气浮池设计详细资料

合集下载

平流式气浮池设计计算书

平流式气浮池设计计算书

平流式气浮池设计计算书一、设计说明气浮法也称浮选法,其原理是设法使水中产生大量的微气泡,以形成水、气、及被去除物质的三相混合体,在界面张力、气泡上升浮力和静水压力差等多种力的共同作用下,促进微细气泡粘附在被去除的微小油滴上后,因粘合体密度小于水而上浮到水面,从而使水中油粒被分离去除。

气浮法通常作为对含油污水隔油后的补充处理。

即为生化处理之前的预处理,经过气浮处理,可将含油量降到30mg/L以下,再经过生化处理,出水含有可达到10mg/L以下。

设计选用目前最常用的平流式气浮池,废水经配水井进入气浮接触区,通过导流板实现降速,稳定水流。

然后废水与来自溶气开释器释出的溶气水相混合,此时水中的絮粒和微气泡相互碰撞粘附,形成带气絮粒而上浮,并在分离区进行固液分离,浮至水面的泥渣由刮渣机刮至排渣槽排出。

净水则由穿孔集水管汇集至集水槽后出流。

部分净水经过回流水泵加压后进溶气罐,在罐内与来自空压机的压缩空气相互接触溶解,饱和溶气水从罐底通过管道输向开释器。

本设计采用加压溶气气浮法在国内外应用最为广泛。

与其他方法相比,它具有以下优点:在加压条件下,空气的溶解度大,供气浮用的气泡数目多,能够确保气浮效果;溶进的气体经骤然减压开释,产生的气泡不仅微细、粒度均匀、密集度大、而且上浮稳定,对液体扰动微小,因此特别适用于对疏松絮凝体、细小颗粒的固液分离;工艺过程及设备比较简单,便于治理、维护;特别是部分回流式,处理效果明显、稳定,并能较大地节约能耗。

二、设计任务完成一个城市污水处理中常用的典型构筑物的工艺设计,较完整地绘制该构筑物的工艺施工图纸。

构筑物——平流式气浮池(共壁合建)设计流量——Qs=100m³/h三、设计计算1.污水水质情况C o = 700㎎/L 悬浮固体浓度f= 90%空气饱和率Aa/S= 0.022 气固比Ca= 18.5ml/L 空气在水中饱和溶解度P= 4.2atm 溶气压力T1=2min 气浮池内接触时间Ts=20min 分离室内停留时间Vs=1.5 mm/s 分离室上升流速2.回流比的确定由Aa/S =Ca(f*P-1)R/ C o 得,回流比R= 30%3.气浮池计算因为设计两个气浮池并联,所以单池流量Q =100/2=50m³/h (1)接触室容积:Vc=(Q+Qp)*T2/60=(50+15)*2/60=2.17m³(2)分离室容积:Vs=(Q+Qp)*Ts/60=65*20/60=21.7m³(3)气浮池水深:H=1.5*t/1000=1.5*20*60/1000=2m(4)分离室面积和长度As=Vs/H=21.7/2=10.85m2取池宽B=2m则分离室长度L= As /B=10.85/2=5.43m为便于施工长度取5.5m,则实际分离室面积为11㎡。

气浮池——精选推荐

气浮池——精选推荐

气浮设备1.气浮原理把空气通入被处理的水中,并使之以微小气泡形式析出而成为载体,从而使絮凝体黏附在载体气泡上,并随之浮升到水面,形成泡沫浮渣(气、水、颗粒三相混合体)从水中分离出去。

2.工艺设计2.1气浮处理主要工艺类型及其适用条件2.2气浮装置设计的一般规定2.2.1 气浮池应设溶气水接触室完成溶气水与原水的接触反应。

2.2.2 气浮池应设水位控制室,并有调节阀门(或水位控制器)调节水位,防止出水带泥或浮渣层太厚。

2.2.3 穿孔集水管一般布置在分离室离池底20~40cm处,管内流速为0.5~0.7m/s。

孔眼以向下与垂线成45°,交错排列,孔距为20~30cm,孔眼直径为10~20mm。

2.2.4 周期视浮渣量而定,周期不宜过短,一般为0.5~2h。

浮渣含水率在95%~97%左右,渣厚控制在10cm左右。

2.2.5 渣宜采用机械方法刮除。

刮渣机的行车速度宜控制在5m/min以内。

刮渣方向应与水流流向相反,使可能下落的浮渣落在接触室。

2.2.6 工艺设计时应考虑水温的影响。

2.3 电解气浮工艺设计2.3.1 电解气浮工艺设计要点1)电解气浮采用正负相间的多组电极,通以稳定或脉冲电流,通电方式可为串连或并联。

2)电解气浮可用惰性电极或可溶性电极,产生的效应与产物有所不同。

3)电解气浮采用惰性电极如钛板、钛镀钌板、石墨板等电极,产生氢、氧或氯等细微气泡;当采用可溶性铁板、铝板作为电极时,也称为电絮凝气浮,其产物是Fe3+、Al3+及氢气泡等,此时产泥量较大。

4)电解气浮装置形式分竖流式及平流式,竖流式主要应用于较小水量的处理。

5)电解气浮池的结构包括整流栅、电极组、分离室、刮渣机、集水孔、水位调节器等。

6)电解气浮主要用于小水量工业废水处理,对含盐量大、电导率高、含有毒有害污染物废水的处理具有优势。

7)铁阳极电絮凝气浮用于含Cr(Ⅵ)废水处理时,Cr(Ⅵ)浓度不宜大于100mg/L。

8)电解气浮用于含氰废水的处理时宜采用石墨惰性电极。

气浮池设计书【范本模板】

气浮池设计书【范本模板】

两级气浮池大庆油田水务公司含油污水应用技术项目部目录1两级气浮池设计说明书 (1)1.1絮凝池 (1)1。

2回流比 (1)1.3接触室 (1)1.4分离室 (2)1。

5两级气浮装置的选择 (2)2。

两级气浮池设计计算书 (2)2。

1基础计算(溶气罐气浮) (2)2。

1。

1回流水量 (2)2。

1.2理论空气用量[1] (2)2.1.3设备提供气量 (3)2.1。

4接触室面积 (3)2。

1。

5分离室面积 (3)2.1。

6池水深 (3)2.1.7溶气罐直径 (4)2。

2池体及校核计算 (4)2.2。

1絮凝池 (4)2。

2。

2接触室 (4)2。

2。

3分离室 (5)2。

3 进、出水管线、排空及排渣管线和释放器设计及计算 (5)2。

3.1 进、出水管线设计 (5)2。

4释放器设计计算 (6)2。

4。

1 一级气浮的释放器 (6)2。

4.2 二级气浮的释放器 (7)2。

5 空压机及气管线设计计算 (8)2.5。

1 空压机选择 (8)2。

5.2 气管线设计 (8)2。

6池体材质 (8)3 材料表 (8)4 设备表 (10)5 图纸 (11)6参考文献 (11)1两级气浮池设计说明书已知条件:来水流量Q=1(3)m3/h,来水含油≤230mg/L,含悬浮物≤600mg/L,处理后出水含油≤110mg/L,含悬浮物≤350mg/L。

1。

1絮凝池絮凝时间对气浮池的处理效果有重要影响,给排水设计手册[1]上絮凝时间采用10—20min。

根据前期药剂筛选实验得出,处理含油废水时,其最佳絮凝时间为15min,本装置的絮凝池按此参数进行设计。

1。

2回流比回流比过低会导致无法产生足够的微气泡,从而不能有效去除石油类、悬浮物等指标;回流比过高易导致系统的能耗高,同时需选择较大的溶气罐或溶气泵,造成初期投入较大。

为达到合适的回流比,根据相关文献[3],回流比采用40%。

本设计选择50%。

1。

3接触室根据给排水设计手册[1],建议该室内水流上升速度10—20mm/s.本设计选择滤速ν=15mm/s。

气浮池的设计

气浮池的设计

第一章设计任务书1.1 设计题目加压溶气气浮设备的设计(平流式)1.2 设计资料某工厂污水工程拟用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用金花后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,溶气罐内停留时间为3min,分离时间为15min,溶气罐压力为0.4Mpa,气固比0.02,温度30℃。

设计水量780m3/d。

第二章设计说明与计算书2.1 设计原理及方案选择2.1.1设计原理气浮过程中,细微气泡首先与水中的悬浮粒子相粘附,形成整体密度小于水的“气泡——颗粒”复合体,使悬浮粒子随气泡一起浮升到水面。

由此可见,实现气浮分力必须具备以下三个基本条件:一是必须在水中产生足够数量的细微气泡;二是必须使待分离的污染物形成不溶性的固态或液态悬浮体;三是必须使气泡能够与悬浮粒子相粘附。

气浮法的净水效果,只有在获得直径微小、密度大、均匀性好的大量细微气泡的情况下,才能得到良好的气浮效果。

1)气泡直径气泡直径愈小,其分散度愈高,对水中悬浮粒子的粘附能力和粘附量也就愈大。

2)气泡密度气泡密度是指单位体积释气水中所含微气泡的个数,它决定气泡与悬浮粒子碰撞的机率。

由于气泡密度与气泡直径的3次方成反比,因此,在用气压受到限制的条件下,增大气泡密度的主要途径是缩小气泡直径。

3)气泡的均匀性气泡均匀性的含义,一是指最大气泡与最小气泡的直径差;二是指小直径气泡占气泡总量的比例。

大气泡数量的增多会造成两种不利影响:一是使气泡密度和表面积大幅度减小,气泡与悬浮粒子的粘附性能和粘附量相应降低;二是大气泡上浮时会造成剧烈的水力扰动,不仅加剧了气泡之间的兼并,而且由此产生的惯性撞击力会将已粘附的气泡撞开。

4)气泡稳定时间气泡稳定时间,是将容器水注入1000ml量筒,从满刻度起到乳白色气泡消失为止的历时。

优良的释放器释放的气泡稳定时间应在4min以上。

溶气利用率,是指能同悬浮粒子发生粘附的气泡量占溶解空气量的百分比。

气浮池设计

气浮池设计

2.1?压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备)2.1.1?溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%,因此优化溶气系统的设计对缩小气浮操作费用是很重要的。

溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷环之类,也有用空罐的。

因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流泵和空压机的参数。

在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。

这样就使得溶气罐的体积显得庞大,停留时间有时长达3~5min。

国内的研究证实了液膜阻力控制着溶气速率,认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数。

所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。

第一种是泵前进气,流程图见图3。

当空气吸入量小于空气在该温度下水中的饱和度时,由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。

这种方式省去了空压机,气水混合效果好,但水泵必须采用自引方式进水,而且要保持lm 以上的水头,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会产生气蚀现象。

??第二种是泵后进气,流程图见图4。

当空气吸入量大于空气在该温度下水中的饱和度时,空气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的25% 。

这种方法使水泵工作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气。

气浮池 计算案例

气浮池  计算案例

气浮池工艺计算案例1.气浮池适用条件(1)低浊度原水(一般常年浊度在100NTU以下);(2)含藻类及有机杂质较多的原水;(3)低温度水,包括因冬季水温较低而用沉淀、澄清处理效果不好的原水;(4)水源受到污染,色度高,溶解氧低的原水。

2.设计参数(1)设计规模:近期建设1座,建设规模为3.0万m3/d,远期再建一座气浮池规模3.0万m3/d。

近远期共用1个气浮池设备间,近期完成土建建设,远期增加配套气浮池设备。

(2)单格设计流量:近期Q=30000×1.1=1375m3/h=0.3819m3/s。

3.气浮池尺寸计算3.1.混凝区单格气浮池上浮区面积:B×L=2.8×(2.8+3.4)m=17.36m2;混凝区停留时间:/==17.36×4.05÷1375×60=3.07minT V Q3.2.絮凝区单格气浮池上浮区面积:B×L=12.4×2×1.765m=43.772m2;絮凝区停留时间:==43.772×3.95÷1375×60=7.54min(水力絮凝10~20min)。

T V Q/3.3.接触区接触区进区流速:/v Q A==(1375+200)/3600÷(0.78×12.4)=0.045m/s(0.1m/s)单格接触区面积:B×L=12.4×0.81m=10.04m2;接触区上升流速:/v Q A==0.3819÷10.04=38.04mm/s(可10~20mm/s,不低于10mm/s,一般采用20mm/s);接触区停留时间:/T V Q==10.04×3.90÷1375×60=1.7min(手册≥60s)接触区水深:3.90H vT m==(有效水深2.0~3.0m)3.4.气浮分离区单格上浮区面积:B×L=12.4×6.0m=74.4m2;气浮区上升流速(分离面积负荷):/v Q A==(1375+200)÷74.4=21.17m/h(5.4~7.2m3/m2.h);停留时间:/T V Q==74.4×3.90÷1375×60=12.66min;放空时间:放空面积=0.2×0.2=0.04m2;max0.620.043/Q m s==⨯μ放空时间为:2274.4 3.90==0.74h max0.2163600VtQ⨯⨯=⨯3.5.气浮池总尺寸(规范:一般气浮池单格宽不超过10.0m,单格长不超过15m,无严格要求)气浮池平面占地尺寸为22.0×13.2m。

最新气浮池设计42069

最新气浮池设计42069

2.1 压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备)2.1.1 溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%,因此优化溶气系统的设计对缩小气浮操作费用是很重要的。

溶气罐多为园筒形,立式布置,容积按废水停留时间25~3min计算,罐中可装设有隔板,瓷环之类,也有用空罐的。

因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流泵和空压机的参数。

在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高。

这样就使得溶气罐的体积显得庞大,停留时间有时长达3~5min。

国内的研究证实了液膜阻力控制着溶气速率,认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数。

所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。

第一种是泵前进气,流程图见图3。

当空气吸入量小于空气在该温度下水中的饱和度时,由水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐。

这种方式省去了空压机,气水混合效果好,但水泵必须采用自引方式进水,而且要保持lm 以上的水头,其最大吸气量不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会产生气蚀现象。

第二种是泵后进气,流程图见图4。

当空气吸入量大于空气在该温度下水中的饱和度时,空气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的25% 。

这种方法使水泵工作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气。

气浮池

气浮池

气浮池设计说明气浮工艺主要处理对象为疏水性悬浮物(ss )及脱稳胶粒。

选用加压溶气气浮系统,对密度小的纤维类、油类、微生物、表面活性剂的分离尤具优势。

加压容器气浮系统:依靠水泵将处理后的水加压,与加压空气一道被压入密闭的压力溶气罐,空气借助压力以及气、水接触产生的湍动溶解于水中,多余的未溶解空气则由防空阀排放。

将溶气水通向溶气释放器,溶气释放器骤然消能减压致使微小气泡稳定释放至水中,供气浮之用。

配备的其它设备:泵两台(一台备用)、空压机、压力溶气罐及相应管道 设计计算1.1主要工艺指标(1)气浮池所需空气量Q gh kg fP C Q s g /049.0100017.425.0)195.38.0(7.18164.11000)1(=⨯⨯-⨯⨯⨯=-=γ 式中:Q g --气浮池池所需空气量,kg/hγ--空气容重,g/L (20℃时为1.164g/L )C s --一定温度下,一个大气压时的空气溶解度,mL/L ·atm(20℃时为18.7mL/L ·atm)f --加压溶气系统的溶气效率,取0.8P --溶气压力,atm(2)溶气水量Q rh m K fP Q Q T g r /30009.0024.095.38.0736049.0736=⨯⨯⨯== 式中,K T --溶解度系数,20℃时为0.0241.2气浮池本体气浮池用挡板或穿孔墙分为接触室和分离室。

1.2.1接触室(1)接触室表面积A cm v Q Q A c rc 21.01536001000)251.117.4(3600=⨯⨯+=+= 式中:v c --水流平均速度,取15mm/s(2)接触室长度Lm B A L cc 5.02.01.0=== 式中:B c --接触室宽度,m(3)接触室堰上水深H 2m B H c 2.02==(4)接触室气水接触时间t cs v H H t cc 107151000)2.08.1(21=⨯-=-= 式中:H 1--气浮池分离室水深,取1.8m1.2.2分离室(1)分离室表面积A sm v Q Q A s rS 21136001000)251.117.4(3600=⨯⨯+=+= 式中:v s --分离室水流向下平均速度,取1mm/s(2)分离室长度L Sm B A L S S s 43.17.01=== 满足长宽比2:1~3:1式中:B s --分离室宽度,m(3)气浮池水深h 2m t v h S 8.110360205.12=-⨯⨯⨯==式中:t —气浮池分离室停留时间,取20min(4)气浮池容积Wm H A A W C S 298.18.1)1.01()(=⨯+=+=(5)总停留时间T 校核min 9.21251.117.498.16060=+⨯=+⨯=Q Q W T r ,符合规定 气浮池总高度H : m H h h h 4.23.08.13.0321=++=++=式中:h 1--保护高度,取0.3mh 2--有效水深h 3--池底安装出水管所需高度,取0.3m气浮池计算草图二沉池本案例水量小,宜采用竖流式沉淀池,设计一组沉淀池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章设计任务书 (2)1.1 设计题目 (2)1.2 设计资料 (2)1.3 设计内容 (2)1.4设计成果 (2)第二章设计说明与计算书 (3)2.1 设计原理及方案选择 (3)2.1.1设计原理 (3)2.1.2方案选择 (5)2.2设计工艺计算 (6)2.2.1供气量与空压机选型 (6)2.2.2溶气罐 (7)2.2.3气浮池 (8)2.2.4附属设备 (10)第三章参考文献 (11)第四章设计心得体会 (12)第五章附图 (12)气浮池的设计计算第一章设计任务书1.1 设计题目加压溶气气浮设备的设计(平流式)1.2 设计资料某工厂污水工程拟用气浮设备代替二沉池,经气浮实验取得以下参数:溶气水采用净化后处理水进行部分回流,回流比0.2,气浮池内接触时间为5min,溶气罐内停留时间为3min,分离时间为15min,溶气罐压力为0.4Mpa,气固比0.02,温度30℃。

设计水量850m3/d。

1.3 设计内容(1)确定设计方案;(2)气浮设备的设计计算;(3)系统设备选型,包括水泵、溶气释放器、溶气压力罐、空压机及刮渣机等;(4)计算书编写,计算机绘图。

1.4设计成果(1)设备工艺设计计算说明书;要求参数选择合理,条理清楚,计算准确,并附设计计算示意图;提交电子版和A4打印稿一份。

(2)气浮系统图和气浮设备结构详图(包括平面图、剖面图);要求表达准确规范;提交电子版和A3打印稿一份。

第二章设计说明与计算书2.1 设计原理及方案选择2.1.1设计原理加压气浮法是在加压情况下,将空气溶解在废水中达饱和状态,然后突然减至常压,这时溶解在水中的空气就成了过饱和状态,以极微小的气泡释放出来,乳化油和悬浮颗粒就粘附于气泡周围而随其上浮,在水面上形成泡沫层,然后由刮泡器清除,使废水得到净化。

根据废水中所含悬浮物的种类、性质、处理水净化程度和加压方式的不同,基本流程有以下三种。

1、全部废水溶气气浮法全部废水溶气气浮法是将全部废水用水泵加压,在泵前或泵后注入空气。

如图1、图2所示。

在溶气罐内空气溶解于废水中,然后通过减压阀将废水送入气浮池,废水中形成许多小气泡粘附废水中的乳化油或悬浮物而浮出水面,在水面上形成浮渣。

用刮板将浮渣连续排入浮渣槽,经浮渣管排出池外,处理后的废水通过溢流堰和出水管排出。

图1 全部的废水加压容器气浮(泵前加气)图2 全部废水加压溶气气浮(泵后加气)全流程溶气气浮法的优点是:(a)溶气量大,增加了油粒或悬浮颗粒与气泡的接触机会;(b)在处理水量相同的条件下,它较部分回流溶气气浮法所需的气浮池小,从而减少了基建投资。

但由于全部废水经过压力泵,所以增加了含油废水的乳化程度,而且所需的压力泵和溶罐均较其它两种流程大,因此投资和运转动力消耗较大。

2、部分溶气气浮法部分溶气气浮法是取部分废水加压和溶气,其余废水直接进入气浮池并在池中与溶气废水混合,如图3所示。

其特点为:(a)较全流程溶气气浮法所需的压力泵小,故动力消耗低;(b)压力泵所造成的乳化油量较全部溶气法低;(c)气浮池的大小与全部溶气法相同,但较部分回流溶气法小。

图3 部分进水加压溶气气浮法流程3、部分回流溶气气浮法部分回流溶气气浮法是取一部分除油后的出水回流进行加压和溶气,减压后直接进入气浮池,与来自絮凝池的含油废水混合后气浮,如图4所示。

回流量一般为含油废水的25%~50%。

其特点为:(a)加压的水量少,动力消耗省;(b)气浮过程中不促进乳化;(c)矾花形成好,后絮凝也少;(d)缺点是气浮池的容积较前两种流程大。

为了提高气浮的处理效果,往往向废水中加入混凝剂或浮选剂,投加量因水质不同而异,一般由试验确定。

图4 部分回流溶气气浮流程2.1.2方案选择本设计采用平流式气浮池,以下来平流式气浮池分析带气絮凝体上浮分离过程的运动状态。

带气絮粒在接触室内通过浮力、重力与水流阻力的平衡作用后,取得了向上的升速U上。

进入分离区后,又受到两个力的作用:一是水流扩散后由水平推力所产生的水平向流速U推;二是由于底部出流所产生的向下流速U下。

这两种流速的合速度大小及方向决定了带气絮凝体或是上浮去除,或是随水流挟出。

至于其中上升或下降的速度则视合成速度U合在纵轴上投影的大小。

该速度影响了气浮的处理效果。

絮凝体的大小,气泡的大小,气浮池体中水流向下的速度三者直接影响合成向上速度。

合成向上的速度越大,气浮的去除效率越高,气浮池体的就越小,整个工程造价越低。

要使上浮效果好,首先在池体中尽量降低U下。

它可用扩大底部出流面积或提高出水的均匀度实现,随着底部的均匀集流、出流,水流到池未端U平约为零,这有利于上浮力较小的带气絮凝体的分离;如要提前实现上浮去除,应尽量降低u平,这可用扩大气浮池横断面的方式来实现。

接着要处理好絮凝体的大小,通过加药混合,和絮凝反应来完成,应注意控制以下几个点,药剂的品种,投药量,药剂和污水的混合时间和混合强度,药剂的投加点,药剂和污水的反应时间和反应强度,产生的絮凝体的大小。

另外还要控制溶气系统中气泡的大小。

本设计采用空压机供气,而且采用部分回流水加压工艺,因而采用溶气效果较好的填料罐。

2.2设计工艺计算2.2.1供气量与空压机选型1.气浮所需空气量式中 Qg------气浮所需空气量,L/hQ-------气浮池设计水量,m3/hR`------实验条件下的回流比,%ac------实验条件下的释气量,L/m3------水温校正系数,取1.1~1.3 (主要考虑水的粘度影响,试验时水温与冬季水温相差大者取高值)本设计取1.2.2.加压溶气水量式中 Qp------加压溶气水量,m3/hP-------选定的溶气压力,MPaKT ----溶解度系数,可根据水温查表n-------溶气效率,对装阶梯环填料的溶气罐可查表 3. 空压机额定气量选用Z-0.036/7型空气压缩机。

2.2.2溶气罐按过流密度计算:取过流密度I=3000m3/(m2·d) 1) 溶气罐直径(内径)式中:d D ------溶气罐内径,mI--------过流密度,h m m ⋅23/,这里取填料罐L =3000h m m ⋅23/ 2) 溶气罐高度式中:1H --------罐顶 底封头高,m .目前多采用以内径为公称直径的椭圆形封头。

按【JB1154-73】规定,封头高度与公称直径的关系:δ++=211h h H h 1 :曲面高度 ;h 2:直边高度δ:壁厚 由d D =0.241 m查表取 h 1=25mm h 2=75mm δ=6mm则3H ---------布水区高度,取3H =0.25m 4H ----------贮水区高度,取4H =1.0m5H ---------填料层高度,当采用阶梯环时,可取1.0~1.3m 。

本次取5H =1.2m则=2.662m,符合高径比应大于2.5~4选用上海同济大学水处理技术开发中心附属工厂生产的TR -300型溶气罐,采用阶梯环填料。

2.2.3气浮池(1)气浮池用挡板分为接触室和分离室 ① 接触区容积Vc2T -------气浮池内接触时间,T 2=5 min② 分离区容积Vss T -------分离室内停留时间,T s =15 min③ 气浮池有效水深2h 2s s h v T =⨯ =1.35mνs------水流上升速度,取1.5~3.0mm/s ,本设计取2 mm/s ④ 分离区面积A s 和长度L 2取池宽B=1.5m ,则分离区长度⑤ 接触区面积A c 和长度L 1取池宽B=1m ,则接触区长度⑥ 浮选池进水管:Dg=200mm,v=0.9947m/s ⑦ 浮选池出水管:Dg=150mm⑧ 集水管小孔面积S 取小孔流速v 1=1m/s取小孔直径D=0.015m ,则孔数个孔数取整数,孔口向下,与水平成45°角,分二排交错排列 ⑨ 气浮池总高:1h ——保护高度,取0.3~0.4m 。

本设计中取1h =0.4m2h ——有效水深,取2m ;3h ——池底安装出水管所需高度,取0.3m 。

图1 气浮池计算草图2.2.4附属设备 1.刮渣机选型气浮池宽度为1.5m ,气浮池壁厚度取400mm ,则刮渣机跨度应为 1.5+0.4=1.9m 此设计为矩形气浮池,所以采用桥式刮渣机刮渣,此类型的刮渣机适用范围一般在跨度10m 以下,集渣槽的位置在池的一端。

2. 集水装置 (1)进水装置气浮池常用的进水方向为底部进水。

废水在接触室中的上升流速较小,在接触室中停留时间应大于60s 。

进水管内径:D=[4(Q max +Qp)/πu]1/2=[4×(850+137.28)/86400×π×1.5]1/2=0.46m=460mm (2)集水装置本设计中气浮池的集水装置采用 200的铸铁穿孔管。

集水管中心线距池底200mm ,相邻两管中心距为0.5m ,沿池长方向排列。

取6根。

核算中心距:2.6/6=0.43m气浮池集水管根数取6根,这每个集水管的集水量:q 0=(Q max + Qp)/6=(850+137.28)/(86400×6)=0.0019m 3/s集水孔孔口流速:取25.0,96.0==h μs m gh /13.25.08.9296.020=⨯⨯==μυ每个集水管的孔口总面积:取63.0=ε W=q 0/εv 0=0.0019/(0.63×2.13)=0.0014m 2单个孔眼面积:取d 0=21mm=0.021m则每根集水管的孔眼数:n=w/w 0=0.0014/3.5×10-4=4 取4个由于孔眼沿管长开两排,两排孔的中心线呈ο45夹角。

集水管的有效长度L=2.6m ,则孔距:l 0=L/(n 0/2+1)=2.6/3 =0.87m3.溶气释放器由于本设计采用回流水加压系统,回流水SS≤10mg/L,故选用TS -78-Ⅴ型高效溶气释放器。

第三章 参考文献1. 给水排水设计手册编写组编.《给排水设计手册》(第三册),北京:中国建筑工业出版社,2002;2. 郑铭 《环保设备----原理·设计·应用》 第二版 化学工业出版社,2006;3. 《三废处理工程技术》(废水卷),化学工业出版社, 2001;4. 罗辉.《环保设备设计与应用》高等教育出版社, 1997;5. 高廷耀./顾国维.周琪.《水污染控制工程》(下册),高等教育出版社,2007。

第四章设计心得体会通过这次对气浮设备的设计,让我不仅将所学的知识应用到实际中来,而且也是对所学知识的一种巩固和提升。

经过一个星期的努力,我终于将环保设备设计与应用的课程设计做完了。

在这个过程中,我遇到了许多困难,但在不断地努力下,我顺利的完成了设计。

相关文档
最新文档