析:∴所求和答案:B5已知数列{a n},其前n项和为S n,且a n=-2[n-(-1)n],则S10=.解析:S10=-2[(1+2+3+…+10)+(1-1+1-1+…+1-1)]=-答案:-1106已知a n=l∈N*),则数列{a n}的前n项和为S n=.解析:∵a n=l n,∴S n=(ln2-ln1)+(ln3-ln2)+(ln4-ln3)+…+[ln(n+1)-ln n]=ln(n+1)-ln1=ln(n+1).答案:ln(n+1)7设数列{a n}的前n项和为S n.已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.解(1)由题意又当n≥2时,由a n+1-a n=(2S n+1)-(2S n-1+1)=2a n,得a n+1=3a n.所以,数列{a n}的通项公式为a n=3n-1,n∈N*.(2)设b n=|3n-1-n-2|,n∈N*,b1=2,b2=1.当n≥3时,由于3n-1>n+2,故b n=3n-1-n-2,n≥3.设数列{b n}的前n项和为T n,则T1=2,T2=3.当n≥3时,T n=3所以T n8已知等差数列{a n}的前n项和S n满足S3=0,S5=-5.(1)求数列{a n}的通项公式;(2)求数解(1)设等差数列{a n}的公差为d,则S n=na1由已知可解得a1=1,d=-1.故数列{a n}的通项公式为a n=2-n.(2)由(1)从而数n项和为9已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.解(1)等比数列{b n}的公比q所以b1设等差数列{a n}的公差为d.因为a1=b1=1,a14=b4=27,所以1+13d=27,即d=2.所以a n=2n-1(n=1,2,3,…).(2)由(1)知,a n=2n-1,b n=3n-1.因此c n=a n+b n=2n-1+3n-1.从而数列{c n}的前n项和S n=1+3+…+(2n-1)+1+3+…+3n-1。

【专题复习】新版高中数学人教A版必修5习题:第二章数列 2.1.1 含剖析讲解

【专题复习】新版高中数学人教A版必修5习题:第二章数列 2.1.1 含剖析讲解

02第二章数列2.1数列的概念与简单表示法第1课时数列的概念与简单表示法课时过关·能力提升基础巩固1下列说法不正确的是().A.数列可以用图象来表示B.数列的通项公式不唯一C.数列中的项不能相等D.数列可以用一群孤立的点表示解析:数列中的项可以相等,如常数列,故选项C不正确.答案:C2已知在数列{a n}中,a n=n2+n,则a3等于().A.3B.9C.12D.20解析:a3=32+3=12.答案:C3数列1,3,7,15,31,…的一个通项公式为().A.a n=2nB.a n=2n+1C.a n=2n-1D.a n=2n-1答案:C4在数列{a n}中,已知a n=nn+1,则{an}是().A.递增数列B.递减数列C.常数列D.摆动数列解析:∵a n=nn+1=1−1n+1,∴{an}是递增数列.答案:A5已知数列{a n}的通项公式是a n=(-1)n(n+1),则a1+a2+a3+…+a10等于().A.-55B.-5C.5D.55解析:a1+a2+a3+…+a10=-2+3-4+5-6+7-8+9-10+11=5.答案:C6设数列√2,√5,2√2,√11,…,则2√5是这个数列的().A.第6项B.第7项C.第8项D.第9项解析:易得数列的一个通项公式为a n=√3n-1,令√3n-1=2√5,得n=7,即2√5是这个数列的第7项.答案:B7已知函数f(x)=3x,点(n,a n)在函数f(x)的图象上,则数列{a n}的通项公式a n=.解析:∵点(n,a n)在f(x)的图象上,∴a n=f(n)=3n.答案:3n8数列152,245,3510,4817,6326,…的一个通项公式为.解析:观察分子与分母,分母为n2+1,分子为(n+3)2-1,所以其通项为a n=(n+3)2-12=n2+6n+82.答案:a n=n 2+6n+8 n2+19已知在数列{a n}中,a n=5n-3.(1)求a5;(2)判断27是否为数列{a n}的一项.解(1)a5=5×5-3=22.(2)令5n-3=27,解得n=6,即27是数列{a n}的第6项.10写出下列数列的一个通项公式,使它的前几项分别是下列各数:(1)23,415,635,863,1099;(2)1,0,−13,0,15,0,−17,0.解(1)原数列的前5项可化为222-1,2×242-1,2×362-1,2×482-1,2×5102-1,故它的一个通项公式是a n=2n(2n)2-1=2n4n2-1.(2)该数列可写为1,02,-13,04,15,06,-17,08,…,该数列第n项的分母为n,分子是si n nπ2的值.故它的一个通项公式是a n=sin nπ2n.能力提升1数列1,0,1,0,1,0,…的通项公式如下:①a n=1+(-1)n+12;②an=sin2nπ2;③a n=cos2(n-1)π2;④an={1,n是奇数,0,n是偶数.其中正确的个数是().A.1B.2C.3D.4解析:可以验证①②③④均可以是该数列的通项公式.答案:D2已知数列√32,√54,√76,√9a-b,√a+b10,…,根据前3项给出的规律,则实数对(a,b)可能是().A.(19,3)B.(19,-3)C.(192,32)D.(192,-32)答案:C3已知在数列{a n}中,a n=2n2-3n+5,则数列{a n}是().A.递增数列B.递减数列C.常数列D.摆动数列解析:∵a n+1-a n=2(n+1)2-3(n+1)+5-(2n2-3n+5)=(2n2+n+4)-(2n2-3n+5)=4n-1>0,∴数列{a n}为递增数列.答案:A4数列{a n}的通项公式a n=log(n+1)(n+2),则它的前30项之积是().A.15B.5C.6D.log23+log31325解析:a1a2…a30=log23×log34×…×log3132=lg3lg2×lg4lg3×…×lg32lg31=log232=log225=5.答案:B5已知数列{a n}的通项公式a n=1n(n+2)(n∈N*),则1120是这个数列的第项.解析:令a n=1120,得1n(n+2)=1120,解得n=10或-12.又n∈N*,则n=10.答案:106已知数列1,1,2,3,5,8,13,…,则这个数列的第12项为.解析:由数列所给的前几项知,从第三项起,每一项是前面两项的和,所以第12项为144.答案:144★7已知数列{a n}的通项公式为a n=3n+1,是否存在m,n,k∈N*,满足a m+a n+1=a k?如果存在,求出m,n,k的值;如果不存在,请说明理由.解由a m+a n+1=a k,得3m+1+3(n+1)+1=3k+1,化简得k=m+n+43.∵m,n∈N*,∴m+n+43∉N*,而k∈N*,∴不存在m,n,k∈N*,使等式成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题课(二)数列求和课时过关·能力提升基础巩固1设数列{a n}的前n项和为S n,如果a n=1(2n-1)(2n+1),那么S5等于().A.12B.511C.49 D.59解析:∵a n=1(2n-1)(2n+1)=12(12n-1-12n+1),∴S5=12(1-13+13-15+15-17+17-19+19-111)=511.答案:B2若数列{a n}的通项公式为a n=2n+2n-1,则数列{a n}的前n项和为().A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2解析:S n=(2+22+…+2n)+(1+3+5+…+2n-1)=2(1-2n)1-2+(1+2n-1)n2=2n+1−2+n2.答案:C3数列{a n}的通项公式a n=1√n+√n+1,若该数列前n项的和为10,则项数为().A.11B.99C.120D.121解析:∵a n=1√n+√n+1=√n+1−√n,∴S n=√n+1−1=10,∴n=120.答案:C4数列12×5,15×8,18×11,…,1(3n-1)(3n+2),…的前n项和为().A.n3n+2B.n6n+4C.3n6n+4D.n+1n+2解析:∵1(3n-1)(3n+2)=13(13n-1-13n+2),∴所求和为13(12-15+15-18+18-111+…+13n -1-13n +2)=13(12-13n +2)=n 6n +4.答案:B5已知数列{a n },其前n 项和为S n ,且a n =-2[n-(-1)n ],则S 10= . 解析:S 10=-2[(1+2+3+…+10)+(1-1+1-1+…+1-1)]=-2(10×112+0)=−110. 答案:-1106已知a n =l n (1+1n)(n ∈N *),则数列{a n }的前n 项和为S n = . 解析:∵a n =l nn+1n=ln(n +1)−ln n , ∴S n =(ln2-ln1)+(ln3-ln2)+(ln4-ln3)+…+[ln(n+1)-ln n ]=ln(n+1)-ln1=ln(n+1).答案:ln(n+1)7设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.解(1)由题意得{a 1+a 2=4,a 2=2a 1+1,则{a 1=1,a 2=3.又当n ≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n , 得a n+1=3a n .所以,数列{a n }的通项公式为a n =3n-1,n ∈N *. (2)设b n =|3n-1-n-2|,n ∈N *,b 1=2,b 2=1.当n ≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n ≥3时,T n =3+9(1-3n -2)1-3−(n+7)(n -2)2=3n-n 2-5n+112,所以T n ={2,n =1,3n -n 2-5n+112,n ≥2,n ∈N *.8已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求数列{a n }的通项公式; (2)求数列{1a 2n -1a 2n+1}的前n 项和.解(1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d. 由已知可得{3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d=-1.故数列{a n}的通项公式为a n=2-n.(2)由(1)知1a2n-1a2n+1=1(3-2n)(1-2n)=12(12n-3-12n-1),从而数列{1a2n-1a2n+1}的前n项和为1 2(1-1-11+11-13+…+12n-3-12n-1) =n1-2n.9已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.解(1)等比数列{b n}的公比q=b3b2=93=3,所以b1=b2q=1,b4=b3q=27.设等差数列{a n}的公差为d.因为a1=b1=1,a14=b4=27,所以1+13d=27,即d=2.所以a n=2n-1(n=1,2,3,…).(2)由(1)知,a n=2n-1,b n=3n-1.因此c n=a n+b n=2n-1+3n-1.从而数列{c n}的前n项和S n=1+3+…+(2n-1)+1+3+…+3n-1=n(1+2n-1)2+1-3n1-3=n2+3n-12.能力提升1数列{a n},{b n}都是等差数列,a1=5,b1=7,且a20+b20=60,则{a n+b n}的前20项和为().A.700B.710C.720D.730解析:数列{a n+b n}也是等差数列,其首项为12,第20项为60,所以其前20项和为20(a1+b1+a20+b20)2=20×(12+60)2=720.答案:C2已知数列{a n}的通项公式a n=2n-12n,其前n项和Sn=32164,则n的值为().A.13B.10C.9D.6解析:∵a n=2n-12n=1−(12)n,∴S n=n−12(1-12n)1-12=n−1+12n=32164=5+164,∴n=6.答案:D3已知数列{a n}:12,13+23,14+24+34,15+25+35+45,…,则数列{1a n a n+1}的前n项和为().A.4(1-1n+1)B.4(12-1n+1)C.1−1n+1D.12−1n+1解析:∵a n=1+2+3+…+nn+1=n(n+1)2n+1=n2,∴b n=1a n a n+1=4n(n+1)=4(1n-1n+1).∴S n=4(1-12+12-13+13-14+…+1n-1n+1)=4(1-1n+1).答案:A4已知数列{a n}的前n项和为S n=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31的值是().A.13B.-76C.46D.76解析:∵S15=1+(-5+9)+(-13+17)+…+(-53+57)=1+4×7=29,S22=(1-5)+(9-13)+…+(81-85)=-4×11=-44,S31=1+(-5+9)+(-13+17)+…+(-117+121)=1+4×15=61,∴S15+S22-S31=29-44-61=-76.答案:B5在数列{a n}中,a n=n(sin nπ2+cos nπ2),前n项和为Sn,则S100=.解析:易知a1=1,a2=-2,a3=-3,a4=4, ∴a1+a2+a3+a4=0.又si n nπ2+cos nπ2的周期为4,∴a n+a n+1+a n+2+a n+3=0,∴S100=0.答案:0★6在有限数列{a n}中,S n为{a n}的前n项和,把S1+S2+…+S nn称为数列{an}的“优化和”.若数列a1,a2,a3,…,a2 015的“优化和”为2 016,则数列1,a1,a2,a3,…,a2 015的“优化和”为.解析:设数列1,a1,a2,a3,…,a2015的前n项和为T n,则T1=1,T2=S1+1,T3=S2+1,T4=S3+1,…,T2015=S2014+1,T2016=S2015+1,于是T1+T2+T3+…+T2016=2016+S1+S2+…+S2015.∵S1+S2+…+S20152015=2016,∴S1+S2+…+S2015=2015×2016.∴T1+T2+T3+…+T2016=2016+2015×2016=20162,∴其优化和为201622016=2016.答案:2 016★7等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0,且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n+14a n(n∈N*),求数列{b n}的前n项和T n.解(1)由题意,得S n=b n+r,当n≥2时,S n-1=b n-1+r,a n=S n-S n-1=b n-1(b-1).∵b>0,且b≠1,∴当n≥2时,数列{a n}是以b为公比的等比数列.又a1=b+r,a2=b(b-1),a2a1=b,即b(b-1)b+r=b,解得r=-1.(2)由(1)知,a n=(b-1)b n-1=2n-1,n∈N*,∴b n=n+14×2n-1=n+12n+1.T n=222+323+424+⋯+n+12n+1,12Tn=223+324+⋯+n2n+1+n+12n+2,两式相减,得12Tn=222+123+124+⋯+12n+1−n+12n+2=12+123×(1-12n-1)1-12−n+12n+2=34−12n+1−n+12n+2,故T n=32−12n−n+12n+1=32−n+32n+1.。

相关文档
最新文档