《集合与常用逻辑用语》单元测试题(文科)

合集下载

上海园南中学必修第一册第一单元《集合与常用逻辑用语》测试题(包含答案解析)

上海园南中学必修第一册第一单元《集合与常用逻辑用语》测试题(包含答案解析)

一、选择题1.已知ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,则“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件2.已知命题p :x R ∀∈,2230ax x ++>是真命题,那么实数a 的取值范围是( ) A .13a < B .103a <≤ C .13a >D .13a ≤3.已知命题2:11xp x <-,命题:()(3)0q x a x -->,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .(,1]-∞ B .[1,3]C .[1,)+∞D .[3,)+∞4.已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件6.函数3()1f x ax x =++有极值的充分但不必要条件是( ) A .1a <-B .1a <C .0a <D .0a >7.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞8.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R9.定义:若平面点集A 中的任一个点00(,)x y ,总存在正实数r ,使得集合{(,)}x y r A <⊆,则称A 为一个开集.给出下列集合:①22{(,)|1}x y x y +=;②{(,)|20}x y x y ++≥;③{(,)|6}x y x y +<;④22{(,)|0(1}x y x y <+<. 其中是开集的是( ) A .①④B .②③C .②④D .③④10.下列命题错误的是( )A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件11.“3,a =b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为2( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件12.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m >B .12m ≥C .1mD .m 1≥第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________.14.已知2:(1)0p x a x a -++≤,:13q x ≤≤,若p 是q 的必要不充分条件,则实数a 的取值范围是______.15.已知集合{}3A x x =≤,{}2B x x =<,则RA B =__________.16.给出下列命题:①“1a >”是“11a<”的充分必要条件; ②命题“若21x <,则1x <”的否命题是“若21x ≥,则1x ≥”;③设x ,y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件; ④设a ,b R ∈,则“0a ≠”是“0ab ≠”的必要不充分条件. 其中正确命题的序号是_________. 17.下列说法正确的是______①“若0xy =,则0x =或0y =”的否命题是真命题②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥” ③x R ∃∈,使得1x e x <-④“0a <”是“221x ay +=表示双曲线”的充要条件. 18.若命题“(0,)x ∀∈+∞,不等式4a x x<+恒成立”为真,则实数a 的取值范围是__________.19.已知集合{}12A =,,{}12B =-,,则A B =______.20.已知“x m ≥”是“121x +>”的充分不必要条件,且m Z ∈,则m 的最小值是________.三、解答题21.已知集合{|22}A x a x a =-+,2{|540}B x x x =-+ (1)当3a =时,求A B ,()R A B ⋃;(2)若AB =∅,求实数a 的取值范围.22.已知m R ∈,命题:p 对任意[0,1]x ∈,不等式2223x m m -≥-成立;命题:q 存在[]–1,1x ∈,使得m x ≤成立.(1)若p 为真命题,求m 的取值范围;(2)若p 且q 为假,p 或q 为真,求m 的取值范围; 23.已知{}220A x x x =--<,212168x B x -⎧⎫=≤≤⎨⎬⎩⎭. (1)求AB ;(2)若不等式20x ax b ++<的解集是AB ,求20ax x b +-<的解集.24.已知函数4321x x A x -+⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭,{}321B x m x m =-≤≤+.(1)当2m =时,求A 和()RA B ⋂;(2)若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围. 25.已知集合A 是函数2lg 20()8y x x =+-的定义域,集合B 是不等式22210(0)x x a a -+-≥>的解集,:,:p x A q x B ∈∈.(1)若A B =∅,求a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求a 的取值范围. 26.集合(){}21|,A x y y xmx ==-+-,(){},3,03|B x y y x x ==-≤≤.(Ⅰ)当4m =时,求A B ;(Ⅱ)若A B ⋂≠∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别从充分性和必要性入手进行分析即可得解. 【详解】充分性:若0,3B π⎛⎤∈ ⎥⎝⎦,则2221cos 122a c b B ac+-≤=<,即2222ac a c b ac ≤+-<,即222222a c ac b a c ac +-<≤+-,并不能得出2b ac =一定成立,故充分性不成立;必要性:若2b ac =,由余弦定理得:2221cos 222a c ac ac ac B ac ac +--=≥=,因为()0,B π∈,所以0,3B π⎛⎤∈ ⎥⎝⎦,故必要性成立, 综上,“0,3B π⎛⎤∈ ⎥⎝⎦”是“2b ac =”的必要不充分条件, 故选:C . 【点睛】方法点睛:判断充要条件的四种常用方法:定义法、传递性法、集合法、等价命题法.2.C解析:C 【分析】由题意可得2230ax x ++>对于x ∈R 恒成立,讨论0a =和0a ≠即可求解. 【详解】若命题p :x R ∀∈,2230ax x ++>是真命题, 则2230ax x ++>对于x ∈R 恒成立, 当0a =时,230x +>可得:32x >-不满足对于x ∈R 恒成立,所以0a =不符合题意;当0a ≠时,需满足04430a a >⎧⎨∆=-⨯<⎩解得13a >,所以实数a 的取值范围是13a >, 故选:C 【点睛】关键点点睛:对于2230ax x ++>对于x ∈R 恒成立,需讨论0a =和0a ≠,当0a ≠时,结合二次函数图象即可得等价条件.3.C解析:C 【分析】化简命题q ,分类讨论a 解不等式()(3)0x a x -->,根据p 是q 的充分不必要条件列式可解得结果. 【详解】因为211xx <-,所以2101x x x -+<-,所以(1)(1)0x x -+<,所以11x -<<, 当3a <时,由()(3)0x a x -->得x a <或3x >,因为p 是q 的充分不必要条件,所以1a ≥,所以13a ≤<, 当3a =时,由()(3)0x a x -->得3x ≠,满足题意, 当3a >时,由()(3)0x a x -->得3x <或x a >,满足题意, 综上所述:1a ≥. 故选:C 【点睛】关键点点睛:本题考查由充分不必要条件求参数的取值范围,一般可根据如下规则求解: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.4.D解析:D 【分析】从充分性和必要性两方面分别分析判断得解. 【详解】直线,m n 和平面α,n ⊂α,若//m n ,当m α⊂时,//m α显然不成立,故充分性不成立;当//m α时,如图所示,显然//m n 不成立,故必要性也不成立.所以“//m n ”是“//m α”的既不充分又不必要条件. 故选:D 【点睛】方法点睛:判定充要条件常用的方法有三种:(1)定义法:直接利用充分必要条件的定义分析判断得解; (2)集合法:利用集合的包含关系分析判断得解; (3)转化法:转化成逆否命题分析判断得解.5.C解析:C 【分析】从充分性和必要性两个方面,分0,0a b <<和0,0a b <≥讨论,分别求解证明即可. 【详解】解:当 0,0a b <<,0a b +<时,此时220a a b b a b +=--<成立,当0,0a b <≥,0a b +<时,此时()()220a a b b a b a b b a +=-+=+-<成立,即0a b +<可以推出0a a b b +<,反之,若0a a b b +<,则,a b 中至少有一个负数, 若,a b 均为负数,必然有0a b +<,若0,0a b <≥,则()()220a a b b b a a b b a +=-=+-<,因为0b a ->,则必有0a b +<, 所以0a a b b +<可以推出0a b +<, 故“0a b +<”是“0a a b b +<”的充分必要条件. 故选:C. 【点睛】本题考查充分性和必要性的判断,考查学生分类讨论的思想,是中档题.6.A解析:A 【分析】求导2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,可求得a 的范围,再由充分必要条件可得选项. 【详解】因为2()31f x ax '=+,所以要使函数3()1f x ax x =++有极值,则需3012>0a a ≠∆=-,,解得0a <,又由1a <-可推得0a <,而由0a <不能推得1a <-,所以函数3()1f x ax x =++有极值的充分但不必要条件是1a <-, 故选:A . 【点睛】本题考查函数有极值的条件,以及命题的充分必要条件的判断,属于中档题.7.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.8.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.9.D解析:D 【分析】根据开集的定义逐个验证选项,即可得到答案. 【详解】①:22{(,)|1}x y x y +=表示以原点为圆心,1为半径的圆, 则在该圆上任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆故①不是开集;②{(,)|20}x y x y ++≥,在曲线20x y ++=任意取点00(,)x y ,以任意正实数r 为半径的圆面,均不满足{(,)}x y r A <⊆,故该集合不是开集; ③{(,)|6}x y x y +<平面点集A 中的任一点00(,)x y ,则该点到直线的距离为d ,取r d =,则满足{(,)|}x y r A ⊆,故该集合是开集;④22{(,)|0(1}x y x y <+<表示以点()0,3为圆心,1为半径除去圆心和圆周的圆面,在该平面点集A 中的任一点00(,)x y ,则该点到圆周上的点的最短距离为d ,取r d =,则满足{(,)}x y r A <⊆,故该集合是开集. 故答案选D 项. 【点睛】本题属于集合的新定义型问题,考查对新定义的理解并解决问题,属于中档题.10.B解析:B 【分析】根据逆否命题的概念,准确改写,可判定A 正确的;根据全称命题与存在性命题的关系,可判定B 不正确;根据复合命题的真假判定方法,可判定C 是正确的;根据充要条件的判定方法,可判定D 正确. 【详解】对于A 中,根据逆否命题的概念,可得命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”,所以A 正确的;对于B 中,根据全称命题与存在性命题的关系,可得命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+≤”,所以B 不正确;对于C 中,根据复合命题的真假判定方法,若“p 且q ”为真命题,则p ,q 均为真命题,所以C 是正确的;对于D 中,不等式2430x x ++>,解得3x <-或1x >-,所以“1x >-”是“2430x x ++>”的充分不必要条件,所以D 正确. 综上可得,命题错误为选项B. 故选:B. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到四种命题的改写,全称命题与存在性命题的关系,以及复合命题的真假判定和充分条件、必要条件的判定等知识的综合应用,属于基础题.11.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,由于离心率为2可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有2222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.12.D解析:D 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】 解:命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D . 【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.二、填空题13.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.14.【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可【详解】x2﹣(a+1)x+a≤0即(x ﹣1)(x ﹣a )≤0p 是q 的必要不充分条件当a =1时由(x ﹣1)(x ﹣1)≤0得x =1此时不满足 解析:(3,)+∞【分析】根据充分条件和必要条件的定义转化为对应关系进行求解即可. 【详解】x 2﹣(a +1)x +a ≤0即(x ﹣1)(x ﹣a )≤0, p 是q 的必要不充分条件,当a =1时,由(x ﹣1)(x ﹣1)≤0得x =1,此时不满足条件, 当a <1时,由(x ﹣1)(x ﹣a )≤0得a ≤x ≤1,此时不满足条件. 当a >1时,由(x ﹣1)(x ﹣a )≤0得1≤x ≤a , 若p 是q 的必要不充分条件,则a >3, 即实数a 的取值范围是(3,+∞), 故答案为(3,+∞) 【点睛】本题主要考查充分条件和必要条件的应用,根据定义转化为不等式的包含关系是解决本题的关键.15.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<,所以R B ={}2x x ≥因此R A B ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3【点睛】本题主要考查了集合的补集,交集运算,属于中档题.16.②④【解析】【分析】逐项判断每个选项的正误得到答案【详解】①当时成立但不成立所以不具有必要性错误②根据否命题的规则得命题若则的否命题是若则;正确③因为且是的充分不必要条件所以错误④因为且所以是的必要解析:②④【解析】【分析】逐项判断每个选项的正误得到答案.【详解】①当1a =-时,11a<成立,但1a >不成立,所以不具有必要性,错误 ②根据否命题的规则得命题“若21x <,则1x <”的否命题是“若21x ≥,则1x ≥”;,正确.③因为2x ≥且2y ≥”是“224x y +≥”的充分不必要条件,所以错误④因为00ab a ≠⇔≠且0b ≠,所以“0a ≠”是“0ab ≠”的必要不充分条件.正确. 故答案为②④【点睛】本题考查了充分必要条件,否命题,意在考查学生的综合知识运用.17.①②④【分析】分别判断每个选项的真假最后得到答案【详解】①若则或的否命题为:若则且正确②命题的否定是正确③使得设即恒成立错误④是表示双曲线的充要条件当是:表示双曲线当表示双曲线时:故是表示双曲线的充解析:①②④【分析】分别判断每个选项的真假,最后得到答案.【详解】①“若0xy =,则0x =或0y =”的否命题为:若0xy ≠,则0x ≠且0y ≠,正确 ②命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”,正确③x R ∃∈,使得1x e x <-.设min ()1'()1()(0)20x x f x e x f x e f x f =-+⇒=-⇒==>即1x e x >-恒成立,错误④“0a <”是“221x ay +=表示双曲线”的充要条件当0a <是:221x ay +=表示双曲线当221x ay +=表示双曲线时:0a <故“0a <”是“221x ay +=表示双曲线”的充要条件 故答案为①②④【点睛】本题考查了否命题,命题的否定,充要条件,综合性强,意在考查学生的综合应用能力. 18.【解析】由基本不等式可知故解析:a 4<【解析】由基本不等式可知44x x +≥=,故4a <. 19.{-112};【解析】=={-112}解析:{-1,1,2};【解析】A B ⋃={}{}1212,,⋃-={-1,1,2} 20.0【分析】根据是的充分不必要条件且即可得出【详解】由是的充分不必要条件且则的最小值是故答案为:【点睛】本题考查了充分不必要条件的判定方法考查了推理能力与计算能力属于基础题解析:0.【分析】1121221x x x +->⇔>⇔>-.根据x m ”是“+121x >”的充分不必要条件,且m Z ∈,即可得出.【详解】由1211x x +>⇒>-,“x m ”是“+121x >”的充分不必要条件,且m Z ∈,0m ∴,则m 的最小值是0.故答案为:0.【点睛】本题考查了充分不必要条件的判定方法,考查了推理能力与计算能力,属于基础题.三、解答题21.(1){|11A B x x =-或45}x ;(){}|15R AB x x =-;(2) (,1)-∞.【分析】(1)3a =时求出集合A ,B ,再根据集合的运算性质计算A B 和()R A B ⋃; (2)根据AB =∅,讨论A =∅和A ≠∅时a 的取值范围,从而得出实数a 的取值范围.【详解】解:(1)当3a =时,{|22}{|15}A x a x a x x =-+=-, 2{|540}{|1B x x x x x =-+=或4}x ,{|11A B x x =-或45}x ;又{|14}R B x x =<<,(){}|15R A B x x =-;(2)A B =∅,当22a a ->+,即0a <时,A =∅,满足题意;当0a 时,应满足2124a a ->⎧⎨+<⎩,此时得01a <; 综上,实数a 的取值范围是(,1)-∞.【点睛】本题考查了集合的基本运算以及不等式解法问题,注意等价变形的应用,属于中档题. 22.(1)[]1,2(2)(,1)(1,2]-∞ 【分析】(1)对任意[0,1]x ∈,不等式2223x m m --恒成立,2(22)3min x m m --.利用函数的单调性与不等式的解法即可得出.(2)存在[]–1,1x ∈,使得m x 成立,可得1m ,命题q 为真时,1m .由p 且q 为假,p 或q 为真,p ,q 中一个是真命题,一个是假命题,再分别求出参数的取值范围最后取并集即可.【详解】解(1)∵对任意[]0,1x ∈,不等式2223x m m -≥-恒成立,∴2min (22)3x m m -=-.即23m 2m -≤-.解得12m ≤≤.因此,若p 为真命题时,m 的取值范围是[]1,2.(2)存在[1,1]x ∈-,使得m x ≤成立,∴1m ,命题q 为真时,1m .∵p 且q 为假,p 或q 为真,∴p ,q 中一个是真命题,一个是假命题. 当p 真q 假时,则121m m ≤≤⎧⎨>⎩解得12m <≤;当p 假q 真时,121m m m ⎧⎨≤⎩或,即1m <. 综上所述,m 的取值范围为(,1)(1,2]-∞. 【点睛】本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.23.(1)()1,2-;(2)()(),12,-∞-+∞. 【分析】(1)先解出集合A 、B ,然后利用交集的定义可求出集合A B ; (2)由题意可知,1-、2是方程20x ax b ++=的两根,利用韦达定理可求出a 、b 的值,进而可求出二次不等式20ax x b +-<的解集.【详解】(1)由题意知{}{}22012A x x x x x =--<=-<<, 由212168x -≤≤,得324222x --≤≤,得324x -≤-≤,解得16x -≤≤,[]1,6B ∴=-. 因此,()1,2A B ⋂=-;(2)由题意可知,1-、2是方程20x ax b ++=的两根,由韦达定理得1212a b -+=-⎧⎨-⨯=⎩,解得12a b =-⎧⎨=-⎩, 不等式20ax x b +-<即为220x x -++<,即220x x -->,解得1x <-或2x >. 因此,不等式20ax x b +-<的解集为()(),12,-∞-⋃+∞.【点睛】本题考查交集的运算,同时也考查了二次不等式与指数不等式的求解,涉及一元二次不等式的解集与二次方程之间的关系,考查运算求解能力,属于中等题.24.(1)()()34-∞-+∞,,,[]1,4-;(2)2m <-或7m >. 【分析】(1)由指数函数的单调性可得403x x ->+,解分式方程即可得集合A ,从而可求出()R A B ⋂. (2)由题意知B A ,分B =∅和B ≠∅两种情况进行讨论,从而可求出实数m 的取值范围. 【详解】(1)∵4321x x -+>,∴40322x x -+>,∴403x x ->+,解得3x <-或4x >, ∴()(),34,A =-∞-⋃+∞,又2m =,[]1,5B =-,[]3,4R A =- ∴()[]1,4R A B ⋂=-.(2)∵x B ∈是x A ∈的充分不必要条件,∴B A ,(1)当B =∅时,则321m m ->+,即4m <-.(2)当B ≠∅时,32134m m m -≤+⎧⎨->⎩或321213m m m -≤+⎧⎨+<-⎩∴7m >或42m -≤<- 综上所述,2m <-或7m >.【点睛】结论点睛:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.25.(1)9a ≥(2)03a <≤【解析】分析:(1)分别求函数2lg 20()8y x x =+-的定义域和不等式22210(0)x x a a -+-≥>的解集,从而确定集合A,B ,由A B φ⋂=,得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应的集合之间的关系,由区间端点值的关系列不等式组求解a 的取值范围.详解:(1)由题意得{}{}|210,|11A x x B x x a x a =-<<=≥+≤-或. 若A B ⋂=∅,则必须满足110120a a a +≥⎧⎪-≤-⎨⎪>⎩,解得9a ≥.∴a 的取值范围为9a ≥.(2)易得:102p x x ⌝≥≤-或.∵p ⌝是q 的充分不必要条件,∴{}|102x x x ≥≤-或是{}|11B x x a x a =≥+≤-或的真子集,则101210a a a ≥+⎧⎪-≤-⎨⎪>⎩,解得03a <≤,∴a 的取值范围是03a <≤.点睛:该题所涉及的考点有交集及其运算,充分不必要条件,复合命题的真假,解题的关键是先确定集合中的元素,再者就是两集合交集为空集时对应参数的取值范围,可以借助于数轴来完成.26.(Ⅰ){(1,2)}AB =;(Ⅱ)[3,)m ∈+∞.【分析】(Ⅰ)联立曲线与直线的方程求出交点,结果写成点集的形式;(Ⅱ)A B ⋂≠∅转化为当[0,3]x ∈时方程213x mx x -+-=-有解,当0x =时,方程不成立;当 (0,3]x ∈时,41m x x +=+,由对勾函数的单调性求出函数4()f x x x=+在(0,3]上的值域即可求得m 的取值范围.【详解】 (Ⅰ)24113203y x x x y x y x ⎧=-+-=⎧⎪=-⇒⎨⎨=⎩⎪≤≤⎩,所以{(1,2)}A B =; (Ⅱ)A B ⋂≠∅等价于当[0,3]x ∈时方程213x mx x -+-=-有解, 即2(1)40x m x -++=在[0,3]x ∈上有解, 当0x =时,方程不成立,所以0不是方程的解;当 (0,3]x ∈时,41m x x +=+①, 因为函数4()f x x x=+在(0,2]上单调递减,(2,3]上单调递增,(2)224f =+=, 所以()[4,)f x ∈+∞,①式有解,则143m m +≥⇒≥.综上所述:[3,)m ∈+∞.【点睛】本题考查集合的交集运算,根据集合交集的结果求参数,属于基础题.。

第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)

第一章  集合与常用逻辑用语 单元测试卷(Word版含答案)

《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。

第一章 集合与常用逻辑用语单元检测试卷(基础过关)(原卷版)

第一章 集合与常用逻辑用语单元检测试卷(基础过关)(原卷版)

第一章 集合与常用逻辑语言 单元检测试卷(基础过关)一、单选题1.对于命题:p x R ∃∈,使得210x x ++<,则p ⌝是( )A.:p x R ⌝∀∈,210x x ++>B.:p x R ⌝∃∈,210x x ++≠C.:p x R ⌝∀∈,210x x ++≥D.:p x R ⌝∃∈, 210x x ++< 2.若{}2{1,4,},1,A x B x==且B A ⊆,则x =( ) A.2± B.2±或0 C.2±或1或0 D.2±或±1或03.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A.63B.127C.255D.511 4.集合3{|40}M x x x =-=,则M 的子集个数为( )A.2B.3C.4D.85.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( )A.A B ∈B.A B =C.B A ⊆D.A B ⊆6.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()R A B (⋃= ) A.{|1}x x ≤B.{|2x x <-或1}x >C.{|12}x x ≤<D.{|1x x ≤或2}x >7.下列命题错误的是( ) A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件8.设集合A 是集合*N 的子集,对于*i ∈N ,定义1,()0,i i A A i A ϕ∈⎧=⎨∉⎩,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ∈N 都满足()0i A B ϕ=且()1i A B ϕ=;②任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i AB ϕ=()i A ϕ()i B ϕ;③任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i AB ϕ=()+i A ϕ()i B ϕ;其中,所有正确结论的序号是( )A.①②B.②③C.①③D.①②③二、多选题 9.下列说法中正确的是( )A.“A B B =”是“B =∅”的必要不充分条件B.“3x =”的必要不充分条件是“2230x x --=”C.“m 是实数”的充分不必要条件是“m 是有理数”D.“1x =”是“1x =”的充分条件10.设非空集合P ,Q 满足P Q Q ⋂=,且P Q ≠,则下列选项中错误的是( ).A.x Q ∀∈,有x P ∈B.x P ∃∈,使得x Q ∉C.x Q ∃∈,使得x P ∉D.x Q ∀∉,有x P ∉11.下列与集合1(,)|30x y M x y x y ⎧+=⎧⎫=⎨⎨⎬--=⎩⎭⎩表示同一个集合的有( ) A.{(2,1)}-B.{2,1}-C.{(,)|2,1}x y x y ==-D.{2,1}x y ==-E.{(1,2)}-三、填空题12.若集合{}12A x x =≤≤,集合{}B x x k =≥,若A B ⋂≠∅,则k 的取值范围是______.13.已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________14.已知集合A ={|x x =21,},3n n B +∈Z ={|x x =21,}3n n Z +∈,则集合A B 、的关系为__________. 15.已知全集{}22,3,23U a a =+-,若{},2A b =,{}5U C A =,则实数的a =____________,b =_________.四、解答题16.已知集合{}2,,1,,,0y A x B x x y x ⎧⎫==+⎨⎬⎩⎭,若A B =,求20192018x y +的值.17.已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>.(1)求()R C B A⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围.18.设集合A {x |a 1x 2a,a R}=-<<∈,不等式2x 2x 80--<的解集为B.()1当a 0=时,求集合A ,B ;()2当A B ⊆时,求实数a 的取值范围.19.已知命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(3)(2)0x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.20.已知两个关于x 的一元二次方程2440mx x -+=和2244450x mx m m -+--=,求两方程的根都是整数的充要条件.21.给定数集A ,若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.(1)判断集合{4,2,0,2,4},{|3,}A B x x k k Z =--==∈是否为闭集合,并给出证明.(2)若集合A ,B 为闭集合,则A B 是否一定为闭集合?请说明理由. (3)若集合A ,B 为闭集合,且,A R B R ,求证:()A B R ⋃.。

高考文科数学一轮复习集合与常用逻辑用语练习题Word版

高考文科数学一轮复习集合与常用逻辑用语练习题Word版

高考文科数学一轮复习单元一 集合与常用逻辑用语练习题班级:______ 姓名:______1.设集合︒=≤=40sin },4|{m x x A ,则下列关系中正确的是( D ) A .A m ⊂B .A m ⊄C .A m ∈}{D .A m ⊆}{2.设集合{}4,3,2,1=A ,{}5,4,3=B ,全集B A U ⋃=,则集合()B A C U ⋂中的元素个数为( C )A . 1个B .2个C .3个D .4个3.若集合P={0,1,2},Q=10(,)|,,20x y x y x y P x y ⎧-+>⎫⎧∈⎨⎨⎬--<⎩⎩⎭,则Q 中元素的个数是( B )A . 3B . 5C . 7D . 94.已知集合{}1,0,1,2,A =-,集合{}0,2,4,6B =,则集合AB =(C )A .{}1,2,4B .{}2,4C .{}0,2D . {}-1,0,1,2,4,65.设全集U={1,2,3,4,5,6,7,8},集合=A {2,3,4,5},=B {2,4,6,8},则集合A C U B 等于( A ) A{3,5} B{1,2,3,4,5,7}C{6,8}D{1,2,4,6,7,8}6.已知全集}6,5,4,3,2,1{=U ,集合}5,3,1{=A ,}6,5,4{=B ,则结合)(C U B A =( B ) A .}6,4,2{B .}2{C .}5{D .}6,5,4,3,1{7.已知全集{1,2,3,4,5,6}U =,集合{2,3,5}M =,{4,5}N =,则[)(N M u ⋃等于( D ) A .{1,3,5}B .{2,4,6}C .{1,5}D .{1,6}8.已知全集U =R ,集合{}|12A x x =->,{}2|680B x x x =-+<,则集合[=⋂B A u )(( C )A.{}|14x x -≤≤B.{}|23x x ≤<C.{}|23x x <≤D.{}|14x x -<<9.设集合01234{,,,,}S A A A A A =,在S 上定义运算⊙为:i A ⊙j k A A =,其中||k i j =-,0,1,2,3,4,i j ==0,1,2,3,4.那么满足条件(i A ⊙)j A ⊙21A A =(i A S ∈,j A S ∈)的有序数对(,)i j 共有( A )(A )12个 (B )8个 (C )6个 (D ) 4个10.将正偶数集合,6,4,2{…}从小到大按第n 组有n 2个偶数进行分组 如下:第一组 第二组 第三组 …………}4,2{ }12,10,8,6{ }28,26,24,22,20,18,16,14{ …………则2010位于( C )A .第7组 B.第8组 C.第9组 D. 第10组(10年延庆抽样测试9)已知集合)01|{>+=x x A ,)2|||{≤=x x B .则=B A .}21|{≤<-x x(10年1月海淀区上学期期末练习15)已知集合S ={x |205+<-x x }, P ={ x | 1a +<x 215a <+ },(Ⅰ)求集合S ;(Ⅱ)若S P ⊆,求实数a 的取值范围. 解:(I )因为052<-+x x ,所以0)2)(5(<+-x x . ……………………………2分 解得25x -<<, ……………………………4分 则集合{|25}S x x =-<<. ……………………………6分(II )因为P S ⊆, 所以⎩⎨⎧+≤-≤+152521a a , (8)分解得⎩⎨⎧-≥-≤53a a , ……………………………10分所以]3,5[--∈a . ……………………………12分 (10年密云抽样测试5)下列命题 :①2x x x ∀∈,≥R ;②2x x x ∃∈,≥R ; ③43≥; ④“21x ≠”的充要条件是“1x ≠,或1x ≠-”. 中,其中正确命题的个数是 ( D ) A .0B .1C .2D .31.已知命题p :x ∀∈R ,||0x ≥,那么命题p ⌝为( C ) (A )x ∃∈R ,||0x ≤ (B )x ∀∈R ,||0x ≤ (C )x ∃∈R ,||0x < (D )x ∀∈R ,||0x <2.已知命题 :p x ∀∈R ,2x ≥,那么命题p ⌝为( B ) A .2x x ∀∈≤R , B .2x x ∃∈<R , C .2x x ∀∈≤-R , D .2x x ∃∈<-R , 4.下列命题中的真命题是( D )A.R x ∈∃使得5.1cos sin =+x xB. x x x cos sin ),,0(>∈∀πC.R x ∈∃使得12-=+x x D. 1),,0(+>+∞∈∀x e x x5.已知命题p :0x ∃∈R ,200220x x ++≤,那么下 列结论正确的是( B )(A )0:p x ⌝∃∈R ,200220x x ++> (B ):p x ⌝∀∈R ,2220x x ++> (C )0:p x ⌝∃∈R ,200220x x ++≥ (D ):p x ⌝∀∈R ,2220x x ++≥6. “2a =”是“直线20ax y +=与1x y +=平 行”的( C ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件(东城区普通校09-10下学期联考试卷4) 命题p :∃实数∈x 集合A ,满足032x x 2<--, 命题q :∀实数∈x 集合A ,满足032x x 2<--,则命题p 是命题q 为真的( B ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分非必要条件(10年崇文区一模8)如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[]3.273=,[]0.60=.那么“[][]x y =”是“1x y -<”的( A )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(10年西城区高三年级抽样测试4)“b a <<0”是“ba)41()41(>”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不是充分条件也不是必要条件(10年1月宣武区上学期期末检测2)“2=a ”是“直线03:21=+-y x a l 与直线14:2-=x y l 互相垂直”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(10年崇文区上学期期末统一练习4)“2m =-”是“直线(1)20m x y ++-=与直线(22)10mx m y +++=相互垂直”的( A )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(10年丰台区一模8)在ABC ∆中,AB AC BA BC ⋅=⋅“” 是 AC BC =“”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(10年门头沟区抽样测试2)已知向量)6,(,)3,2(x b a =-=,则“=x 9”是“//”的( D )(A)充分但不必要条件(B)必要但不充分条件(C)充要条件(D)既不充分也不必要条件(10年宣武区高三下学期第一次质量检测10)命题“任意常数列都是等比数列”的否定形式是 . 存在一个常数列不是等比数列(注:可编辑下载,若有不当之处,请指正,谢谢!)。

完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。

A。

A⊆BB。

A∩B={2}C。

A∪B={1,2,3,4,5}D。

A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。

显然,A不是B的子集,排除A选项。

XXX表示A和B的交集,即A和B中都出现的元素构成的集合。

根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。

A∪B表示A和B的并集,即A和B中所有元素构成的集合。

根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。

A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。

根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。

2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。

A。

M=NB。

MNC。

NMD。

M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。

因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。

3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。

A。

充分不必要条件B。

必要不充分条件C。

充要条件D。

第一章集合与常用逻辑用语单元检测附答案

第一章集合与常用逻辑用语单元检测附答案

第一章集合与常用逻辑用语单元检测(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个命题与它的逆命题、否命题、逆否命题这四个命题中( ).A .真命题与假命题的个数相同B .真命题的个数一定是奇数C .真命题的个数一定是偶数D .真命题的个数可能是奇数,也可能是偶数2.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N 等于( ).A .{0}B .{0,1}C .{1,2}D .{0,2}3.(2011福建高考,理2)若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件4.命题“存在x ∈R ,x 2-3x +4>0”的否定是( ).A .存在x ∈R ,x 2-3x +4<0B .任意的x ∈R ,x 2-3x +4>0C .任意的x ∈R ,x 2-3x +4≥0D .任意的x ∈R ,x 2-3x +4≤05.集合P ={a |a =(-1,1)+m (1,2),m ∈R },Q ={b |b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( ).A .{(1,-2)}B .{(-13,-23)}C .{(1,2)}D .{(-23,-13)}6.对任意两个集合M ,N ,定义:M -N ={x |x ∈M 且x ∉N },M △N =(M -N )∪(N -M ),设M =⎩⎨⎧⎭⎬⎫x |x -31-x <0,N ={x |y =2-x },则M △N =( ). A .{x |x >3} B .{x |1≤x ≤2}C .{x |1≤x <2,或x >3}D .{x |1≤x ≤2,或x >3}7.已知全集U 为实数集R ,集合M =⎩⎨⎧⎭⎬⎫x |x +3x -1<0,N ={x ||x |≤1},则下图阴影部分表示的集合是( ).A .[-1,1]B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)8.下列判断正确的是( ).A .命题“负数的平方是正数”不是全称命题B .命题“任意的x ∈N ,x 3>x 2”的否定是“存在x ∈N ,x 3<x 2”C .“a =1”是“函数f (x )=cos 2ax -sin 2ax 的最小正周期是π”的必要不充分条件D .“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件9.(2011陕西高考,文8)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎨⎧⎭⎬⎫x |⎪⎪⎪⎪x i <1,i 为虚数单位,x ∈R ,则M ∩N 为( ). A .(0,1) B .(0,1]C .[0,1)D .[0,1]10.设命题p :函数y =lg(x 2+2x -c )的定义域为R ,命题q :函数y =lg(x 2+2x -c )的值域为R ,若命题p ,q 有且仅有一个为真,则c 的取值范围为( ).A .B .(-∞,-1)C .[-1,+∞)D .R二、填空题(本大题共5小题,每小题5分,共25分)11.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(∁U C )=__________.12.(2011浙江温州模拟)已知条件p :a <0,条件q :a 2>a ,则p 是q 的__________条件.(填:充分不必要、必要不充分、充要、既不充分也不必要)13.若命题“存在x ∈R ,x 2-ax -a <0”为假命题,则实数a 的取值范围为__________.14.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R ”的逆命题.其中真命题是__________.(把你认为是正确命题的序号都填在横线上)15.已知命题p :不等式x x -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p 且q ”为真;③“p 或q ”为真;④p 假q 真,其中正确结论的序号是__________.(请把正确结论的序号都填上)三、解答题(本大题共6小题,共75分)16.(12分)(1)设全集I 是实数集,则M ={x |x +3≤0},N =212{|22}x x x +=,求(∁I M )∩N .(2)已知全集U =R ,集合A ={x |(x +1)(x -1)>0},B ={x |-1≤x <0},求A ∪(∁U B ).17.(12分)已知p :-2≤1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0).若“非p ”是“非q ”的充分而不必要条件,求实数m 的取值范围.18.(12分)已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.19.(12分)(2011福建四地六校联合考试)已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.20.(13分)已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.21.(14分)已知三个不等式:①|2x -4|<5-x ;②x +2x 2-3x +2≥1;③2x 2+mx -1<0.若同时满足①和②的x 值也满足③,求m 的取值范围.参考答案一、选择题1.C 解析:在原命题、逆命题、否命题、逆否命题这四个命题中,互为逆否的命题是成对出现的,故真命题的个数和假命题的个数都是偶数. 2.D 解析:集合N ={0,2,4},所以M ∩N ={0,2}.3.A 解析:由(a -1)(a -2)=0,得a =1或a =2,所以a =2⇒(a -1)(a -2)=0.而由(a -1)(a -2)=0不一定推出a =2,故a =2是(a -1)(a -2)=0的充分而不必要条件.4.D 解析:含有存在量词的命题的否定,先把“存在”改为“任意的”,再把结论否定.5.B 解析:a =(m -1,2m +1),b =(2n +1,3n -2),令a =b ,得⎩⎪⎨⎪⎧ m -1=2n +1,2m +1=3n -2,解得⎩⎪⎨⎪⎧m =-12,n =-7. 此时a =b =(-13,-23),故选B.6.D 解析:∵M ={x |x >3或x <1},N ={x |x ≤2},∴M -N ={x |x >3},N -M ={x |1≤x ≤2},∴M △N ={x |1≤x ≤2,或x >3}.7.D 解析:∵M =⎩⎨⎧⎭⎬⎫x |x +3x -1<0={x |-3<x <1},N ={x ||x |≤1}={x |-1≤x ≤1},∴阴影部分表示的集合为M ∩(∁U N )={x |-3<x <-1},故选D.8.D 解析:依据各种命题的定义,可以判断A ,B ,C 全为假,由b =0,可以判断f (x )=ax 2+bx +c 是偶函数,反之亦成立. 9.C 解析:∵y =22|cos sin |x x -=|cos 2x |,x ∈R ,∴y ∈[0,1],∴M =[0,1].∵⎪⎪⎪⎪x i <1,∴|x |<1.∴-1<x <1.∴N =(-1,1).∴M ∩N =[0,1).10.D 解析:本题考查根据命题的真假求参数的取值范围.若函数y =lg(x 2+2x -c )的定义域为R ,则不等式x 2+2x -c >0对任意x ∈R 恒成立,则有Δ=4+4c <0,解得c <-1;若函数y =lg(x 2+2x -c )的值域为R ,则g (x )=x 2+2x -c 应该能够取到所有的正实数,因此Δ=4+4c ≥0,解得c ≥-1.当p 为真,q 为假时,有c <-1;当p 为假,q 为真时,有c ≥-1.综上,当命题p ,q 有且仅有一个为真时,c 的取值范围为R .故选D.二、填空题11.{2,5} 解析:∵A ∪B ={2,3,4,5},∁U C ={1,2,5},∴(A ∪B )∩(∁U C )={2,5}.12.必要不充分 解析:p 为:a ≥0,q 为a 2≤a ,a 2≤a ⇔a (a -1)≤0⇔0≤a ≤1, ∴p q ,而q ⇒p ,∴p 是q 的必要不充分条件.13.[-4,0] 解析:∵“存在x ∈R ,x 2-ax -a <0”为假命题,则“对任意的x ∈R ,x 2-ax -a ≥0”为真命题,∴Δ=a 2+4a ≤0,解得-4≤a ≤0.14.②③⑤ 解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确,又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0,Δ=4(m +1)2-4m (m +3)<0⇒⎩⎪⎨⎪⎧m >0,m >1⇒m >1.故⑤正确. 15.①③ 解析:解不等式知,命题p 是真命题,在△ABC 中,“A >B ”是“sin A >sinB ”的充要条件,所以命题q 是假命题,∴①正确,②错误,③正确,④错误.三、解答题16.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4}, ∴(∁I M )∩N ={4}.(2)∵A ={x |x <-1,或x >1},B ={x |-1≤x <0},∴∁U B ={x |x <-1,或x ≥0}.∴A ∪(∁U B )={x |x <-1,或x ≥0}.17.解:由p :-2≤1-x -13≤2, 解得-2≤x ≤10,∴“非p ”:A ={x |x >10,或x <-2}.由q :x 2-2x +1-m 2≤0,解得1-m ≤x ≤1+m (m >0).∴“非q ”:B ={x |x >1+m 或x <1-m ,m >0},由“非p ”是“非q ”的充分不必要条件得A B .∴⎩⎪⎨⎪⎧ m >0,1-m ≥-2,1+m ≤10,解得0<m ≤3.∴满足条件的m 的取值范围为{m |0<m ≤3}.18.证明:必要性:∵a +b =1,即b =1-a ,∴a 3+b 3+ab -a 2-b 2=a 3+(1-a )3+a (1-a )-a 2-(1-a )2=0,必要性得证.充分性:∵a 3+b 3+ab -a 2-b 2=0,∴(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=0,∴(a 2-ab +b 2)(a +b -1)=0.又ab ≠0,即a ≠0且b ≠0,∴a 2-ab +b 2=22b a ⎛⎫- ⎪⎝⎭+3b 24≠0, ∴a +b =1,充分性得证.综上可知,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.19.解:由已知得:A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3, ∴⎩⎪⎨⎪⎧m =2,m ≥1.∴m =2,即实数m 的值为2. (2)∁R B ={x |x <m -2,或x >m +2}.∵A ⊆∁R B ,∴m -2>3或m +2<-1.∴m >5或m <-3.∴实数m 的取值范围是(-∞,-3)∪(5,+∞).20.解:(1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,为真命题. 用反证法证明:假设a +b <0,则a <-b ,b <-a .∵f (x )是(-∞,+∞)上的增函数,则f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设相矛盾,∴逆命题为真.(2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ),则a +b <0,为真命题. ∵原命题⇔它的逆否命题,∴证明原命题为真命题即可.∵a +b ≥0,∴a ≥-b ,b ≥-a .又∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ).∴逆否命题为真.21.解:设不等式|2x -4|<5-x ,x +2x 2-3x +2≥1, 2x 2+mx -1<0的解集分别为A ,B ,C ,则由|2x -4|<5-x 得,当x ≥2时,不等式化为2x -4<5-x ,得x <3,所以有2≤x <3. 当x <2时,不等式化为4-2x <5-x ,得x >-1,所以有-1<x <2,故A =(-1,3).x +2x 2-3x +2≥1⇔x +2x 2-3x +2-1≥0⇔-x 2+4x x 2-3x +2≥0⇔x (x -4)(x -1)(x -2)≤0⇔0≤x <1或2<x ≤4, 即B =[0,1)∪(2,4].若同时满足①②的x 值也满足③,则有A ∩B ⊆C .设f (x )=2x 2+mx -1,则由于A ∩B =[0,1)∪(2,3),故结合二次函数的图像,得⎩⎪⎨⎪⎧ f (0)<0,f (3)≤0⇒⎩⎪⎨⎪⎧-1<0,18+3m -1≤0⇒m ≤-173.。

2021届人教a版(文科数学) 集合与常用逻辑用语 单元测试

2021届人教a版(文科数学)   集合与常用逻辑用语    单元测试

2021届人教A 版(文科数学) 集合与常用逻辑用语 单元测试1、设集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},其中a∈R,下列说法正确的是( )A .对任意a ,P1是P2的子集B .对任意a ,P1不是P2的子集C .存在a ,使得P1不是P2的子集D .存在a ,使得P2是P1的子集2、下列所给关系不正确的是 ( )*|4|.0.3..N D N C Q B R A ∉-∈∉∈π3、已知命题p:(0,),32x x x ∀∈+∞>;命题q:(,0),32x x x ∃∈-∞>,则下列命题为真命题的是( ) A .p q ∧ B .()p q ∧⌝ C .()p q ⌝∧ D .()()p q ⌝∧⌝4、“x >y ”是的“lgx lgy >”的( )A .充分但不必要条件B .必要但不充分条件C .充分条件D .即不充分也不必要条件5、已知实数,a b ,则“a b <”是“ln ln a b <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6、若集合,,则=( ) A.(1,3) B. C.(-1,3) D.(-3,1)7、已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =( )A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞ 8、已知集合1|{2-=x x M ≤0},11|{-+=x x x N ≤0},则下列关系中正确的是 A.M=N B.M ⊂≠ N C.M ⊃≠ND.M∩N=φ 9、设,集合,则( )。

A . 1B .C . 2D .10、已知集合2{320}A x x x =-+= ,{06,}B x x x N =<<∈则满足条件A C B ⊆⊆的集合C 的个数为( )A .4B .5C .8D .711、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )A .A ⊂≠B B .B ⊂≠AC .A=BD .A ∩B=∅12、若集合{}0122=++∈=x ax R x A 中只有一个元素,则实数a 的值为 ( )A .0或1B .0C .1D .0或1-13、已知全集R U =,集合{}0322>--=x x x A ,则=A C U .14、命题P :直线2y x =与直线20x y +=垂直;命题Q :异面直线在同一个平面上的射影可能为两条平行直线,则命题P Q ∧为 命题(填真或假).15、设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号为__________(写出所有真命题的序号).16、①命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x≠1”.②“x=-1”是“x 2-5x -6=0”的必要不充分条件.③命题“?x∈R,使得x 2+x +1<0”的否定是:“?x∈R, 均有x 2+x +1<0”. ④命题“若x =y ,则sin x =sin y”的逆否命题为真命题.上述有关命题的说法正确的是17、已知A ={a -1,2a2+5a +1,a2+1},且-2∈A,求a 的值.18、分别写出由下列各组命题构成的“p ∨q ”“p ∧q ”“⌝p ”形式的复合命题,并判断它们的真假.(1)p :平行四边形的对角线相等;q :平行四边形的对角线互相平分;(2)p :方程x 2-16=0的两根的符号不同;q :方程x 2-16=0的两根的绝对值相等.19、已知集合A ={a -2,2a 2+5a,12},且-3∈A,求a.20、(1)已知命题p :关于x 的方程042=+-ax x 有实根;命题q :关于x 的函数422++=ax x y 在),3[+∞上是增函数,若“p 或q ”是真命题,“p 且q ”是假命题,求实数a 的取值范围;(2)已知命题p :1)34(2≤-x ;命题q :0)1()12(2≤+++-a a x a x ,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.21、已知,},51|{}32|{φ=⋂>-<=+≤≤=B A x x x B a x a x A 若或,求a 的取值范围。

高考数学分类练习 A单元 集合与常用逻辑用语(文科)含答案1

高考数学分类练习  A单元 集合与常用逻辑用语(文科)含答案1

数学A单元集合与常用逻辑用语A1 集合及其运算2.A1设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=( ) A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}2.B 由∁U B={1,5,6}得A∩(∁U B)={1}.1.A1若集合M={-1,1},N={-2,1,0},则M∩N=( )A.{0,-1} B.{0}C.{1} D.{-1,1}1.C M∩N={1},故选C.10.A1已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A B中元素的个数为( )A.77 B.49C.45 D.3010.C 集合A表示如图所示的所有“”点,集合B表示如图所示的所有“”点+所有“”点,集合A B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点(-3,-3),(-3,3),(3,-3),(3,3)之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B表示如图所示的所有“”点+所有“”点+所有“”点,共45个.故A B中元素的个数为45.故选C.1.A1已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.21.D 集合A={2,5,8,11,14,17,…},所以A∩B={8,14},所以A∩B中有2个元素.1.A1已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)1.A 根据并集的概念可知A∪B={x|-1<x<2}∪{x|0<x<3}={x|-1<x<3}=(-1,3),选A.1.A1·北京卷若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=( )A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}1.A A∩B={x|-5<x<2}∩{x|-3<x<3}={x|-3<x<2},故选A.2.A1若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于( )A.{0} B.{1}C.{0,1,2} D.{0,1}2.D 根据交集的概念得M∩N={0,1}.11.A1已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.11.{1,2,3} ∁U B={2},故A∪(∁U B)={1,3}∪{2}={1,2,3}.1.A1已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=( )A.(1,3) B.(1,4)C.(2,3) D.(2,4)1.C ∵B={x|1<x<3},∴A∩B=(2,3).1.A1设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A. B.(0,1]C.1.A 由题得集合M={0,1},N=(0,1],所以M∪N=.1.A1·四川卷设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}1.A 集合A=(-1,2),B=(1,3),故A∪B=(-1,3).1.A1已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁U B)=( )A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}1.B ∁U B={2,5},A∩(∁U B)={2,3,5}∩{2,5}={2,5},故选B.1.A1·浙江卷已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=( )A.C.(-1,2) D.(-1,3]1.A 不等式x2-2x≥3,即x2-2x-3≥0,即(x+1)(x-3)≥0,解得x≤-1或x≥3,即P=(-∞,-1]∪已知集合A={1,2,3},B={1,3},则A∩B=( ) A.{2} B.{1,2}C.{1,3} D.{1,2,3}1.C 由集合交集的定义,得A∩B={1,3}.1.A1已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.1.5 因为A∪B={1,2,3,4,5},所以A∪B中元素的个数为5.A2 命题及其关系、充分条件、必要条件3.A2设p:x<3,q:-1<x<3,则p是q成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D .既不充分也不必要条件3.C 因为(-1,3)是(-∞,3)的真子集,所以q ⇒p ,但p ⇒/ q ,因此p 是q 的必要不充分条件.5.A2、G3 l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件5.A 由l 1,l 2是异面直线,可得l 1,l 2不相交,所以p ⇒q ;由l 1,l 2不相交,可得l 1,l 2是异面直线或l 1∥l 2,所以q ⇒/ p .所以p 是q 的充分条件,但不是q 的必要条件.故选A.6.A2,F3 设a ,b 是非零向量.“a·b =|a||b|”是“a∥b”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.A 根据数量积的定义,a ·b =||a ·||b cos θ,由a ·b =||a ·||b 可得cos θ=1,根据向量所成角的范围得到θ=0,所以a ∥b ;若a ∥b ,可得向量a 与向量b 共线,即所成的角为0或π,所以a ·b =±||a ·||b ,故选A.12.A2、E1 “对任意x ∈0,π2,k sin x cos x <x ”是“k <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.B 当x ∈0,π2时,k sin x cos x <x ⇔k <x sin x cos x =2x sin 2x,令t =2x ∈(0,π),则y =2x sin 2x =t sin t>1,所以k ≤1,故选B. 3.A2 设x ∈R ,则“x >1”是“x 3>1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.C ∵x>1,∴x3>1,由x3-1>0得(x-1)(x2+x+1)>0,解得x>1,∴“x>1”是“x3>1”的充要条件,选C.5.A2设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( ) A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤05.D ∵逆否命题是将原命题的条件与结论互换并分别否定,∴命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.图1­16.A2“sin α=cos α”是“cos 2α=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.A sin α=cos α时,cos 2α=cos2α-sin2α=0,反之,sin α=±cos α,即“sin α=cos α”是“cos 2α=0”的充分不必要条件.4.A2、B7设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.A 当a>b>1时,log2a>log2b>0成立;反之也正确.故选A.4.A2、E2设x∈R,则“1<x<2”是“|x-2|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.A 由|x-2|<1,解得1<x<3.若1<x<2,则1<x<3,反之不成立,所以“1<x<2”是“|x-2|<1”成立的充分不必要条件.3.A2设a,b是实数,则“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.D 当a=-2,b=3时,a+b>0,而ab<0;当a=-2,b=-3时,ab>0,而a+b<0.故“a+b>0”是“ab>0”的既不充分也不必要条件.2.A2“x=1”是“x2-2x+1=0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件2.A 由x2-2x+1=0,解得x=1,所以“x=1”是“x2-2x+1=0”的充要条件,故选A.A3 基本逻辑联结词及量词3.A3命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是( )A.∃x0∈(0,+∞),ln x0≠x0-1B.∃x0∉(0,+∞),ln x0=x0-1C.∀x∈(0,+∞),ln x≠x-1D.∀x∉(0,+∞),ln x=x-13.C 特称命题的否定是全称命题,且注意否定结论,故原命题的否定是“∀x∈(0,+∞),ln x≠x-1”.故选C.A4 单元综合4.下列说法正确的是( )A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题为真命题D.命题“∃x0∈R,x20+x0+1<0”的否定是“∀x∈R,x2+x+1<0”4.C 命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,所以选项A不正确.由x =-1,能够得到x 2-5x -6=0,反之,由x 2-5x -6=0,得到x =-1或x =6,所以“x =-1”是“x 2-5x -6=0”的充分不必要条件,所以选项B 不正确.命题“若x =y ,则sin x =sin y ”为真命题,所以其逆否命题也为真命题,所以选项C 正确.命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,所以选项D 不正确.6. “x <0”是“ln(x +1)<0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.B ∵x <0,∴x +1<1,∴当x +1>0时,ln(x +1)<0;∵ln(x +1)<0,∴0<x +1<1,∴-1<x <0,∴x <0,∴“x <0”是“ln(x +1)<0”的必要不充分条件.9. 若a =2x ,b =log 12x ,则“a >b ”是“x >1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.B 如图所示,当x =x 0时,a =b .若a >b ,则得到x >x 0,且x 0<1,∴由a >b 不一定得到x >1, ∴“a >b ”不是“x >1”的充分条件;若x >1,则由图像得到a >b ,∴“a >b ”是“x >1”的必要条件.故“a >b ”是“x >1”的必要不充分条件.13. 给出下列说法:①“若p ,则q ”的否命题是“若綈 p ,则綈 q ”;②“∀x >2,x 2-2x >0”的否定是“∃x 0≤2,x 20-2x 0≤0”;③“p ∧q 是真命题”是“p ∨q 是真命题”的充分不必要条件;④若“b =0,则函数f (x )=ax 2+bx +c 是偶函数”的逆命题是真命题.其中,错误说法的序号是________.13.②根据命题与否命题的关系知①正确;“∀x>2,x2-2x>0”的否定是“∃x0>2,x20-2x0≤0”,②错误;若“p∧q”是真命题,则p,q均为真命题,所以“p∨q”是真命题,反之,若“p∨q”是真命题,则p,q可能是一真一假或都为真,则“p∧q”不一定是真命题,所以③正确;若f(x)=ax2+bx+c为偶函数,则f(x)=f(-x),解得b=0,所以④正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A . p 或 q B. ?p 或 q C. p 且 q D. p 且?q 5.在厶 ABC 中,“ AB AC = BA BC”是“ |AC|= |BC|"的(A)

6.下列结论错误的是(D ) 与命题“若?q,则?p”互为逆否命题 ,ex> 1,命题 q : ? x € R , x2+ x + 1<0 ,贝U p V q 为真

B为A的一个“保均值子集”.据此,集合1, 2 , 3, 4, 5的“保均值子集”有

《集合与常用逻辑用语》单元测试题(文科) 、选择题(本大题共10个小题,每小题 5分,共50分,在每小题给出的四个选项中,只 有一项是符号题目要求的。

) 1.已知全集 U = R,集合 A = {x|x= 2n, n € N}与 B = {x|x= 2n , n € N}, 则

正确表示集合 A、B关系的韦恩(Venn)图是(A ) 2.已知集合 M = {y|y= x2+ 1, x€ R}, N = {y|y= x + 1, x€ R},则

M n N等于(D ) A . (0,1), (1,2) B . {(0,1), (1,2)} C . {y|y= 1 或 y = 2} D . 2x + 1 3•若集合 A = {x||2x — 1|<3} , B = {x| <0},则 A U B 是(C ) 3 — x 1 、

A . {x|— 1

4.设a、3是两个不同的平面, 则 I// m ;命题 q: l // a, m± l,

{y|y> 1} 1 B . {x|23}D . {x|— 2

l、m为两条不同的直线,命题 p:若a// B, I? a, m? 3

m? 3,则a丄3.则下列命题为真命题的是 (B )

A .充要条件B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件

若pV q为假命题, "若 am2则p、q均为假命题

a7. "若 xz a 且 xz b

,

则x2— (a+ b)x + ab丰0”的否命题是(D

若 x= a 且 x= b, 则 x2— (a + b)x+ ab= 0.B.若 x = a 或 x = b, 则 x

2

— (a + b)x + abz 0.

x = a 或 x = b, 则 x2— (a+ b)x+ ab= 0.

& 命题p: ? x € [0, + s ), (log32)x< 1,则(B

A. p是假命题, ?p: ? x°€ [0,+^ ), (log32)x0>1

B. p是真命题, ?p: ? X0€ [0 ,+^ ), (log32)x0>1

C. p是假命题, ?p: ? x € [0 ,+^ ), (log 32)x > 1

D. p是真命题, ?p: ? x € [0 ,+^ ), (log 32)x > 1

9 . 非空数集 A

a1 , a2 , a3 , L , ar > (n N*

)中

则 x2— (a + b)x+ abz 0.D .若 若 x= a 且 x= b, C

. )

a1 a

n

,所有元素的算术平均数记为E( A),即

E(A) a2 a3 L n .若非空数集B满足下列两个条件:①B A;②E(B) E(A),则称

A .命题“若p,则q” B .命题 p: ? x € [0,1]

A. 5个 B. 6个 C. 7个 D. 8个 10记实数X!,X2,…Xn中的最大数为 max{x「X2,…x*},最小数为 min {xz,…Xn}.已知 ABC的三边边长为a、b、c ( a b c),定义它的倾斜度为

t max{^,-,-}?min{^,-,-}, b c a b c a

B B.必要而不充分的条件 D.既不充分也不必要的条件 5分,共35分,把正确答案填在题中横线上 )

11. 已知命题甲:a+ _______________________________________ 4,命题乙:1且b丰3,则命题甲是命题乙的 ________________________________________________ 条件. 既

不充分也不必要 12. 已知全集 U = A U B中有 m个元素,(?uA)U (?U B)中有n个元素.若 A n B非空,则 A n B 的元素个

数为 m — n —1 13. 已知集合 A满足条件:当p€ A时,总有 € A(pz 0且p丰一1),已知2€ A,则集 p + 1

合A中所有元素的积等于___1 14. _______________________________________________________________ 函数f(x)= log ax— x+ 2(a>0且a* 1)有且仅有两个零点的充要条件是 ________________________ a>1 _____ .

15. 设函数 f(x) = x2

— 2x + m.

(1) 若?X € [0,3],f(x)> 0恒成立, m的取值范围 _______ m_ > 1 _______ ; (2) 若?X € [0,3],f(x)> 0 成立, m 的取值范围 ______ m > -3 ________________ .

X一 1 16. 设 A = <0},B = {x||x— b|

取值范围是 —(—2,2) ______ . x2 y 17. 方程 —+ 丄 =1表示曲线C,给出以下命题: 4— t t— 1

①曲线C不可能为圆;②若 1③ 若曲线C为双曲线,贝U t<1或t>4;

④ 若曲线C为焦点在x轴上的椭圆,贝y 1其中真命题的序号是 — ③④—(写出所有正确命题的序号) 三、解答题(本大题共5个小题,共65分,解答应写出文字说明,证明过程或演算步骤 ) 18. (本小题满分12分)求方程ax2 + 2x + 1 = 0有且只有一个负实数根的充要条件.

解:方程ax2 + 2x + 1= 0有且仅有一负根.

当a= 0时,x=— 丁适合条件. 当a* 0时,方程ax2 + 2x + 1 = 0有实根,

则△= 4 — 4a》0,・°・ aw 1, 当a= 1时,方程有一负根 x =— 1. 当a<1时,若方程有且仅有一负根,则 1<0 ,••• a<0.

a

则“ t=1 ”是“ ABC为等边三解形”的 A.充分布不必要的条件 C充要条件 二、填空题(本大题共7个小题,每小题 综上,方程ax2 + 2x + 1 = 0有且仅有一负实数根的充要条件为 aw 0或a= 1. 19. (本小题满分12分)已知函数f(x)是R上的增函数,a、b€ R,对命题“若a+ b>0,则 f(a)+

f(b) >f( — a)+ f( — b).”

(1) 写出其逆命题,判断其真假,并证明你的结论; (2) 写出其逆否命题,判断其真假,并证明你的结论. [解析] ⑴逆命题是:若f(a) + f(b) >f( — a) + f( — b),贝U a+ b> 0,真命题. 用反证法证明:设 a+ b<0,则a< — b, b<— a, v f(x)是 R上的增函数, ••• f(a)f(a) + f(b)⑵逆否命题:若f(a) + f(b)

由于互为逆否命题同真假,故只需证原命题为真. v a+ b》0,• a》—b, b》—a,又v f (x)在R上是增函数,

• f(a)》f(— b), f(b)》f(— a).「. f(a) + f(b)》f( — a) + f(— b),「.原命题真,故逆否命题为真. 20. (本小题满分 13分)已知集合 A = {x|x2— 2x— 3<0, x€ R}, B = {x|x2— 2mx + m2— 4< 0, x

€ R , m € R}. (1)若A n B = [0,3],求实数 m的值; ⑵若A?? RB,求实数m的取值范围. [解析] A= {x|— 1 w xw 3} B = {x|m — 2< x< m+ 2}. m — 2= 0 m = 2 , ,…m = 2

m + 2》3 m》1

(2)?RB = {x|xm+ 2}A?? RB ,• m — 2>3 或 m+ 2< — 1.

• m>5或m<— 3.因此实数 m的取值范围是 m>5或m<— 3. 21(本小题满分14分).已知命题p :指数函数f(x)= (2a— 6)x在R上单调递减,命题 q:关于x的 方程x2 — 3ax + 2a2+ 1 = 0的两个实根均大于 3若p且q为假,求实数 a的取值范围.

解:若p真,贝U f(x)= (2a— 6)x在R上单调递减,

0<2a — 6<1 , 3< a<— 5 2

A= (— 3a)2— 4(2a2 + 1)》0

f(3) = 9— 9a+ 2a2 + 1>0 a》2或a w — 2

又由题意应有p假或q假 若p假则a 3或a》—,若q假,则a 故a的取值范围是{a|aw 3或a》—}.

(1) v A n B= [0,3], 若q真,令f(x) = x2— 3ax + 2a2 + 1,则应满足

—3a

>3

a>2 a<2或a>5 ,故 a>5,

相关文档
最新文档