气浮池
气浮池工作原理

气浮池工作原理
气浮池(Air flotation tank)是一种常见的污水处理设备,其工作原理主要是利用气体的浮力和液体的净化作用,从而实现对悬浮物、油脂等固体和液体污染物的分离。
首先,将需要处理的废水通过泵引入气浮池。
在池内,注入适量的气体(通常是空气),气体通过底部的喷嘴或均质器进入污水中形成微细气泡。
这些气泡被均匀地分布在污水中并随即上升。
当气泡上升到污水中的污染物颗粒或油脂时,由于气泡的浮力作用,它们会附着在气泡表面,形成气泡floc。
这些气泡floc
会随着气泡一同上升,浮到液面上。
在气浮池中设置一个斜板,它可以将浮在液面上的气泡floc
引导到池的另一侧。
此外,还可以设置刮板来收集池内的浮渣,进一步提高净化效果。
到达液面上方的气泡floc在液面上形成泡沫层。
泡沫层会被
集中引流或排除,泡沫中的气泡floc也会被随之去除。
最后,经过气浮池处理后的水会从中间或底部的出水口排出,经过后续的处理才能达到相应的排放标准。
总的来说,气浮池通过将气泡floc与废水中的悬浮物、油脂
等污染物结合起来,利用气泡浮力的原理,使这些污染物升到
液面上,然后通过一系列的分离和去除步骤,从而实现对废水的净化处理。
污水气浮处理方法及污水处理气浮池

污水气浮处理方法及污水处理气浮池一、引言污水处理是保护环境、维护人类健康的重要工作。
在污水处理过程中,气浮技术被广泛应用于去除悬浮物、油脂和其他污染物。
本文将介绍污水气浮处理方法及污水处理气浮池的标准格式。
二、污水气浮处理方法1. 工艺原理污水气浮处理是通过将气体注入污水中,形成弱小气泡,使悬浮物、油脂等污染物附着在气泡上升过程中,从而实现污染物的分离和去除。
该方法适合于处理高浓度的悬浮物和油脂。
2. 设备组成污水气浮处理系统主要由气浮池、气浮设备和污泥处理设备组成。
其中,气浮池是实现气浮处理的关键设备,其结构包括进水口、出水口、气体注入装置和泡沫刮除装置等。
3. 工艺流程污水气浮处理的工艺流程如下:(1)进水预处理:对污水进行初步的预处理,去除大颗粒的悬浮物和沉淀物。
(2)气浮处理:将经过预处理的污水进入气浮池,通过气体注入装置注入气体,形成弱小气泡,使污染物附着在气泡上升过程中。
(3)泡沫刮除:利用泡沫刮除装置将带有污染物的泡沫从气浮池表面刮除。
(4)出水处理:将经过气浮处理后的水通过出水口排放或者进一步进行后续处理。
三、污水处理气浮池的标准格式1. 设计要求污水处理气浮池的设计应符合以下要求:(1)污水处理量:根据实际需求确定处理量,确保气浮池能够满足处理要求。
(2)气浮效果:气浮池应具备良好的气浮效果,能够有效去除污染物。
(3)结构合理:气浮池的结构应合理,易于维护和清洁。
(4)操作稳定:气浮池的操作应稳定可靠,能够适应不同负荷和水质变化。
2. 设计参数污水处理气浮池的设计参数包括:(1)气浮池尺寸:根据处理量和污水特性确定气浮池的尺寸,包括长度、宽度和深度。
(2)气泡尺寸:根据污水特性和处理要求确定气泡的尺寸,通常在20-100微米之间。
(3)气体注入量:根据处理量温和泡尺寸确定气体注入量,通常在0.1-0.5m³/m³之间。
(4)泡沫刮除速度:根据气泡上升速度和泡沫刮除效果确定泡沫刮除速度,通常在1-3 m/min之间。
气浮池

气浮设备1.气浮原理把空气通入被处理的水中,并使之以微小气泡形式析出而成为载体,从而使絮凝体黏附在载体气泡上,并随之浮升到水面,形成泡沫浮渣(气、水、颗粒三相混合体)从水中分离出去。
2.工艺设计气浮处理主要工艺类型及其适用条件污水处理常见气浮工艺特点及适用条件气浮装置设计的一般规定气浮池应设溶气水接触室完成溶气水与原水的接触反应。
气浮池应设水位控制室,并有调节阀门(或水位控制器)调节水位,防止出水带泥或浮渣层太厚。
穿孔集水管一般布置在分离室离池底20~40cm处,管内流速为~s。
孔眼以向下与垂线成45°,交错排列,孔距为20~30cm,孔眼直径为10~20mm。
周期视浮渣量而定,周期不宜过短,一般为~2h。
浮渣含水率在95%~97%左右,渣厚控制在10cm左右。
渣宜采用机械方法刮除。
刮渣机的行车速度宜控制在5m/min以内。
刮渣方向应与水流流向相反,使可能下落的浮渣落在接触室。
工艺设计时应考虑水温的影响。
电解气浮工艺设计电解气浮工艺设计要点1)电解气浮采用正负相间的多组电极,通以稳定或脉冲电流,通电方式可为串连或并联。
2)电解气浮可用惰性电极或可溶性电极,产生的效应与产物有所不同。
3)电解气浮采用惰性电极如钛板、钛镀钌板、石墨板等电极,产生氢、氧或氯等细微气泡;当采用可溶性铁板、铝板作为电极时,也称为电絮凝气浮,其产物是Fe3+、Al3+及氢气泡等,此时产泥量较大。
4)电解气浮装置形式分竖流式及平流式,竖流式主要应用于较小水量的处理。
5)电解气浮池的结构包括整流栅、电极组、分离室、刮渣机、集水孔、水位调节器等。
6)电解气浮主要用于小水量工业废水处理,对含盐量大、电导率高、含有毒有害污染物废水的处理具有优势。
7)铁阳极电絮凝气浮用于含Cr(Ⅵ)废水处理时,Cr(Ⅵ)浓度不宜大于100mg/L。
8)电解气浮用于含氰废水的处理时宜采用石墨惰性电极。
解气浮设计参数1)极板厚度6~10mm(可溶性阳极根据需要可加厚),极板净间距15~20mm;2)电流密度一般应小于150~200A/m2。
污水气浮处理方法及污水处理气浮池

污水气浮处理方法及污水处理气浮池一、引言随着工业化和城市化的快速发展,污水处理成为一个日益重要的环境问题。
污水气浮处理方法及污水处理气浮池是一种常用的污水处理技术,能够有效地去除水中的悬浮物和油脂,提高水质。
二、污水气浮处理方法1. 原理污水气浮处理方法是利用气泡的浮力将污水中的悬浮物和油脂从水中分离出来。
通过向污水中注入气体(通常是空气或二氧化碳),产生大量微小气泡,气泡与悬浮物和油脂颗粒结合形成浮泡,使其上浮到水面上,然后通过刮泥器或其他设备将浮泡去除,从而实现污水的净化。
2. 设备(1)气浮池:气浮池是污水气浮处理的主要设备。
其结构通常包括进水口、排水口、溢流口、气体注入装置和浮泡去除装置等。
气浮池的设计应根据处理规模和水质要求进行选择,以确保处理效果。
(2)气体注入装置:气体注入装置通常由气体供应系统、气体分配系统和气泡发生器组成。
气体供应系统提供气体,气体分配系统将气体均匀分配到气泡发生器中,气泡发生器产生微小气泡。
(3)浮泡去除装置:浮泡去除装置用于去除气浮池中的浮泡。
常见的浮泡去除装置有刮泥器、旋流器和溢流槽等。
刮泥器通过刮板将浮泡推向污泥槽,旋流器通过旋转产生离心力将浮泡推向污泥槽,溢流槽通过溢流将浮泡排出。
3. 操作步骤(1)调节进水流量和水质:根据实际情况调节进水流量和水质,确保气浮池的处理效果。
(2)注入气体:根据气浮池的大小和处理要求,注入适量的气体,通常是空气或二氧化碳。
(3)形成浮泡:通过气泡发生器产生微小气泡,并与悬浮物和油脂颗粒结合形成浮泡。
(4)浮泡去除:通过刮泥器、旋流器或溢流槽等装置将浮泡去除,从而实现污水的净化。
三、污水处理气浮池1. 作用污水处理气浮池是污水处理系统中的关键设备,主要用于去除水中的悬浮物和油脂,提高水质,减少后续处理工艺的负担。
2. 结构(1)进水口:用于将待处理的污水引入气浮池。
(2)排水口:用于排出经过气浮处理后的净化水。
(3)溢流口:用于控制气浮池内的水位,防止溢出。
气浮池原理

气浮池原理
气浮池是一种常用的水处理设备,它通过气体的注入和水中悬浮物质的升浮来实现固液分离的目的。
气浮池原理主要包括气体注入、气泡与悬浮物质的接触、气泡升浮以及分离等几个方面。
首先,气浮池的原理是利用气体注入水中,通过气泡的形成和上升,将水中的悬浮物质带到水面上。
气泡的形成是通过气体在水中的溶解和释放来实现的,通常是通过压缩空气或其他气体将气体注入水中,形成微小气泡。
其次,气泡与悬浮物质的接触是气浮池原理中非常重要的一环。
气泡在上升的过程中会与水中的悬浮物质发生接触,悬浮物质会附着在气泡表面,使得气泡变得更大,从而提高气泡的浮力,加速悬浮物质的升浮速度。
随后,气泡升浮是气浮池原理中的关键环节。
通过气泡的升浮作用,悬浮在水中的固体颗粒或油脂等杂质被带到水面上,形成浮渣。
这样一来,水中的悬浮物质就得到了有效地去除,从而实现了固液分离的目的。
最后,分离是气浮池原理的最终环节。
在气泡升浮的过程中,悬浮物质被带到水面上形成浮渣,而清水则从底部流出,经过这样的处理,水中的悬浮物质得到有效去除,从而实现了水的净化和处理。
总的来说,气浮池原理通过气体注入、气泡与悬浮物质的接触、气泡升浮以及分离等环节,实现了水中悬浮物质的有效去除和固液分离。
这种原理简单、高效,被广泛应用于污水处理、工业废水处理、饮用水净化等领域,为水质的改善和保护做出了重要贡献。
气 浮 池

1-加压泵 2-压力溶气罐 3-减压阀 4-溶气释放器 5-分离区 6-刮渣机 空气释放设备 7-水位调节器 8-压力表 9-放气阀 10-排水区 11-浮渣室
部分废水溶气气浮法 它是将部分废水进行加压溶气,其余废水直接进入气浮池,装置如下图 所示。
1-加压泵 2-压力溶气罐 3-减压阀 4-分离区 5-刮渣机 6-水位调节器 7-压力表 8-放气阀
缺点
运行成本高 管理复杂 微孔易堵塞 气泡较大 气泡较大 汽蚀
法分 散 空 气 气 浮
微孔曝气气浮 法 剪切气泡气浮 法
法 溶 真空气浮法 解 空 气 气 加压溶气气浮 浮 法
能耗低 气泡微小 形成气泡小 处理效果好
气泡释放量有限 设备维护困难
三、加压溶气气浮法
• 使空气在加压的情况下溶入水中,然后通 过将压力降低至常压使溶解空气以细微气 泡的形式释放出来
气 浮
• 气浮定义 • 气浮法的分类 • 加压溶气气浮法
一、气浮定义
• 气浮法是一种有效的固-液和液-液分离方法, 常用于对那些颗粒密度接近或小于水的细 小颗粒的分离。 • 具体过程:通入空气→产生微细气泡→SS 附着在气泡上→上浮
二、气浮法的分类
优点
电解气浮法 产生的气泡小 占地少 无噪音 设备简单易行
加压溶气气浮法根据溶气水的来源或数量的差异
全加压溶气气浮法
部分加压溶气气浮法
部分回流加压溶气气浮法
全加压溶气气浮法
其装置如下图所示,系统组成包括空气饱和设备、空气释放设备、气浮 将全部废水进行加压溶气,再经减压释放装置进入气浮池,进行气浮分离。 池、除渣设备等。
空气 饱和 设备
加压水泵供水和空气压缩机供 除渣设备 气到溶气罐,两者充分混合接 触,空气在压力下溶入水中。 气浮池
气浮池工作原理

气浮池工作原理
气浮池是一种常用的水处理设备,它通过利用气体将悬浮物从
水中分离出来,是一种高效的污水处理方法。
气浮池工作原理主要
包括气体溶解、气泡生成、气泡附着、气泡浮升和污泥除去等步骤。
首先,气浮池工作原理的第一步是气体溶解。
在气浮池中,通
常会通过气体喷嘴将空气或其他气体注入水中。
这些气体在水中溶解,形成微小气泡。
这些微小气泡是气浮池能够有效去除悬浮物的
关键。
接着,气浮池工作原理的第二步是气泡生成。
通过气体喷嘴注
入水中的气体会在水中形成微小气泡。
这些微小气泡的生成是气浮
池能够有效去除悬浮物的前提。
然后,气浮池工作原理的第三步是气泡附着。
生成的微小气泡
会在水中附着在悬浮物的表面。
这些气泡与悬浮物形成气囊,使悬
浮物的比重减小,从而使其浮起。
其次,气浮池工作原理的第四步是气泡浮升。
附着在悬浮物表
面的气泡会随着上升的水一起浮升到水面,携带着悬浮物一起浮到
水面。
最后,气浮池工作原理的最后一步是污泥除去。
当悬浮物浮到水面时,形成浮渣,通过刮渣装置将浮渣集中到一处,然后通过刮渣机将浮渣刮走,从而实现悬浮物的去除。
总的来说,气浮池工作原理是通过气体溶解、气泡生成、气泡附着、气泡浮升和污泥除去等步骤,将悬浮物从水中分离出来。
这种工作原理使得气浮池成为一种高效的污水处理设备,被广泛应用于各种工业和生活污水的处理中。
污水气浮处理方法及污水处理气浮池

污水气浮处理方法及污水处理气浮池一、引言污水处理是保护环境和人类健康的重要工作,而气浮处理方法是其中一种常用的技术。
本文将详细介绍污水气浮处理方法及污水处理气浮池的标准格式。
二、污水气浮处理方法1. 原理污水气浮处理方法是利用气体的浮力将污水中的悬浮物质从水中分离出来。
通过将气体注入到污水中,形成气泡,使悬浮物质附着在气泡上升的过程中被分离出来。
2. 设备(1)气浮池:气浮池是污水气浮处理方法中的关键设备,通常由池体、进水口、出水口、气体注入装置等组成。
(2)气体注入装置:气体注入装置用于向气浮池中注入气体,常见的气体有空气、氮气等。
(3)混合器:混合器用于将气体均匀地分散到污水中,以便形成气泡。
3. 操作步骤(1)将污水通过进水口引入气浮池。
(2)打开气体注入装置,将气体注入污水中。
(3)启动混合器,使气体均匀地分散到污水中,形成气泡。
(4)随着气泡上升,悬浮物质被带到污水表面,并形成浮渣。
(5)浮渣通过污水处理设备进行进一步处理,而清水则从出水口排出。
三、污水处理气浮池1. 设计要求(1)污水处理气浮池的设计应满足处理效率高、处理能力大、操作稳定等要求。
(2)污水处理气浮池的设计应考虑到污水的水质、流量、水温等因素。
(3)污水处理气浮池的设计应符合相关的环保法规和标准。
2. 结构设计(1)池体:污水处理气浮池的池体通常采用耐腐蚀材料制成,如玻璃钢、不锈钢等。
池体应具有足够的强度和刚度,以承受污水的压力和重量。
(2)进水口:进水口应设计合理,以保证污水均匀地进入气浮池。
(3)出水口:出水口应位于污水的最低点,以保证清水能够顺利排出。
(4)气体注入装置:气体注入装置应设计合理,以保证气体能够均匀地注入污水中。
(5)控制系统:污水处理气浮池应配备相应的控制系统,以实现自动化控制和监测。
3. 污水处理效果评价(1)悬浮物去除率:通过对进水和出水样品的悬浮物浓度进行测试,计算悬浮物去除率,一般要求达到90%以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环保设备设计与应用课程设计学院:环境与化学工程学院专业班级:环境工程07级(01)班学生姓名:姚婧婧学号: 40704040131 授课教师:王理明目录第一章设计任务书 (3)1.1 设计题目 (3)1.2 设计资料 (3)1.3 设计内容 (3)1.4设计成果 (3)第二章设计说明与计算书 (4)2.1 设计原理及方案选择 (4)2.1.1设计原理 (4)2.1.2方案选择 (6)2.2设计工艺计算 (7)2.2.1供气量与空压机选型 (7)2.2.2溶气罐 (8)2.2.3气浮池 (9)2.2.4附属设备 (11)第三章参考文献 (12)第四章设计心得体会 (13)第五章附图 (13)第一章设计任务书1.1 设计题目加压溶气气浮设备的设计(平流式)1.2 设计资料某工厂污水工程拟用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用净化后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,溶气罐内停留时间为3min,分离时间为15min,溶气罐压力为0.4Mpa,气固比0.02,温度30℃。
设计水量850m3/d。
1.3 设计内容(1)确定设计方案;(2)气浮设备的设计计算;(3)系统设备选型,包括水泵、溶气释放器、溶气压力罐、空压机及刮渣机等;(4)计算书编写,计算机绘图。
1.4设计成果(1)设备工艺设计计算说明书;要求参数选择合理,条理清楚,计算准确,并附设计计算示意图;提交电子版和A4打印稿一份。
(2)气浮系统图和气浮设备结构详图(包括平面图、剖面图);要求表达准确规范;提交电子版和A3打印稿一份。
第二章设计说明与计算书2.1 设计原理及方案选择2.1.1设计原理加压气浮法是在加压情况下,将空气溶解在废水中达饱和状态,然后突然减至常压,这时溶解在水中的空气就成了过饱和状态,以极微小的气泡释放出来,乳化油和悬浮颗粒就粘附于气泡周围而随其上浮,在水面上形成泡沫层,然后由刮泡器清除,使废水得到净化。
根据废水中所含悬浮物的种类、性质、处理水净化程度和加压方式的不同,基本流程有以下三种。
1、全部废水溶气气浮法全部废水溶气气浮法是将全部废水用水泵加压,在泵前或泵后注入空气。
如图1、图2所示。
在溶气罐内空气溶解于废水中,然后通过减压阀将废水送入气浮池,废水中形成许多小气泡粘附废水中的乳化油或悬浮物而浮出水面,在水面上形成浮渣。
用刮板将浮渣连续排入浮渣槽,经浮渣管排出池外,处理后的废水通过溢流堰和出水管排出。
图1 全部的废水加压容器气浮(泵前加气)图2 全部废水加压溶气气浮(泵后加气)全流程溶气气浮法的优点是:(a)溶气量大,增加了油粒或悬浮颗粒与气泡的接触机会;(b)在处理水量相同的条件下,它较部分回流溶气气浮法所需的气浮池小,从而减少了基建投资。
但由于全部废水经过压力泵,所以增加了含油废水的乳化程度,而且所需的压力泵和溶罐均较其它两种流程大,因此投资和运转动力消耗较大。
2、部分溶气气浮法部分溶气气浮法是取部分废水加压和溶气,其余废水直接进入气浮池并在池中与溶气废水混合,如图3所示。
其特点为:(a)较全流程溶气气浮法所需的压力泵小,故动力消耗低;(b)压力泵所造成的乳化油量较全部溶气法低;(c)气浮池的大小与全部溶气法相同,但较部分回流溶气法小。
图3 部分进水加压溶气气浮法流程3、部分回流溶气气浮法部分回流溶气气浮法是取一部分除油后的出水回流进行加压和溶气,减压后直接进入气浮池,与来自絮凝池的含油废水混合后气浮,如图4所示。
回流量一般为含油废水的25%~50%。
其特点为:(a)加压的水量少,动力消耗省;(b)气浮过程中不促进乳化;(c)矾花形成好,后絮凝也少;(d)缺点是气浮池的容积较前两种流程大。
为了提高气浮的处理效果,往往向废水中加入混凝剂或浮选剂,投加量因水质不同而异,一般由试验确定。
图4 部分回流溶气气浮流程2.1.2方案选择本设计采用平流式气浮池,以下来平流式气浮池分析带气絮凝体上浮分离过程的运动状态。
带气絮粒在接触室内通过浮力、重力与水流阻力的平衡作用后,取得了向上的升速U上。
进入分离区后,又受到两个力的作用:一是水流扩散后由水平推力所产生的水平向流速U推;二是由于底部出流所产生的向下流速U下。
这两种流速的合速度大小及方向决定了带气絮凝体或是上浮去除,或是随水流挟出。
至于其中上升或下降的速度则视合成速度U合在纵轴上投影的大小。
该速度影响了气浮的处理效果。
絮凝体的大小,气泡的大小,气浮池体中水流向下的速度三者直接影响合成向上速度。
合成向上的速度越大,气浮的去除效率越高,气浮池体的就越小,整个工程造价越低。
要使上浮效果好,首先在池体中尽量降低U下。
它可用扩大底部出流面积或提高出水的均匀度实现,随着底部的均匀集流、出流,水流到池未端U平约为零,这有利于上浮力较小的带气絮凝体的分离;如要提前实现上浮去除,应尽量降低u平,这可用扩大气浮池横断面的方式来实现。
接着要处理好絮凝体的大小,通过加药混合,和絮凝反应来完成,应注意控制以下几个点,药剂的品种,投药量,药剂和污水的混合时间和混合强度,药剂的投加点,药剂和污水的反应时间和反应强度,产生的絮凝体的大小。
另外还要控制溶气系统中气泡的大小。
本设计采用空压机供气,而且采用部分回流水加压工艺,因而采用溶气效果较好的填料罐。
2.2设计工艺计算2.2.1供气量与空压机选型1.气浮所需空气量式中 Qg------气浮所需空气量,L/hQ-------气浮池设计水量,m3/hR`------实验条件下的回流比,%ac------实验条件下的释气量,L/m3------水温校正系数,取1.1~1.3 (主要考虑水的粘度影响,试验时水温与冬季水温相差大者取高值)本设计取1.2.2.加压溶气水量式中 Qp------加压溶气水量,m3/hP-------选定的溶气压力,MPaKT ----溶解度系数,可根据水温查表n-------溶气效率,对装阶梯环填料的溶气罐可查表 3. 空压机额定气量选用Z-0.036/7型空气压缩机。
2.2.2溶气罐按过流密度计算:取过流密度I=3000m3/(m2·d) 1) 溶气罐直径(内径)式中:d D ------溶气罐内径,mI--------过流密度,h m m ⋅23/,这里取填料罐L =3000h m m ⋅23/2) 溶气罐高度式中:1H --------罐顶 底封头高,m .目前多采用以内径为公称直径的椭圆形封头。
按【JB1154-73】规定,封头高度与公称直径的关系:δ++=211h h H h 1 :曲面高度 ;h 2:直边高度δ:壁厚 由d D =0.241 m查表取 h 1=25mm h 2=75mm δ=6mm则3H ---------布水区高度,取3H =0.25m 4H ----------贮水区高度,取4H =1.0m5H ---------填料层高度,当采用阶梯环时,可取1.0~1.3m 。
本次取5H =1.2m则=2.662m,符合高径比应大于2.5~4选用上海同济大学水处理技术开发中心附属工厂生产的TR -300型溶气罐,采用阶梯环填料。
2.2.3气浮池(1)气浮池用挡板分为接触室和分离室 ① 接触区容积Vc2T -------气浮池内接触时间,T 2=5 min ② 分离区容积Vss T -------分离室内停留时间,T s =15 min ③ 气浮池有效水深2h 2s s h v T =⨯ =1.35mνs------水流上升速度,取1.5~3.0mm/s ,本设计取2 mm/s ④ 分离区面积A s 和长度L 2取池宽B=1.5m ,则分离区长度⑤ 接触区面积A c 和长度L 1取池宽B=1m ,则接触区长度⑥ 浮选池进水管:Dg=200mm,v=0.9947m/s ⑦ 浮选池出水管:Dg=150mm⑧ 集水管小孔面积S 取小孔流速v 1=1m/s取小孔直径D=0.015m ,则孔数个孔数取整数,孔口向下,与水平成45°角,分二排交错排列 ⑨ 气浮池总高:1h ——保护高度,取0.3~0.4m 。
本设计中取1h =0.4m2h ——有效水深,取2m ;3h ——池底安装出水管所需高度,取0.3m 。
图1 气浮池计算草图2.2.4附属设备1.刮渣机选型气浮池宽度为1.5m ,气浮池壁厚度取400mm ,则刮渣机跨度应为 1.5+0.4=1.9m 此设计为矩形气浮池,所以采用桥式刮渣机刮渣,此类型的刮渣机适用范围一般在跨度10m 以下,集渣槽的位置在池的一端。
2. 集水装置(1)进水装置气浮池常用的进水方向为底部进水。
废水在接触室中的上升流速较小,在接触室中停留时间应大于60s 。
进水管内径:D=[4(Q max +Qp)/πu]1/2=[4×(850+137.28)/86400×π×1.5]1/2=0.46m=460mm(2)集水装置本设计中气浮池的集水装置采用 200的铸铁穿孔管。
集水管中心线距池底200mm ,相邻两管中心距为0.5m ,沿池长方向排列。
取6根。
核算中心距:2.6/6=0.43m气浮池集水管根数取6根,这每个集水管的集水量:q 0=(Q max + Qp)/6=(850+137.28)/(86400×6)=0.0019m 3/s集水孔孔口流速:取25.0,96.0==h μs m gh /13.25.08.9296.020=⨯⨯==μυ每个集水管的孔口总面积:取63.0=ε W=q 0/εv 0=0.0019/(0.63×2.13)=0.0014m 2单个孔眼面积:取d 0=21mm=0.021m则每根集水管的孔眼数:n=w/w 0=0.0014/3.5×10-4=4 取4个由于孔眼沿管长开两排,两排孔的中心线呈 45夹角。
集水管的有效长度L=2.6m ,则孔距:l 0=L/(n 0/2+1)=2.6/3 =0.87m3.溶气释放器由于本设计采用回流水加压系统,回流水SS≤10mg/L,故选用TS -78-Ⅴ型高效溶气释放器。
第三章 参考文献1. 给水排水设计手册编写组编.《给排水设计手册》(第三册),北京:中国建筑工业出版社,2002;2. 郑铭 《环保设备----原理·设计·应用》 第二版 化学工业出版社,2006;3. 《三废处理工程技术》(废水卷),化学工业出版社, 2001;4. 罗辉.《环保设备设计与应用》高等教育出版社, 1997;5. 高廷耀./顾国维.周琪.《水污染控制工程》(下册),高等教育出版社,2007。
第四章设计心得体会通过这次对气浮设备的设计,让我不仅将所学的知识应用到实际中来,而且也是对所学知识的一种巩固和提升。