26.3 重点突破专题(二次函数的图像信息题)
二次函数图像与性质重难点题型(答案)

专题:二次函数图像与性质重难点题型考点一 二次函数的图像及性质1.对于抛物线y =-12(x +1)2+3,下列结论:①抛物线的开口向下; ②对称轴为直线x =1;③顶点坐标为(-1,3); ④x >1时,y 随x 的增大而减小. 其中正确结论的个数为( C ) A .1个 B .2个 C .3个 D .4个2.在函数y =ax 2-2ax -7上有A (-4,y 1),B (2,y 2),C (3,y 3)三点,若抛物线有最大值,则y 1,y 2和y 3的大小关系为( A ) A .y 1<y 3<y 2 B .y 3<y 2<y 1 C .y 2<y 1<y 3 D .y 1<y 2<y 3 3.若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( A )A .b <1且b ≠0B .b >1C .0<b <1D .b <14.二次函数y =kx 2-6x +3的图象与x 轴有两个交点,则k 的取值范围是 k <3且k ≠0 . 5.当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,求实数m 的值.解:当m >1时,∴当x =1时,y 取得最大值, 即-(1-m )2+m 2+1=4,解得m =2;当-2≤m ≤1时,∵-2≤x ≤1,∴当x =m 时,y 取得最大值,即m 2+1=4,解得m =-3或3(不合题意,舍去); 当m <-2时,∵-2≤x ≤1,∴当x =-2时,y 取得最大值,即-(-2-m )2+m 2+1=4,解得m =-74(不合题意,舍去).综上,实数m 的值为2或-3.考点二 二次函数的表达式的确定1.已知一个二次函数,当x =1时,y 有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( D )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +62.已知矩形ABCD 的两条对称轴为坐标轴和点A (2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( A ) A .y =x 2+8x +14 B .y =x 2-8x +14 C .y =x 2+4x +3 D .y =x 2-4x +33.将抛物线y =x 2-2x -1向上平移,使它经过点A (0,3),那么所得新抛物线对应的函数表达式是 y =x 2-2x +3 .4.已知点P (-1,5)在抛物线y =-x 2+bx +c 的对称轴上,且与该抛物线的顶点的距离是4,则该抛物线的表达式为 y =-x 2-2x 或y =-x 2-2x +8 .5.已知抛物线l :y =ax 2+bx +c (abc ≠0)的顶点为M ,与y 轴的交点为N ,我们称以N 为顶点,对称轴是y 轴且过点M 的抛物线为抛物线l 的衍生抛物线,直线MN 为抛物线l 的衍生直线.(1)抛物线y =x 2-2x -3的衍生抛物线是 y =-x 2-3 ,衍生直线是 y =-x -3 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是y =-2x 2+1和y =-2x +1,求这条抛物线的表达式.解:由题可知,衍生抛物线和衍生直线的两交点分别为原抛物线与衍生抛物线的顶点,将y =-2x 2+1和y =-2x +1联立,得⎩⎨⎧y =-2x 2+1,y =-2x +1,解得⎩⎨⎧x =0,y =1或⎩⎨⎧x =1,y =-1.∵衍生抛物线y =-2x 2+1的顶点为(0,1), ∴原抛物线的顶点为(1,-1).设原抛物线的表达式为y =t (x -1)2-1,∵抛物线过(0,1),∴1=t (0-1)2-1,解得t =2,∴原抛物线的表达式为y =2(x -1)2-1=2x 2-4x +1.考点三 二次函数的图像应用1.已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( D )A .有最大值0,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 2.在同一平面直角坐标系中,函数y =mx +m 和y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( D )3.已知a ,b 是非零实数,|a |>|b |,在同一坐标系中,函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是( D )4.如图1,一次函数y 1=x 与二次函数y 2=ax 2+bx +c的图象相交于P ,Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能( A )图1 图25.如图2,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y =a (x -m )2+n 的顶点在线段AB 上运动,与x 轴交于C ,D 两点(点C 在点D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为 8 .考点四 二次函数与方程、不等式的关系1.抛物线y=ax 2+bx+c 的图象如图3,下列结论正确是( C ) A .abc>0 B .2a+b>0 C .3a+c<0 D .ax 2+bx+c -3=0有两个不相等的实数根 2.二次函数y =ax 2+bx +c (a ≠0)的图象如图4,下列结论: ①b 2>4ac , ②abc <0, ③2a +b -c >0, ④a +b +c <0. 其中正确的是( A ) A .①④ B .②④ C .②③ D .①②③④图3 图4 图53.二次函数y =ax 2+bx +c (a ≠0)的图象如图5,下列四个结论: ①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b ≤a , 其中正确结论的个数是( B )A .4个B .3个C .2个D .1个4.若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( A ) A .m <a <b <n B .a <m <n <b C .a <m <b <n D .m <a <n <b 5.一次函数y =kx +4与二次函数y =ax 2+c 的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点. (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图象相交于B ,C 两点,O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值. 解:(1)∵点(1,2)在一次函数y =kx +4的图象上, ∴2=k +4,即k =-2.∵一次函数y =kx +4与二次函数y =ax 2+c 图象的另一个交点是该二次函数图象的顶点,∴(0,c )在一次函数y =kx +4的图象上,即c =4, ∵点(1,2)也在二次函数y =ax 2+c 的图象上, ∴2=a +c ,∴a =-2.(2)∵点A 的坐标为(0,m )(0<m <4),过点A 且垂直于y 轴的直线与二次函数y =-2x 2+4的图象交于点B ,C ,∴可设点B 的坐标为(x 0,m ),由对称性得点C 的坐标为(-x 0,m ),∴BC =2|x 0|.∴BC 2=4x 20.∵点B 在二次函数y =-2x 2+4的图象上,∴-2x 20+4=m ,即x 20=2-m 2,∴BC 2=4x 20=8-2m . ∵OA =m ,∴W =OA 2+BC 2=m 2-2m +8=(m -1)2+7(0<m <4). ∴m =1时,W 有最小值,最小值为7.※课后练习1.在同一平面直角坐标系中,一次函数y=kx -2和二次函数y=kx 2+2x -4(k 是常数且k ≠0)的图象可能是 ( A )2.在同一平面直角坐标系内,二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的大致图象,正确的是 ( C )A .B .C .D . 3.已知m >0,关于x 的一元二次方程(x +1)(x -2)-m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( A ) A .x 1<-1<2<x 2 B .-1<x 1<2<x 2 C .-1<x 1<x 2<2 D .x 1<-1<x 2<24.函数y =ax 2+bx +c 图象如图1,下列结论正确的有( B ) ①abc <0 ② b 2-4ac >0 ③ 2a >b ④ (a +c )2<b 2 A .1个 B .2个 C .3个 D .4个图1 图2 5.二次函数y =ax2+bx +c 的部分图象如图2所示,有以下结论:①3a -b =0;②b 2-4ac >0;③5a -2b +c >0;④4b +3c >0. 其中错误的结论( A ) A .1个 B .2个 C .3个 D .4个 6.已知二次函数的图象经过点P (2,2),顶点为O (0,0),将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为_ y =12x 2-4x +8__.7.同一坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n )x +n 关于y 轴对称,则m =5 ,n =-6 .8.当0≤x ≤3时,直线y =a 与抛物线y =(x -1)2-3有交点,则a 的取值范围是__-3≤a ≤1____.9.已知二次函数y =x 2-2x +3,当0≤x ≤m 时,y 最大值为3,最小值为2,则m 的取值范围是 1≤m ≤2 .10.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:x ﹣1 0 1 3y ﹣1 3 5 3下列结论: ①ac <0; ②当x >1时,y 的值随x 值的增大而减小.③3是方程ax 2+(b ﹣1)x +c =0的一个根; ④当﹣1<x <3时,ax 2+(b ﹣1)x +c >0. 其中正确的结论有 ①③④ .11.已知抛物线y=-12x 2+mx 过点( 8,0 ).(1)求m 的值;(2)如图,在抛物线内作矩形ABCD , 使点C ,D 落在抛物线上,点A ,B 落 在x 轴上,设矩形ABCD 的周长为L , 求L 的最大值.解:(1)由条件可得-12×82+8m=0,解得m=4.(2)∵m=4,∴抛物线的表达式为y=-12x 2+4x .∵抛物线和矩形都是轴对称图形,∴点A 与点B ,点C 与点D 都关于抛物线的对称轴x=4对称,设点A (n ,0),则点D (n ,-12n 2+4n ),点B (8-n ,0),AB=8-2n .∴L=2(-12n 2+4n )+2(8-2n )=-n 2+4n+16=-(n -2)2+20,∴L 的最大值为20.12.已知二次函数y =34(x -m )2+m ,当2m -3≤x ≤2m 时,y的最小值是1.求m 的值. 解:若2m <m 即m <0,则在x =2m 时,y 取得最小值1,即有y =34(2m -m )2+m =1.解得m 1=-2,m 2=23(不合题意,舍去);若2m -3≤m ≤2m ,即0≤m ≤3时,则x=m时,y的最小值是1,此时m=1;若2m-3>m,即m>3时,则x=2m-3时y取得最小值1,此时32+m=1,4(2m-3-m)此方程无实数根;综上所述,m的值为1或-2.。
26.3实际问题与二次函数(1)

= − 20 x + 100 x + 6000 (0≤x≤20)
2
当x = −
1 所以降价时,定价为 所以降价时 定价为 57 2 6125元. 元
b 5 5 5 = 时, y 最大 = − 20 × + 100 × + 6000 = 6125 2a 2 2 2
2
元,利润最大,最大利润为 利润最大,
S=- 2 +30l =-l =- 因此, 因此,当 l = −
( 0 < l < 30 )
b 30 时 =− = 15 , 2a 2× (−1)
4ac − b2 − 302 = = 225, S有最大值 有最大值 4a 4×(−1)
也就是说, 最大( = 也就是说, 当l是15m时,场地的面积 最大(S= 是 时 场地的面积S最大 225m2).
6 4 2 0
x 2
-4 -2
探究
用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边 的篱笆围成矩形场地,矩形面积 随矩形一边 用总长为 的篱笆围成矩形场地 的变化而变化, 是多少时,场地的面积S最大 最大? 长 l 的变化而变化,当 l 是多少时,场地的面积 最大?
分析: 的函数关系式, 分析:先写出S与l的函数关系式,再求出使S最大的l值. s 矩形场地的周长是60m,一边长为 , 矩形场地的周长是 ,一边长为l, 60 则另一边长为 − l m ,场地的面积 2 200 S=l ( 30-l ) = - 即 S=- +30l =-l =-
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法? )题目中有几种调整价格的方法? (2)题目涉及到哪些量之间的关系? )题目涉及到哪些量之间的关系? (3)哪一个量是自变量?哪些量随之发生 哪一个量是自变量? 哪一个量是自变量 了变化? 了变化?
二次函数的图像与性质专项练习

二次函数的图像与性质专项练习【知识要点】1.二次函数:形如 的函数叫做二次函数.2.二次函数的图像性质:(1)二次函数的图像是 ;(2)二次函数),,,0(2为常数c b a a c bx ax y ≠++=通过配方可得c b a a ab ac a b x a y ,,,0(44)2(22≠-++=为常数),其顶点坐标为 。
(3)当0>a 时,抛物线开口 ,并向上无限延伸;在对称轴左侧)2(a b x -<即时,y 随x 的增大而减小;在对称轴右侧)2(abx ->即时,y 随x 的增大而增大;当abx 2-=时,函数有 .当0<a 时,抛物线开口 ,并向下无限延伸;在对称轴左侧)2(abx -<即时,y 随着x 的增大而增大;在对称轴右侧)2(abx ->即时,y 随着x 的增大而减小;当,2时a bx -=函数有 。
3.二次函数的图像平移:(1)二次函数k h x a y h x a y ax y +-=-==222)(,)(,的图像都是抛物线,并且形状相同,只是位置不同(a 的取值决定抛物线的形状).将2ax y =的图像向右(h>0)、向左(h<0)平移h 个单位,就得到函数2)(h x a y -=的图像;再将此抛物线向上(k>0)、向下(k<0)平移k 个单位得到函数k h x a y +-=2)(的图像.上述平移的规律是:“h 值正、负、右、左移;k 值正、负、上、下移.” 4.抛物线与坐标轴的交点:(1)抛物线).,0(2c y c bx ax y 轴交于点与++=(2)若方)0,)(0,(,,0212212x x x c bx ax y x x c bx ax 轴点交则抛物线有两根++==++ 核心考点突破考点㈠二次函数的图像性质例1定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23;③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点.其中正确的结论有 A. ①②③④ B. ①②④ C. ①③④ D. ②④ 变式训练1.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是( )A.0a >B. 0c <C.240b ac -<D.0a b c ++>第(1)题第(3)题 2.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( )①240b ac ->;②0abc >;③80a c +>;④930a b c ++<.3. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个考点㈡二次函数图像平移例2. 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( ) A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 变式训练1.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式 ( )2.若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?3.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )第(2)题A .-3B .1C .5D .8OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,.P ,使得ABP ABO S S =△△. 1x 轴的交点如图所示,根据图中信息可得到m 的值第2题图2.已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = . 3.如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。
2023中考复习专题突破二次函数的图象及其性质(课件)

当a<0时,b>0,
∴对称轴 x b 0 , 2a
故C选项符合题意, 故选:C.
典型例题
知识点2:二次函数的图象和性质
【例5】(2022•朝阳)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象 过点(-1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是( )
C. s=2t2-2t+1符合二次函数定义;D. y x2 1 不符合二次函数定义. x
故答案为:C.
典型例题
知识点1:二次函数的概念
【例2】(4分)(2019·甘肃庆阳)将二次函数y=x2-4x+5化成 y=a(x-h)2+k的形式为________.
【答案】 y=(x-2)2+1. 【分析】将二次函数y=x2-4x+5按照配方法化成y=a(x-h)2+k的形式即可. 【解答】y=x2-4x+5=(x-2)2+1.
象,能从图象上认识二次函数的 次函数图象的顶点、对称轴、最值、
二次函数的
2 图象和性质 性质;
抛物线的平移、二次函数与方程的
②会根据公式确定图象的顶点、 关系等基础知识,以解答题、探究
开口方向和对称轴.
题的形式考查二次函数综合能力.
知识点梳理
知识点1:二次函数的概念
1. 二次函数的概念:
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x 的二次函数. y=ax2+bx+c(a,b,c是常数,a≠0)叫做二次函数的一般式.
C.若y2 y4<0,则y1 y3<0
D.若y3 y4<0,则y1 y2<0
典型例题
【例11】(3分)(2021•包头10/26)已知二次函数y=ax2-bx+c (a≠0)的图象经
二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3)图1C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.图2ABCD图1菜园墙专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1) B.y=2a (1-x ) C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x<<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图2图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x图1。
二次函数的图像与性质(三)(解析版)-2023-2024学年九年级数学上册《重难点题型-高分突破》

专题2.3二次函数的图像与性质(三)(六大题型)【题型1利用二次函数的性质判断结论】【题型2利用二次函数的性质比较函数值】【题型3二次函数的对称性的应用】【题型4利用二次函数的性质求字母的范围】【题型5利用二次函数的性质求最值】【题型6二次函数给定范围内的最值问题】【题型1利用二次函数的性质判断结论】【典例1】关于二次函数y=(x﹣2)2+3,下列说法正确的是()A.函数图象的开口向下B.函数图象的顶点坐标是(﹣2,3)C.当x>2时,y随x的增大而减小D.该函数图象与y轴的交点坐标是(0,7)【答案】D【解答】解:∵二次函数y=(x﹣2)2+3中a=1>0,∴图象的图象开口向上,∴对称轴是直线x=2,顶点坐标是(2,3),∴函数有最低点(2,0),当x>2时,y随x的增大而增大.令y=(x﹣2)2+3中的x=0解得:y=7,∴A、B、C选项错误,不符合题意;D选项说法正确,符合题意.故选:D.【变式1-1】已知抛物线y=2(x﹣3)2+1,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=3C.抛物线的顶点坐标为(3,1)D.当x<3时,y随x的增大而增大【答案】D【解答】解:∵抛物线y=2(x﹣3)2+1,∴该抛物线的开口向上,故选项A正确,不符合题意;抛物线的对称轴为直线x=3,故选项B正确,不符合题意;抛物线的顶点坐标为(3,1),故选项C正确,不符合题意;当x<3时,y随x的增大而减小,故选项D错误,不符合题意;故选:D.【变式1-2】下列关于抛物线y=x2+4x﹣5的说法正确的是()①开口方向向上;②对称轴是直线x=﹣4;③当x<﹣2时,y随x的增大而减小;④当x<﹣5或x>1时,y>0.A.①③B.①④C.①③④D.①②③④【答案】C【解答】解:∵y=x2+4x﹣5=(x+2)2﹣9,a=1>0,∴抛物线开口向上,对称轴为直线x=﹣2,当x<﹣2时,y随x的增大而减小;故①正确,②错误,③正确;令y=0,即x2+4x﹣5=0,解得:x1=1,x2=﹣5,∴抛物线开口向上,与x轴交于(1,0),(﹣5,0),∴当x<﹣5或x>1时,y>0,故④正确,综上所述,正确的有:①③④,故选:C.【变式1-3】已知点A(a﹣3,﹣3)与点B(2,b+1)关于y轴对称,则下列关于抛物线y=ax2+bx+1的说法错误的是()A.抛物线开口向上B.a=1,b=﹣4C.顶点坐标是(﹣2,﹣3)D.当x<2时,y随x减小而增大【答案】C【解答】解:∵点A(a﹣3,﹣3)与点B(2,b+1)关于y轴对称,∴a﹣3+2=0且﹣3=b+1,∴a=1,b=﹣4,故B正确,不符合题意;∵a=1>0,∴抛物线y=ax2+bx+1开口向上,故A正确,不符合题意;∵y=x2﹣4x+1=(x﹣2)2﹣3,∴抛物线顶点坐标是(2,﹣3),故C错误,符合题意;∵抛物线y=x2﹣4x+1开口向上,对称轴是直线x=2,∴当x<2时,y随x减小而增大,故D正确,不符合题意;故选:C.【题型2利用二次函数的性质比较函数值】【典例2】抛物线y=a(x﹣2)2+k的开口向上,点A(﹣1,y1),B(3,y2)是抛物线上两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法比较【答案】A【解答】解:∵抛物线y=a(x﹣2)2+k的图象与性质,确定抛物线开口向上,对称轴为x=2,∴函数y=a(x﹣2)2+k可取到最小值,∴抛物线上的点离对称轴越近,对应的函数值越小,∵点A(﹣1,y1),B(3,y2)是抛物线上两点,A(﹣1,y1)到对称轴距离为2﹣(﹣1)=3,B(3,y2)到对称轴距离为3﹣2=1,1<3,∴B(3,y2)到对称轴距离比A(﹣1,y1)到对称轴距离近,∴y1>y2,故选:A.【变式2-1】已知二次函数y=(x﹣2)2+2,当点(3,y1)、(2.5,y2)、(4,y3)在函数图象上时,则y1、y2、y3的大小关系正确的是()A.y3<y1<y2B.y2<y1<y3C.y3<y2<y1D.y1<y2<y3【答案】B【解答】解:由二次函数y=(x﹣2)2+2知,该抛物线开口方向向上,且对称轴为直线x=2.由于点(3,y1)、(2.5,y2)、(4,y3)在函数图象上,且|2.5﹣2|<|3﹣2|<|4﹣2|,所以y2<y1<y3.故选:B.【变式2-2】已知抛物线y=ax2﹣4ax+c,点A(﹣2,y1),B(4,y2)是抛物线上两点,若a<0,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法比较【答案】B【解答】解:∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴抛物线的对称轴为直线x=2,∵a<0,∴抛物线开口向下,抛物线上的点距离对称轴越近,对应的函数值越大,∵点A(﹣2,y1)到对称轴的距离为2﹣(﹣2)=4,点B(4,y2)到对称轴的距离为4﹣2=2,又∵2<4,∴点B(4,y2)到对称轴的距离近.∴y1<y2,故选:B.【变式2-3】已知抛物线:y=mx2﹣2mx+8(m≠0),若点A(x1,y1),B(x2,y2),C(4,0)均在该抛物线上,且x1<﹣2<x2<4,则下列结论正确的是()A.y1>y2>0B.0>y2>y1C.0>y1>y2D.y2>0>y1【答案】D【解答】解:∵y=mx2﹣2mx+8,∴抛物线的对称轴为直线x=﹣=1,∵抛物线经过(4,0),∴m=﹣1,抛物线开口向下,∴y=﹣x2+2x+8,∴点(﹣2,0)在抛物线上,则x<﹣2时,y<0,﹣2<x<4时,y>0,∴x1<﹣2<x2<4时,y1<0<y2,故选:D.【变式2-4】(2022•翔安区模拟)抛物线y=x2+x+2,点(2,a),(﹣1,b),(3,c),则a、b、c的大小关系是()A.c>a>b B.b>a>cC.a>b>c D.无法比较大小【解答】解:∵二次函数的解析式为y=x2+x+2=(x+12)2+74,∴抛物线的对称轴为直线x=−12,∵(2,a)、(﹣1,b),(3,c),∴点(3,c)离直线x=−12最远,(﹣1,b)离直线x=−12最近,而抛物线开口向上,∴c>a>b;故选:A.【变式2-5】(2022•于洪区一模)若点A(﹣1,y1),B(2,y2),C(3,y3)在抛物线y=﹣2x2+8x+c的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y3<y1<y2【解答】解:∵抛物线y=﹣2x2+8x+c中a=﹣2<0,∴抛物线开口向下,对称轴为直线x=−82×(−2)=2,∵点A(﹣1,y1)的对称点为(5,y1),又∵5>3>2,即A、B、C三个点都位于对称轴右边,函数值随自变量增大而减小.∴y1<y3<y2,故选:C.【变式2-6】(2022春•鼓楼区校级月考)已知点A(b﹣m,y1),B(b﹣n,y2),C(b+r2,y3)都在二次函数y=﹣x2+2bx+c的图象上,若0<m<n,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y1<y3<y2【解答】解:抛物线开口向下,对称轴为直线x=b,∵0<m<n,∴点B离对称轴最远,点A离对称轴近,∴y2<y3<y1,故选:B.【题型3二次函数的对称性的应用】【典例3】已知抛物线y=x2+bx+c经过点(1,0)和点(﹣3,0),则该抛物线的对称轴为()A.y轴B.直线x=﹣1C.直线x=﹣2D.直线x=2【答案】B【解答】解:∵抛物线y=x2+bx+c经过点(1,0)和点(﹣3,0),∴抛物线对称轴为直线,故选:B.【变式3-1】已知抛物线y=ax2+bx+2经过A(4,9),B(12,9)两点,则它的对称轴是()A.直线x=7B.直线x=8C.直线x=9D.无法确定【答案】B【解答】解:因为已知两点的纵坐标相同,都是9,所以对称轴方程是x=(12+4)÷2=8.故选:B.【变式3-2】二次函数图象上部分点的坐标对应值列表如:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=0【答案】B【解答】解:∵当x=﹣3与x=﹣1时,y值相等,∴二次函数图象的对称轴为直线x==﹣2.故选:B.【变式3-3】点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是()A.(2,5)B.(2,4)C.(5,2)D.(4,2)【答案】B【解答】解:∵点A(0,5),B(4,5)的纵坐标相等,∴点A(0,5),B(4,5)关于对称轴对称,∴对称轴为直线x==2,即直线x=2,∵抛物线的顶点在对称轴上,∴顶点的纵坐标不等于5.故选:B.【变式3-4】已知二次函数y=ax2+bx+c,函数值y与自变量x的部分对应值如表:x…﹣10123…y…188202…则当y>8时,x的取值范围是()A.0<x<4B.0<x<5C.x<0或x>4D.x<0或x>5【答案】C【解答】解:表格数据得出抛物线开口向上,对称轴为直线x=2,当x=0时,y=8,∴当x=4时,y=8,∴当y>8时,x的取值范围是x<0或x>4,【变式3-5】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为x=.【答案】x=.【解答】解:由图表可知:x=0时,y=﹣6,x=1时,y=﹣6,∴二次函数的对称轴为x==,故答案为:x=.【变式3-6】(2022•临安区模拟)已知二次函数的解析式为y=(x﹣m)(x﹣1)(1≤m≤2),若函数过(a,b)和(a+6,b)两点,则a的取值范围()A.﹣2≤a≤−32B.﹣2≤a≤﹣1C.﹣3≤a≤−32D.0≤a≤2【解答】解:方法一:∵y=(x﹣m)(x﹣1)(1≤m≤2),∴y=x2﹣(m+1)x+m,∴当x=r12时取最小值,∵函数过(a,b)和(a+6,b)两点,∴x=rr62=a+3时取最小值,∴a+3=r12,∴m=2a+5,方法二:令y=0,则x=m,x=1,又函数过(a,b)和(a+6,b),所以对称轴x=(a+a+6)÷2=a+3,得出m=2a+5∵1≤m≤2,∴1≤2a+5≤2,解得﹣2≤a≤−32.【变式3-7】(2022春•瓯海区月考)已知二次函数y=ax2+bx﹣3,当x=1与x =2020时,函数值相等.则当x=2021时,函数值等于.【解答】解:∵二次函数y=ax2+bx﹣3,当x=1与x=2020时,函数值相等,∴该函数的对称轴为直线x=1+20202=20212,∴x=2021和x=20212×2﹣2021=0时的函数值相等,∵当x=0时,y=﹣3,∴当x=2021时,y=﹣3,故答案为:﹣3.【题型4利用二次函数的性质求字母的范围】【典例4】已知点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,若当x≤2时,y随x的增大而减小,则m的取值范围是()A.B.C.D.【答案】B【解答】解:∵点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,∴该二次函数图象的对称轴为直线,且开口向上,∵当x≤2时,y随x的增大而减小,∴该二次函数图象的对称轴为直线x=2或在其右侧,∴,解得,故选:B.【变式4-1】二次函数y=ax2+bx的图象如图所示,当﹣1<x<m时,y随x的增大而增大,m的取值取值范围是()A.m>1B.﹣1<m<1C.m>0D.﹣1<m<2【答案】B【解答】解:由图象可知:抛物线开口向下,对称轴为:x=1,∴当x≤1时,y随x的增大而增大,又∵﹣1<x<m时,y也随x的增大而增大,∴﹣1<m≤1,∴﹣1<m<1.故选:B.【变式4-2】已知点A(n,y1)、B(n+2,y2)、C(x,y0)在二次函数y=ax2+4ax+c (a≠0)的图象上,且C为抛物线的顶点,若y0≥y1>y2,则n的取值范围是()A.n>﹣3B.n<﹣3C.n<﹣2D.n>﹣2【答案】A【解答】解:抛物线的对称轴为直线x=﹣=﹣2,∵C为抛物线的顶点,∴x0=﹣2,∵y0≥y1>y2,∴抛物线开口向下,∵n<m+2,y0≥y1>y2,∴当点A(n,y1)和B(n+2,y2)在直线x=﹣2的右侧,则n≥﹣2;当点A(n,y1)和B(n+2,y2)在直线x=﹣2的两侧,则﹣2﹣n<n+2﹣(﹣2),解得n>﹣3;综上所述,m的范围为n>﹣3.故选:A.【变式4-3】已知点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,若当x≤2时,y随x的增大而减小,则m的取值范围是()A.B.C.m≥1D.m≤1【答案】B【解答】解:∵点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,∴该二次函数图象的对称轴为直线,且开口向上,∵当x≤2时,y随x的增大而减小,∴该二次函数图象的对称轴为直线x=2或在其右侧,∴,解得,故选:B.【变式4-4】二次函数y=ax2﹣2ax+c(a>0),当自变量x<m时,y随x的增大而减小,则m的取值范围是()A.m<﹣1B.m≥﹣1C.m≤1D.m>1【答案】C【解答】解:∵a>0,∴抛物线开口向上,∵函数图象的对称轴是直线x=﹣=1,∴当x≤1时,y随x的增大而减小,∵当x<m时,y随x的增大而减小,∴m的取值范围是m≤1.故选:C.【变式4-5】抛物线y=ax2+bx+c经过点(﹣3,y1)和(5,y2),顶点坐标为(m,n),若y1>y2>n,则m的取值范围是()A.m<﹣3B.m<1C.m>1D.m>5【答案】C【解答】解:∵抛物线顶点坐标为(m,n),∴抛物线对称轴为x=m,∵抛物线y=ax2+bx+c经过点(﹣3,y1)和(5,y2),y1>y2>n,∴<m,∴m>1,故选:C.【题型5利用二次函数的性质求最值】【典例5】已知直线y=2x+t与抛物线y=ax2+bx+c(a≠0)有两个不同的交点A (3,5)、B(m,n),且点B是抛物线的顶点,当﹣2≤a≤2时,m的取值范围是m≤4或m≥4..【答案】m≤2或m≥4.【解答】解:由题意,将A(3,5)代入y=2x+t,则t=﹣1.∴直线为:y=2x﹣1.∵在B(m,n)在直线y=2x﹣1上,∴n=2m﹣1,B为(m,2m﹣1).∵抛物线y=ax2+bx+c(a≠0)的顶点为B,∴抛物线解析式可以表示为y=a(x﹣m)2+2m﹣1.又A(3,5)在抛物线上,∴5=a(3﹣m)2+2m﹣1.∴a(3﹣m)2=6﹣2m=2(3﹣m).即a(3﹣m)2=2(3﹣m).∵A、B两点不同,∴m≠3.∴3﹣m≠0.∴a(3﹣m)=2.∴m=3﹣.∵﹣2≤a≤2,且a≠0,∴当﹣2≤a<0时,可得m≥4;当0<a≤2时,m≤2.故答案为:m≤2或m≥4.【变式5-1】二次函数y=﹣(x+5)2﹣4的最大值是﹣4.【答案】﹣4.【解答】解:∵y=﹣(x+5)2﹣4,∴顶点坐标为(﹣5,﹣4),∵a=﹣1<0,函数存在最大值,∴当x=﹣5时,最大值为﹣4.故答案为:﹣4.【变式5-2】若实数a,b满足a+b2=2b+1,则代数式a2﹣4a+2b2﹣4b﹣4的最小值为﹣10.【答案】﹣10.【解答】解:∵a+b2=2b+1,∴(b﹣1)2=2﹣a,∴2﹣a≥0,即a≤2,∴b2=2b+1﹣a,∴a2﹣4a+2b2﹣4b﹣4=a2﹣4a+2(2b+1﹣a)﹣4b﹣4=a2﹣4a+2﹣2a﹣4=a2﹣6a﹣2=(a﹣3)2﹣11,∵a的最大值为2,∴代数式a2﹣4a+2b2﹣4b﹣4的最小值等于﹣10,故答案为:﹣10.【变式5-3】当m≤x≤m+1,函数y=x2﹣2x+1的最小值为1,则m的值为﹣1或2.【答案】﹣1或2.【解答】解:在y=x2﹣2x+1上,当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当m≤x≤m+1时,函数有最小值1,结合函数图象可知,m=2或m+1=0,∴m=2或m=﹣1,【变式5-4】已知点P(m,n)在二次函数y=x2+4的图象上,则m﹣n的最大值等于﹣.【答案】﹣.【解答】解:∵点P(m,n)在抛物线y=x2+4上,∴n=m2+4,∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m﹣)2﹣,∴当m=时,m﹣n取得最大值,m﹣n=﹣.故答案为:﹣.【变式5-5】已知抛物线y=x2﹣3x+2上任意一点P(m,n),则m﹣n的最大值为2.【答案】2【解答】解:∵点P(m,n)在抛物线y=x2﹣3x+2上,∴n=m2﹣3m+2,∴m﹣n=﹣m2+4m﹣2=﹣(m﹣2)2+2,∴当m=2时,m﹣n有最大值为2,故答案为:2.【变式5-6】已知实数x,y满足y=﹣x2+3,则x+y的最大值为.【答案】.【解答】解:∵y=﹣x2+3,∴x+y=﹣x2+x+3=﹣(x﹣)2+,∴当x=时,x+y有最大值,故答案为:.【变式5-7】已知实数a,b满足a2﹣3a﹣b+6=0,则a+b的最小值为5.【答案】5.【解答】解:由a2﹣3a﹣b+6=0可得b=a2﹣3a+6,∴a+b=a+a2﹣3a+6=a2﹣2a+6=(a﹣1)2+5,∴a=1时,a+b取最小值为5,故答案为:5.【题型6二次函数给定范围内的最值问题】【典例6】若x2﹣2x+4y=5,且﹣≤y≤,则x+2y在最小值为﹣,最大值为.【答案】﹣,.【解答】解:∵x2﹣2x+4y=5,∴y==﹣(x﹣1)2+,∴﹣≤﹣(x﹣1)2+≤,∴﹣2≤x≤4.∵x2﹣2x+4y=5,∴4y=﹣x2+2x+5,∴2(x+2y)=2x+4y=﹣x2+4x+5=﹣(x﹣2)2+9,∴x+2y=,∵﹣2≤x≤4,∴﹣≤x+2y≤,故答案为:﹣,.【变式6-1】二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最大值为﹣5,则c的值是﹣6.【答案】﹣6.【解答】解:把二次函数y=﹣x2﹣2x+c转化成顶点坐标式为y=﹣(x+1)2+c+1,又知二次函数的开口向下,对称轴为x=﹣1,故当x=﹣1时,二次函数有最大值为﹣5,故﹣1+2+c=﹣5,故c=﹣6.故答案为:﹣6.【变式6-2】函数y=x2﹣2ax﹣1在1≤x≤4有最小值﹣5,则实数a的值是2.【答案】2.【解答】解:∵y=x2﹣2ax﹣1,∴抛物线开口向上,对称轴为直线x=﹣=a,当a≤1时,则x=1时,函数有最小值﹣5,∴此时y=1﹣2a﹣1=﹣5,解得a=2.5(不合题意,舍去);当a≥4时,则x=4时,函数有最小值﹣5,∴此时y=16﹣8a﹣1=﹣5,解得a=2.5(不合题意,舍去);当1<a<4时,则x=a时,函数有最小值﹣5,∴此时y=a2﹣2a2﹣1=﹣5,解得a1=2,a2=﹣2(舍去),综上,实数a的值是2,故答案为:2.【变式6-3】已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=3或.【答案】3或.【解答】解:∵二次函数y=mx2+2mx+1=m(x+1)2﹣m+1,∴对称轴为直线x=﹣1,①m>0,抛物线开口向上,x=﹣1时,有最小值y=﹣m+1=﹣2,解得:m=3;②m<0,抛物线开口向下,∵对称轴为直线x=﹣1,在﹣2≤x≤2时有最小值﹣2,∴x=2时,有最小值y=4m+4m+1=﹣2,解得:m=﹣;故答案为:3或.【变式6-4】若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是﹣4或2.【答案】﹣4或2.【解答】解:∵y=﹣x2+mx,∴抛物线开口向下,抛物线的对称轴为x=﹣=,∵=,①当≤﹣1,即m≤﹣2时,当x=﹣1时,函数最大值为3,∴﹣1﹣m=3,解得:m=﹣4;②当≥2,即m≥4时,当x=2时,函数最大值为3,∴﹣4+2m=3,解得:m=(舍去).③当﹣1<<2,即﹣2<m<4时,当x=时,函数最大值为3,∴﹣+=3,解得m=2或m=﹣2(舍去),综上所述,m=﹣4或m=2,故答案为﹣4或2.【变式6-5】若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.【答案】见试题解答内容【解答】解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.【变式6-6】当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为0或3.【答案】见试题解答内容【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式6-7】已知二次函数y=x2﹣2x+2在t≤x≤t+1时的最小值是t,则t的值为1或2.【答案】见试题解答内容【解答】解:y=x2﹣2x+2=(x﹣1)2+1,分类讨论:(1)若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,即t<0,此时y随x 的增大而减小,∴当x=t+1时,函数取得最小值,y=t=(t+1)2﹣2(t+1)+2,最小值方程无解.(2)若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,=1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值∴t=1.(3)若顶点横坐标在范围t≤x≤t+1左侧时,即t>1时,y随x的增大而增大,∵当x=t时,函数取得最小值,y=t=t2﹣2t+2,解得t=2或1(舍弃),最小值∴t=1或2.故答案为:1或2.【变式6-8】已知抛物线y=﹣4x2+4mx﹣4m﹣m2(m是常数),若0≤x≤1时,函数y有最大值﹣5,则m的值为﹣5或.【答案】见试题解答内容【解答】解:∵y=﹣4x2+4mx﹣4m﹣m2=﹣4(x﹣)2﹣4m,∴抛物线开口向下,对称轴为直线x=.当<0,即m<0时,x=0时y取最大值(如图1所示),∴﹣4m﹣m2=﹣5,解得:m1=﹣5,m2=1(不合题意,舍去);当0≤≤1,即0≤m≤2时,x=时y取最大值(如图2所示),∴﹣4m=﹣5,解得:m3=;当>1,即m>2时,x=1时y取最大值(如图3所示),∴﹣4+4m﹣4m﹣m2=﹣5,解得:m4=﹣1(不合题意,舍去),m5=1(不合题意,舍去).综上所述,m的值为﹣5或.故答案为:﹣5或.。
最全二次函数概念的图像与性质专题练习完整版.doc

二次函数的图像与性质一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
【说明】这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:5. 二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 六、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. / 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 4.利用二次函数与x 轴的交点的个数来确定判别式∆的符号,利用特殊点的坐标确定特殊代数式的值的范围。
中考数学复习----《二次函数之定义、图像以及性质》知识点总与专项练习题(含答案解析)

中考数学复习----《二次函数之定义、图像以及性质》知识点总与专项练习题(含答案解析)知识点总结1. 二次函数的定义:形如()02≠++=a c bx ax y 的函数叫做二次函数。
2. 二次函数的图像:二次函数的图像是一条抛物线。
3. 二次函数的性质与图像:x 的增大而增大; 的增大而减小; 的增大而增大; 的增大而减小;①若二次函数是一般形式时,则二次函数与y 轴的交点坐标为()c ,0。
若0>c ,则二次函数与y 轴交于正半轴;若0<c ,则二次函数与y 轴交于负半轴。
②二次函数开口向上时,离对称轴越远的点函数值越大;二次函数开口向下时,离对称轴越远的函数值越小。
③二次函数函数值相等的两个点一定关于对称轴对称。
④二次函数的一般式化为顶点式:利用一元二次方程的配方法。
专项练习题1.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m .如图所示,设矩形一边长为xm ,另一边长为ym ,当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系【分析】根据题意列出y 与x 的关系式可得答案. 【解答】解:由题意得,y =40﹣2x , 所以y 与x 是一次函数关系, 故选:B .2.(2022•株洲)已知二次函数y =ax 2+bx ﹣c (a ≠0),其中b >0、c >0,则该函数的图象可能为( )A .B .C.D.【分析】根据c>0,可知﹣c<0,可排除A,D选项,当a>0时,可知对称轴<0,可排除B选项,当a<0时,可知对称轴>0,可知C选项符合题意.【解答】解:∵c>0,∴﹣c<0,故A,D选项不符合题意;当a>0时,∵b>0,∴对称轴x=<0,故B选项不符合题意;当a<0时,b>0,∴对称轴x=>0,故C选项符合题意,故选:C.3.(2022•阜新)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上B.开口方向向上C.对称轴是直线x=1D.与直线y=3x有两个交点【分析】A、把x=0代入y=3(x+1)(2﹣x),求函数值再与点的纵坐标进行比较;B、化简二次函数:y=﹣3x2+3x+6,根据a的取值判断开口方向;C、根据对称轴公式计算;D、把函数的问题转化为一元二次方程的问题,根据判别式的取值来判断.【解答】解:A、把x=0代入y=3(x+1)(2﹣x),得y=6≠2,∴A错误;B 、化简二次函数:y =﹣3x 2+3x +6, ∵a =﹣3<0,∴二次函数的图象开口方向向下, ∴B 错误;C 、∵二次函数对称轴是直线x =﹣=, ∴C 错误;D 、∵3(x +1)(2﹣x )=3x , ∴﹣3x 2+3x +6=3x , ∴﹣3x 2+6=0, ∵b 2﹣4ac =72>0,∴二次函数y =3(x +1)(2﹣x )的图象与直线y =3x 有两个交点, ∴D 正确; 故选:D .4.(2022•衢州)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为( ) A .21或4 B .34或﹣21 C .﹣34或4 D .﹣21或4 【分析】分两种情况讨论:当a >0时,﹣a =﹣4,解得a =4;当a <0时,在﹣1≤x ≤4,9a ﹣a =﹣4,解得a =﹣.【解答】解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1, 顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a , ∵y 的最小值为﹣4, ∴﹣a =﹣4, ∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值, ∴9a ﹣a =﹣4, 解得a =﹣;综上所述:a的值为4或﹣,故选:D.5.(2022•荆门)抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是()A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对【分析】根据二次函数的性质判断即可.【解答】解:∵抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2或x2<x1≤0或0<﹣x1<x2或0<x1<﹣x2,故选:D.6.(2022•兰州)已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是()A.x<1B.x>1C.x<2D.x>2【分析】将二次函数解析式化为顶点式,由抛物线对称轴及开口方向求解.【解答】解:∵y=2x2﹣4x+5=2(x﹣1)2+3,∴抛物线开口向上,对称轴为直线x=1,∴x>1时,y随x增大而增大,故选:B.7.(2022•广州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣2,下列结论正确的是()A.a<0B.c>0C.当x<﹣2时,y随x的增大而减小D.当x>﹣2时,y随x的增大而减小【分析】根据图象得出a,c的符号即可判断A、B,利用二次函数的性质即可判断C、D.【解答】解:∵图象开口向上,∴a>0,故A不正确;∵图象与y轴交于负半轴,∴c<0,故B不正确;∵抛物线开口向上,对称轴为直线x=﹣2,∴当x<﹣2时,y随x的增大而减小,x>﹣2时,y随x的增大而增大,故C正确,D不正确;故选:C.8.(2022•郴州)关于二次函数y=(x﹣1)2+5,下列说法正确的是()A.函数图象的开口向下B.函数图象的顶点坐标是(﹣1,5)C.该函数有最大值,最大值是5D.当x>1时,y随x的增大而增大【分析】通过分析二次函数顶点式判断函数图象开口方向、顶点坐标、最值以及增减性即可求解.【解答】解:y=(x﹣1)2+5中,x2的系数为1,1>0,函数图象开口向上,A错误;函数图象的顶点坐标是(1,5),B错误;函数图象开口向上,有最小值为5,C错误;函数图象的对称轴为x=1,x<1时y随x的增大而减小;x>1时,y随x的增大而增大,D正确.故选:D.9.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是()A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)【分析】由抛物线解析式可得抛物线顶点坐标.【解答】解:∵y=2(x+9)2﹣3,∴抛物线顶点坐标为(﹣9,﹣3),故选:B.10.(2022•岳阳)已知二次函数y=mx2﹣4m2x﹣3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤﹣3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤﹣1或m>0D.m≤﹣1【分析】先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m <0,根据二次函数的性质求得m的不同取值范围便可.【解答】解:∵二次函数y=mx2﹣4m2x﹣3,∴对称轴为x=2m,抛物线与y轴的交点为(0,﹣3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤﹣3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤﹣3,即m•42﹣4m2•4﹣3≤﹣3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤﹣3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.11.(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【分析】首先求出抛物线的对称轴,根据二次函数的增减性即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴x=1,顶点坐标为(1,﹣4),当y=0时,(x﹣1)2﹣4=0,解得x=﹣1或x=3,∴抛物线与x轴的两个交点坐标为:(﹣1,0),(3,0),∴当﹣1<x1<0,1<x2<2,x3>3时,y2<y1<y3,故选:D.12.(2022•新疆)已知抛物线y=(x﹣2)2+1,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=2C.抛物线的顶点坐标为(2,1)D.当x<2时,y随x的增大而增大【分析】根据抛物线a>0时,开口向上,a<0时,开口向下判断A选项;根据抛物线的对称轴为x=h判断B选项;根据抛物线的顶点坐标为(h,k)判断C选项;根据抛物线a>0,x<h时,y随x的增大而减小判断D选项.【解答】解:A选项,∵a=1>0,∴抛物线开口向上,故该选项不符合题意;B选项,抛物线的对称轴为直线x=2,故该选项不符合题意;C选项,抛物线的顶点坐标为(2,1),故该选项不符合题意;D选项,当x<2时,y随x的增大而减小,故该选项符合题意;故选:D.13.(2022•盐城)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.【分析】由题意可知﹣2<m<2,根据m的范围即可确定n的范围.【解答】解:∵y=x2+2x+2=(x+1)2+1,∴二次函数y=x2+2x+2的图象开口向上,顶点为(﹣1,1),对称轴是直线x=﹣1,∵P(m,n)到y轴的距离小于2,∴﹣2<m<2,而﹣1﹣(﹣2)<2﹣(﹣1),当m=2,n=(2+1)2+1=10,当m=﹣1时,n=1,∴n的取值范围是1≤n<10,故答案为:1≤n<10.14.(2022•长春)已知二次函数y=﹣x2﹣2x+3,当a≤x≤时,函数值y的最小值为1,则a的值为.【分析】函数配方后得y=﹣x2﹣2x+3=﹣(x+1)2+4,当y=1时,﹣(x+1)2+4=1,可得x=﹣1±,因为﹣1+>,所以﹣1﹣≤x≤时,函数值y的最小值为1,进而可以解决问题.【解答】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴图象开口向下,顶点坐标为(﹣1,4),根据题意,当a≤x≤时,函数值y的最小值为1,当y=1时,﹣(x+1)2+4=1,∴x=﹣1±,∵﹣1+>,∴﹣1﹣≤x≤时,函数值y的最小值为1,∴a=﹣1﹣.故答案为:﹣1﹣.15.(2022•黔东南州)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=﹣在同一坐标系内的大致图象为()A.B.C.D.【分析】由抛物线开口方向,对称轴位置及抛物线与y轴交点位置判断a,b,c的符号,从而可得直线与反比例函数图象的大致图象.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴b>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴直线y=ax+b经过第一,二,三象限,反比例函数y=﹣图象经过一,三象限,故选:C.16.(2022•湖北)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【分析】由抛物线顶点式可得抛物线顶点坐标,由图象可得m,n的符号,进而求解.【解答】解:∵y=(x+m)2+n,∴抛物线顶点坐标为(﹣m,n),∵抛物线顶点在第四象限,∴m<0,n<0,∴直线y=mx+n经过第二,三,四象限,故选:D.17.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2B.﹣2≤m<0C.m>2D.m<﹣2【分析】根据题意和题目中的抛物线,可以求得抛物线的对称轴,然后分类讨论即可得到m的取值范围.【解答】解:∵抛物线y=mx2﹣2m2x+n(m≠0),∴该抛物线的对称轴为直线x=﹣=m,∵当x1+x2>4且x1<x2时,都有y1<y2,∴当m>0时,0<2m≤4,解得0<m≤2;当m<0时,2m>4,此时m无解;由上可得,m的取值范围为0<m≤2,故选:A.18.(2022•呼和浩特)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD只有一个公共点,则m的取值范围是.【分析】根据抛物线求出对称轴x=1,y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,分两种情况讨论:m>0时或m<0时,利用抛物线的性质分析求解.【解答】解:抛物线的对称轴为:x=﹣=1,当x=0时,y=2,∴抛物线与y轴的交点坐标为(0,2),顶点坐标为(1,2﹣m),直线CD的表达式y=﹣1,当m>0时,且抛物线过点D(4,﹣1)时,16m﹣8m+2=﹣1,解得:m=﹣(不符合题意,舍去),当抛物线经过点(﹣1,﹣1)时,m+2m+2=﹣1,解得:m=﹣1(不符合题意,舍去),当m>0且抛物线的顶点在线段CD上时,2﹣m=﹣1,解得:m=3,当m<0时,且抛物线过点D(4,﹣1)时,16m﹣8m+2=﹣1,解得:m=﹣,当抛物线经过点(﹣1,﹣1)时,m+2m+2=﹣1,解得:m=﹣1,综上,m的取值范围为m=3或﹣1<m≤﹣,故答案为:m=3或﹣1<m≤﹣.19.(2022•包头)已知实数a,b满足b﹣a=1,则代数式a2+2b﹣6a+7的最小值等于()A.5B.4C.3D.2【分析】由题意得b=a+1,代入代数式a2+2b﹣6a+7可得(a﹣2)2+5,故此题的最小值是5.【解答】解:∵b﹣a=1,∴b=a+1,∴a2+2b﹣6a+7=a2+2(a+1)﹣6a+7=a2+2a+2﹣6a+7=a2﹣4a+4+5=(a﹣2)2+5,∴代数式a2+2b﹣6a+7的最小值等于5,故选:A.20.(2022•贺州)已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a 的值为()A.1B.2C.3D.4【分析】先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.【解答】解:∵二次函数y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴抛物线的对称轴为x =1,顶点(1,﹣3),∴当y =﹣3时,x =1,当y =15时,2(x ﹣1)2﹣3=15,解得x =4或x =﹣2,∵当0≤x ≤a 时,y 的最大值为15,∴a =4,故选:D .21.(2022•嘉兴)已知点A (a ,b ),B (4,c )在直线y =kx +3(k 为常数,k ≠0)上,若ab 的最大值为9,则c 的值为( )A .1B .23C .2D .25 【分析】由点A (a ,b ),B (4,c )在直线y =kx +3上,可得,即得ab =a (ak +3)=ka 2+3a =k (a +)2﹣,根据ab 的最大值为9,得k =﹣,即可求出c =2.【解答】解:∵点A (a ,b ),B (4,c )在直线y =kx +3上,∴,由①可得:ab =a (ak +3)=ka 2+3a =k (a +)2﹣, ∵ab 的最大值为9,∴k <0,﹣=9,解得k =﹣,把k =﹣代入②得:4×(﹣)+3=c ,∴c =2,故选:C .22.(2022•凉山州)已知实数a 、b 满足a ﹣b 2=4,则代数式a 2﹣3b 2+a ﹣14的最小值是 .【分析】根据a ﹣b 2=4得出b 2=a ﹣4,代入代数式a 2﹣3b 2+a ﹣14中,然后结合二次函数的性质即可得到答案.【解答】解:∵a ﹣b 2=4,∴b2=a﹣4,∴原式=a2﹣3(a﹣4)+a﹣14=a2﹣3a+12+a﹣14=a2﹣2a﹣2=a2﹣2a+1﹣1﹣2=(a﹣1)2﹣3,∵1>0,又∵b2=a﹣4≥0,∴a≥4,∵1>0,∴当a≥4时,原式的值随着a的增大而增大,∴当a=4时,原式取最小值为6,故答案为:6.。