2018广东高考理科数学试题及答案
【高三数学试题精选】2018年普通高等学校招生全国统一考试(广东模拟卷一)数学试题及答案(理科)20

2018年普通高等学校招生全国统一考试(广东模拟卷一)数
学试题及答案(理科)20
5 绝密★启用前试卷类型A
2018年普通高等学校招生全国统一考试(广东模拟卷一)
数学(理科)
本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时.请先用2B铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.下列说法中,正确的是()
A.命题“若,则”的逆命题是真命题。
2018年高考数学(理科)真题完整版.doc

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( )A .0B .12C .1D 2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->UD .{}{}|1|2x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则a 5=( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( ) A .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=u u u u r u u u r( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( ) A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .33B .23C .32D .3 二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
2018年广东省广州市花都区圆玄中学高考数学试卷及参考答案(理科)

2018年广东省广州市花都区圆玄中学高考数学模拟试卷(理科)(1)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={x|y=lg(x2+4x﹣12)},B={x|﹣3<x<4},则A∩B等于()A.(﹣3,﹣2)B.(﹣3,2)C.(2,4) D.(﹣2,4)2.(5分)若复数z满足z+zi=3+2i,则在复平面内z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.354.(5分)有四个游戏盒,将它们水平放稳后,在上面扔一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是()A.B.C.D.5.(5分)已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为()A.B.C.±1 D.6.(5分)《九章算术》是我国古代数学成就的杰出代表,是“算经十书”中最重要的一种,是当时世界上最简练有效的应用数字,它的出现标志中国古代数学形成了完整的体系.其中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=(弦×矢+矢×矢),弧田是由圆弧(简称为弧田弧)和以圆弧的端点为端点的线段(简称为弧田弧)围成的平面图形,公式中“弦”指的是弧田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB等于6米,其弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为平方米,则cos∠AOB=()A.B.C.D.7.(5分)函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=8.(5分)已知函数f(x)是偶函数,当x>0时,f(x)=(2x﹣1)lnx,则曲线y=f(x)在点(﹣1,f(﹣1))处的切线斜率为()A.﹣2 B.﹣1 C.1 D.29.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.10.(5分)设函数则满足f(f(a))=2f(a)的a的取值范围是()A.B.C.0≤a<1 D.a≥1二、多选题:(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,至少有一项是符合题目要求的,请把所有的项找出来,并填写在括号内.填少或填多均不得分.)11.(5分)下列命题中真命题的个数是()①函数y=sinx,其导函数是偶函数;②“若x=y,则x2=y2”的逆否命题为真命题;③“x≥2”是“x2﹣x﹣2≥0”成立的充要条件;④命题p:“∃x0∈R,x02﹣x0+1<0”,则命题p的否定为:“∀x∈R,x2﹣x+1≥0”.A.0 B.1 C.2 D.312.(5分)在正方体ABCD﹣A1B1C1D1中(如图),已知点P在直线BC1上运动,则下列四个命题:①三棱锥A﹣D1BC的体积不变;②直线AP与平面ACD1所成的角的大小不变;③二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1内到点D和C1距离相等的点,则M点的轨迹是直线A1D1.其中正确命题的编号是()A.①③④B.①②C.①③D.①④三.填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)若实数x,y满足约束条件,则z=x﹣2y的最小值为.14.(5分)已知向量,满足||=||=2,且)=﹣6,则与的夹角为.15.(5分)在区间[0,1]上随机地取两个数x、y,则事件“y≤x5”发生的概率为.16.(5分)设抛物线y2=2px(p>0)焦点为F,准线为l,过焦点的直线分别交抛物线于A,B两点,分别过A,B作l的垂线,垂足C,D.若|AF|=2|BF|,且三角形CDF的面积为,则p的值为.四、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.解答写在答题卡上的指定区域内.17.(12分)已知等差数列{a n}的公差d≠0,它的前n项和为S n,若S5=70,且a2,a7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列的前n项和为T n,求证:T n<.18.(12分)如图,三棱台ABC﹣A1B1C1中,侧面A1B1BA与侧面A1C1CA是全等的梯形,若A1A⊥AB,A1A⊥A1C1,且AB=2A1B1=4A1A.(Ⅰ)若,,证明:DE∥平面BCC1B1;(Ⅱ)若二面角C1﹣AA1﹣B为,求平面A1B1BA与平面C1B1BC所成的锐二面角的余弦值.19.(12分)某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于70为合格品,小于70为次品.现随机抽取这种芯片共120件进行检测,检测结果统计如表:已知生产一件芯片,若是合格品可盈利400元,若是次品则亏损50元.(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产3件芯片所获得的利润不少于700元的概率.(Ⅱ)记ξ为生产4件芯片所得的总利润,求随机变量ξ的分布列和数学期望.20.(12分)已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(Ⅰ)当直线l过右焦点F2时,求直线l的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.21.(12分)设函数f(x)=2(x﹣2)e x﹣ax2+2ax+3﹣b(Ⅰ)若f(x)在x=0处的法线(经过切点且垂直于切线的直线)的方程为x+2y+4=0,求实数a,b的值;(Ⅱ)若x=1是f(x)的极小值点,求实数a的取值范围.【选修4-4:坐标系与参数方程】22.(10分)已知直线l的参数方程为.以原点为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ.(Ⅰ)求直线l与圆C的普通方程;(Ⅱ)若直线l分圆C所得的弧长之比为3:1,求实数a的值.2018年广东省广州市花都区圆玄中学高考数学模拟试卷(理科)(1)参考答案与试题解析一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={x|y=lg(x2+4x﹣12)},B={x|﹣3<x<4},则A∩B等于()A.(﹣3,﹣2)B.(﹣3,2)C.(2,4) D.(﹣2,4)【解答】解:集合A={x|y=lg(x2+4x﹣12)}={x|x2+4x﹣12>0}={x|x<﹣6或x>2},B={x|﹣3<x<4},则A∩B={x|2<x<4}=(2,4).故选:C.2.(5分)若复数z满足z+zi=3+2i,则在复平面内z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由z+zi=3+2i,得=,则复数z在复平面内对应的点的坐标为:(,),位于第四象限.故选:D.3.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选C4.(5分)有四个游戏盒,将它们水平放稳后,在上面扔一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是()A.B.C.D.【解答】解:在A中,中奖概率为,在B中,中奖概率为,在C中,中奖概率为,在D中,中奖概率为.∴中奖机会大的游戏盘是D.故选:D.5.(5分)已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为()A.B.C.±1 D.【解答】解:抛物线的焦点为F(,0),准线方程为x=﹣.∵点M到焦点F的距离等于2p,∴M到准线x=﹣的距离等于2p.∴x M=,代入抛物线方程解得y M=±p.∴k MF==.故选:D.6.(5分)《九章算术》是我国古代数学成就的杰出代表,是“算经十书”中最重要的一种,是当时世界上最简练有效的应用数字,它的出现标志中国古代数学形成了完整的体系.其中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积=(弦×矢+矢×矢),弧田是由圆弧(简称为弧田弧)和以圆弧的端点为端点的线段(简称为弧田弧)围成的平面图形,公式中“弦”指的是弧田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB等于6米,其弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为平方米,则cos∠AOB=()A.B.C.D.【解答】解:如图,由题意可得:AB=6,弧田面积S=(弦×矢+矢2)=(6×矢+矢2)=平方米.解得矢=1,或矢=﹣7(舍),设半径为r,圆心到弧田弦的距离为d,则,解得d=4,r=5,∴cos∠AOD==,∴cos∠AOB=2cos2∠AOD﹣1=﹣1=.故选:D.7.(5分)函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=【解答】解:∵f(x)=sin2x﹣cos2x=2sin(2x﹣),∴向右平移个单位而得到g(x)=2sin[2(x﹣)﹣]=﹣2cos2x,∴令2x=kπ,k∈Z,可解得x=,k∈Z,k=1时,可得x=,故选:C.8.(5分)已知函数f(x)是偶函数,当x>0时,f(x)=(2x﹣1)lnx,则曲线y=f(x)在点(﹣1,f(﹣1))处的切线斜率为()A.﹣2 B.﹣1 C.1 D.2【解答】解:∵当x>0时,f(x)=(2x﹣1)lnx,∴f′(x)=2lnx+2﹣,∴f′(1)=1∵函数f(x)是偶函数,∴f′(﹣1)=﹣1,∴曲线y=f(x)在点(﹣1,f(﹣1))处的切线斜率为﹣1,故选:B.9.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.【解答】解:令,,,如图所示:则,又,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时达到最值,最大值为+1,最小值为﹣1,所以的取值范围为[﹣1,+1].故选A.10.(5分)设函数则满足f(f(a))=2f(a)的a的取值范围是()A.B.C.0≤a<1 D.a≥1【解答】解:∵函数,若f(f(a))=2f(a),则f(a)≥1,当a<1时,由3a﹣1≥1得:≤a<1,当a≥1时,2a≥1恒成立,综上可得:,故选:A.二、多选题:(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,至少有一项是符合题目要求的,请把所有的项找出来,并填写在括号内.填少或填多均不得分.)11.(5分)下列命题中真命题的个数是()①函数y=sinx,其导函数是偶函数;②“若x=y,则x2=y2”的逆否命题为真命题;③“x≥2”是“x2﹣x﹣2≥0”成立的充要条件;④命题p:“∃x0∈R,x02﹣x0+1<0”,则命题p的否定为:“∀x∈R,x2﹣x+1≥0”.A.0 B.1 C.2 D.3【解答】解:对于①,函数y=sinx,其导函数是y=cosx,为偶函数,①正确;对于②,“若x=y,则x2=y2”是真命题,则它的逆否命题也为真命题,②正确;对于③,“x≥2”时,不等式“x2﹣x﹣2≥0”成立,即充分性成立;“x2﹣x﹣2≥0”时,x≤﹣1或x≥2,必要性不成立;∴是充分不必要条件,③错误;对于④,命题p:“∃x0∈R,x02﹣x0+1<0”,命题p的否定为:“∀x∈R,x2﹣x+1≥0”,④正确.综上,正确命题的序号是①②④,共3个.故选:D.12.(5分)在正方体ABCD﹣A1B1C1D1中(如图),已知点P在直线BC1上运动,则下列四个命题:①三棱锥A﹣D1BC的体积不变;②直线AP与平面ACD1所成的角的大小不变;③二面角P﹣AD1﹣C的大小不变;④M是平面A1B1C1D1内到点D和C1距离相等的点,则M点的轨迹是直线A1D1.其中正确命题的编号是()A.①③④B.①②C.①③D.①④【解答】解:对于①,三棱锥A﹣D1BC的体积与P点位置无关,∴三棱锥A﹣D1BC 的体积不变,故①正确;对于②,以D1为坐标原点,建立如图所示的空间坐标系,设正方体边长为1,则=(1,1,﹣1)为平面ACD1的法向量,而=(0,1,0),=(﹣1,1,﹣1),∴cos<,>==,cos<,>==,∴AB,AC1与平面ACD1所成的角不相等,即当P在直线BC1上运动时,AP与平面ACD1所成的角会发生变化,故②错误;对于③,当P位置变化时,平面PAD1的位置不发生变化,故二面角P﹣AD1﹣C的大小不变,故③正确;对于④,空间中到点D和C1的距离相等的点的轨迹是线段DC1的中垂面A1D1CB,而中垂面A1D1CB与平面A1B1C1D1的交线为直线A1D1,故④正确.故选:A.三.填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)若实数x,y满足约束条件,则z=x﹣2y的最小值为﹣4.【解答】解:作表示的平面区域如下,z=x﹣2y可化为y=﹣,故当过点(0,2)时,﹣有最大值,z=x﹣2y有最小值﹣4;故答案为:﹣4.14.(5分)已知向量,满足||=||=2,且)=﹣6,则与的夹角为.【解答】解:设与的夹角为θ,∵向量,满足||=||=2,且)=﹣6,∴)=•﹣=||•||•cosθ﹣||2=4cosθ﹣4=﹣6,∴cosθ=﹣,∵0≤θ≤π,∴θ=π,故答案为:15.(5分)在区间[0,1]上随机地取两个数x、y,则事件“y≤x5”发生的概率为.【解答】解:在区间[0,1]上随机地取两个数x、y,构成区域的面积为1;事件“y≤x5”发生,区域的面积为==,∴事件“y≤x5”发生的概率为.故答案为.16.(5分)设抛物线y2=2px(p>0)焦点为F,准线为l,过焦点的直线分别交抛物线于A,B两点,分别过A,B作l的垂线,垂足C,D.若|AF|=2|BF|,且三角形CDF的面积为,则p的值为.【解答】解:如图所示,M是AC的中点,则x+=p,∴x=p,∴AB=p,∴CD=MB=p,∵三角形CDF的面积为,∴,∴,故答案为:.四、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.解答写在答题卡上的指定区域内.17.(12分)已知等差数列{a n}的公差d≠0,它的前n项和为S n,若S5=70,且a2,a7,a22成等比数列.(1)求数列{a n}的通项公式;(2)设数列的前n项和为T n,求证:T n<.【解答】解:(1)由题意得解得,∴a n=4n+2;(2),∴,∴.18.(12分)如图,三棱台ABC﹣A1B1C1中,侧面A1B1BA与侧面A1C1CA是全等的梯形,若A1A⊥AB,A1A⊥A1C1,且AB=2A1B1=4A1A.(Ⅰ)若,,证明:DE∥平面BCC1B1;(Ⅱ)若二面角C1﹣AA1﹣B为,求平面A1B1BA与平面C1B1BC所成的锐二面角的余弦值.【解答】(Ⅰ)证明:连接AC1,BC1,在梯形A1C1CA中,AC=2A1C1,∵AC1∩A1C=D,,∴,又,∴DE∥BC1,∵BC1⊂平面BCC1B1,DE⊄平面BCC1B1,∴DE∥平面BCC1B1 ;(Ⅱ)解:侧面A1C1CA是梯形,∵A1A⊥A1C1,∴AA1⊥AC,又A1A⊥AB,∴∠BAC为二面角C1﹣AA1﹣B的平面角,则∠BAC=,∴△ABC,△A1B1C1均为正三角形,在平面ABC内,过点A作AC的垂线,如图建立空间直角坐标系,不妨设AA1=1,则A1B1=A1C1=2,AC=AC=4,故点A 1(0,0,1),C(0,4,0),.设平面A1B1BA的法向量为,则有,取,得;设平面C1B1BC的法向量为,则有,取,得.∴,故平面A1B1BA与平面C1B1BC所成的锐二面角的余弦值为.19.(12分)某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于70为合格品,小于70为次品.现随机抽取这种芯片共120件进行检测,检测结果统计如表:已知生产一件芯片,若是合格品可盈利400元,若是次品则亏损50元.(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产3件芯片所获得的利润不少于700元的概率.(Ⅱ)记ξ为生产4件芯片所得的总利润,求随机变量ξ的分布列和数学期望.【解答】(本小题满分12分)解:(Ⅰ)由题意芯片为合格品的概率…(2分)则利润不少于700元的情况为两件正品,一件次品或三件正品所以…(6分)(Ⅱ)ξ的所有取值为1600,1150,700,250,﹣200,,,,,,…(10分)所以…(12分)20.(12分)已知m>1,直线l:x﹣my﹣=0,椭圆C:+y2=1,F1、F2分别为椭圆C的左、右焦点.(Ⅰ)当直线l过右焦点F2时,求直线l的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.【解答】解:(Ⅰ)解:因为直线l:x﹣my﹣=0,经过F2(,0),所以=,得m2=2,又因为m>1,所以m=,故直线l的方程为x﹣y﹣1=0.(Ⅱ)解:设A(x1,y1),B(x2,y2).由,消去x得2y2+my+﹣1=0则由△=m2﹣8(﹣1)=﹣m2+8>0,知m2<8,且有y1+y2=﹣,y1y2=﹣.由于F1(﹣c,0),F2(c,0),故O为F1F2的中点,由,=2,可知G(,),H(,)|GH|2=+设M是GH的中点,则M(,),由题意可知2|MO|<|GH|即4[()2+()2]<+即x1x2+y1y2<0而x1x2+y1y2=(my1+)(my2+)+y1y2=(m2+1)()所以()<0,即m2<4又因为m>1且△>0所以1<m<2.所以m的取值范围是(1,2).21.(12分)设函数f(x)=2(x﹣2)e x﹣ax2+2ax+3﹣b(Ⅰ)若f(x)在x=0处的法线(经过切点且垂直于切线的直线)的方程为x+2y+4=0,求实数a,b的值;(Ⅱ)若x=1是f(x)的极小值点,求实数a的取值范围.【解答】解:(Ⅰ)f'(x)=2(x﹣1)e x﹣2ax+2a;…(2分);由题意可知:f'(0)=2;…(3分);f'(0)=﹣2+2a=2⇒a=2;…(4分);易得切点坐标为(0,﹣2),则有f(0)=﹣2⇒b=1;…(5分);(Ⅱ)由(Ⅰ)可得:f'(x)=2(x﹣1)e x﹣2ax+2a=2(x﹣1)(e x﹣a);…(6分);(1)当a≤0时,e x﹣a>0⇒f'(x)=0⇒x=1,x∈(﹣∞,1)⇒f'(x)<0;x∈(1,+∞)⇒f'(x)>0;x=1是f(x)的极小值点,∴a≤0适合题意;…(7分);(2)当0<a<e时,f'(x)=0⇒x1=1或x2=lna,且lna<1;x∈(﹣∞,lna)⇒f'(x)>0;x∈(lna,1)⇒f'(x)<0;x∈(1,+∞)⇒f'(x)>0;x=1是f(x)的极小值点,∴0<a<e适合题意;…(9分);(2)当a≥e时,f'(x)=0⇒x1=1或x2=lna,且lna≥1;x∈(﹣∞,1)⇒f'(x)>0;x∈(1,lna)⇒f'(x)<0;x∈(lna,+∞)⇒f'(x)>0;x=1是f(x)的极大值点,∴a≥e不适合题意;…(11分)综上,实数a的取值范围为a<e;…(12分);【选修4-4:坐标系与参数方程】22.(10分)已知直线l的参数方程为.以原点为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ.(Ⅰ)求直线l与圆C的普通方程;(Ⅱ)若直线l分圆C所得的弧长之比为3:1,求实数a的值.【解答】解:(Ⅰ)由题意知:ρ=4cosθ⇒ρ2=4ρcosθ⇒x2﹣4x+y2=0,;(Ⅱ)x2﹣4x+y2=0⇒(x﹣2)2+y2=4;直线l分圆C所得的弧长之比为3:1⇒弦长为,;或a=4.。
2018年广东高考数学-导数

2018年广东高考数学-导数(总19页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2018年广东高考数学-导数一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f(x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim→∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。
三、几种常见函数的导数①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x xa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.四、两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv += 若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

理科数学试题 第4页(共17页)
2018 年普通高等学校招生全国统一考试(全国卷Ⅰ) 理科数学试题答案(详细解析版)
一、选择题 1.【答案】C 【解析】分析:首先根据复数的运算法则,将其化简得到 正确结果.
,根据复数模的公式,得到
详解:因为
,
,从而选出
所以பைடு நூலகம்
,故选 C.
点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得
每件不合格品支付 25 元的赔偿费用. (ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为
X,求 EX; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产
品作检验?
21.(12 分)
已知函数 f (x) 1 x a ln x . x
(1)讨论 f (x) 的单调性;
所以所求的最短路径的长度为
,故选 B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两
个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平
面图形的相关特征求得结果.
8.【答案】D
【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程
.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必 考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17.(12 分)
在平面四边形 ABCD 中, ADC 90 , A 45 , AB 2 , BD 5 . (1)求 cosADB ; (2)若 DC 2 2 ,求 BC .
广东省2018届高考模拟考试数学理科试题(二)-有答案

2018年普通高等学校招生全国统一考试广东省理科数学模拟试卷(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知,x y R ∈,集合{}32,log A x =,集合{},B x y =,若{}0A B =,则x y +=( )A .13B .0C .1D .3 2.若复数11z i =+,21z i =-,则下列结论错误的是( ) A .12z z ⋅是实数 B .12z z 是纯虚数 C .24122z z = D .22124z z i += 3.已知()1,3a =-,(),4b m m =-,()2,3c m =,若//a b ,则b c ⋅=( ) A .7- B .2- C .5 D .84.如图,AD 是以正方形的边AD 为直径的半圆,向正方形内随机投入一点,则该点落在阴影区域内的概率为( )A .16π B .316 C.4πD .14 5.已知等比数列{}n a 的首项为1,公比1q ≠-,且()54323a a a a +=+=( )A .9-B .9 C.81- D .816.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点坐标为()4,0,且双曲线的两条渐近线互相垂直,则该双曲线的方程为( )A .22188x y -=B .2211616x y -= C. 22188y x -= D .22188x y -=或22188y x -= 7.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .86π+B .66π+ C.812π+ D .612π+ 8.设x ,y 满足约束条件0,2,xy x y ≥⎧⎪⎨+≤⎪⎩则2z x y =+的取值范围是( )A .[]2,2-B .[]4,4- C.[]0,4 D .[]0,29.在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相西萨·班·达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( )A .B . C. D .10.已知数列{}n a 的前n 项和为n S ,115a =,且满足()()21252341615n n n a n a n n +-=-+-+,已知*,n m N ∈,n m >,则n m S S -的最小值为( )A .494-B .498- C.14- D .28-11.已知菱形ABCD 的边长为60BAD ∠=,沿对角线BD 将菱形ABCD 折起,使得二面角A BD C --的余弦值为13-,则该四面体ABCD 外接球的体积为( )AB.D .36π 12.已知函数()()ln 3xf x e x =-+,则下面对函数()f x 的描述正确的是( ) A .()3,x ∀∈-+∞,()13f x ≥B .()3,x ∀∈-+∞,()12f x >- C. ()03,x ∃∈-+∞,()01f x =- D .()()min 0,1f x ∈第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.将函数()()()2sin 20f x x ϕϕ=+<的图象向左平移3π个单位长度,得到偶函数()g x 的图象,则ϕ的最大值是 .14.已知0a >,0b >,6b ax x ⎛⎫+ ⎪⎝⎭展开式的常数项为52,则2a b +的最小值为 .15.已知函数()()2log 41x f x mx =++,当0m >时,关于x 的不等式()3log 1f x <的解集为 . 16.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于A ,B 两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABOS S ∆∆= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知60B =,8c =. (1)若点M ,N 是线段BC 的两个三等分点,13BM BC =,AN BM=,求AM 的值; (2)若12b =,求ABC ∆的面积.18. 如图:在五面体ABCDEF 中,四边形EDCF 是正方形,AD DE =,90ADE ∠=,120ADC DCB ∠=∠=.(1)证明:平面ABCD ⊥平面EDCF ; (2)求直线AF 与平面BDF 所成角的正弦值.19. 经销商第一年购买某工厂商品的单价为a (单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:.已知某经销商下一年购买该商品的单价为X (单位:元),且以经销商在各段销售额的频率作为概率. (1)求X 的平均估计值.(2)该工厂针对此次的调查制定了如下奖励方案:经销商购买单价不高于平均估计单价的获得两次抽奖活动,高于平均估计单价的获得一次抽奖活动.每次获奖的金额和对应的概率为Y 的分布及数学期望.20. 已知椭圆()2212:108x y C b b+=>的左、右焦点分别为1F ,2F ,点2F 也为抛物线21:8C y x =的焦点. (1)若M ,N 为椭圆1C 上两点,且线段MN 的中点为()1,1,求直线MN 的斜率;(2)若过椭圆1C 的右焦点2F 作两条互相垂直的直线分别交椭圆于A ,B 和C ,D ,设线段AB ,CD 的长分别为m ,n ,证明11m n+是定值. 21. 已知()'fx 为函数()f x 的导函数,()()()2'200x x f x e f e f x =+-.(1)求()f x 的单调区间;(2)当0x >时,()xaf x e x <-恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为3,4x y a ⎧=+⎪⎨⎪=+⎩(t 为参数),圆C 的标准方程为()()22334x y -+-=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线()03πθρ=>与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.23.选修4-5:不等式选讲 已知()32f x mx x n =+-+.(1)当2m =,1n =-时,求不等式()2f x <的解集;(2)当1m =,0n <时,()f x 的图象与x 轴围成的三角形面积大于24,求n 的取值范围.试卷答案一、选择题1-5: CDADB 6-10: ABBCC 11、12:BB 二、填空题 13.6π-14. 2 15. ()0,1 16.3 三、解答题17.解:(1)由题意得M ,N 是线段BC 的两个三等分点, 设BM x =,则2BN x =,AN =,又60B =,8AB =, 在ABN ∆中,由余弦定理得2212644282cos60x x x =+-⨯⨯, 解得2x =(负值舍去),则2BM =. 在ABN ∆中,AM ===(2)在ABC ∆中,由正弦定理sin sin b cB C=,得8sin 2sin 123c BC b===. 又b c >,所以B C >,则C 为锐角,所以6cos 3C =. 则()1sin sin sin cos cos sin 2A B C B C B C =+=+=+=, 所以ABC ∆的面积1sin 482S bc A ===18.(1)证明:因为AD DE ⊥,DC DE ⊥,AD ,CD ⊂平面ABCD ,且AD CD D ⊃=, 所以DE ⊥平面ABCD .又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF . (2)解:由已知//DC EF ,所以//DC 平面ABFE . 又平面ABCD平面ABFE AB =,故//AB CD .所以四边形ABCD 为等腰梯形.又AD DE =,所以AD CD =,易得AD BD ⊥,令1AD =,如图,以D 为原点,以DA 的方向为x 轴正方向,建立空间直角坐标系D xyz -, 则()0,0,0D ,()1,0,0A,12F ⎛⎫- ⎪ ⎪⎝⎭,()B ,所以3,,122FA ⎛⎫=-- ⎪ ⎪⎝⎭,()DB =,1,22DF ⎛⎫=- ⎪ ⎪⎝⎭. 设平面BDF 的法向量为(),,n x y z =,由0,0,n DB n DF ⎧⋅=⎪⎨⋅=⎪⎩所以0,10,22x y z =⎨-++=⎪⎩取2x =,则0y =,1z =,得()2,0,1n =,cos ,2FA n FA n FA n⋅<>===. 设直线与平面BDF 所成的角为θ,则sinθ=. 所以直线AF 与平面BDF 所成角的正弦值为5.19.解:(1)由题可知:0.20.90.30.850.240.80.120.750.10.70.040.873a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=.(2)购买单价不高于平均估计单价的概率为10.240.120.10.040.52+++==. Y 的取值为5000,10000,15000,20000. ()1335000248P Y ==⨯=,()1113313100002424432P Y ==⨯+⨯⨯=,()2111331500024416P Y C ==⨯⨯⨯=, ()11112000024432P Y ==⨯⨯=. 所以Y 的分布列为()1500010000150002000093758321632E Y =⨯+⨯+⨯+⨯=(元).20.解:因为抛物线22:8C y x =的焦点为()2,0,所以284b -=,故2b =.所以椭圆221:184x y C +=. (1)设()11,M x y ,()22,N x y ,则221122221,841,84x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得()()()()12121212084x x x x y y y y +-+-+=,又MN 的中点为()1,1,所以122x x +=,122y y +=. 所以212112y y x x -=--.显然,点()1,1在椭圆内部,所以直线MN 的斜率为12-. (2)椭圆右焦点()22,0F .当直线AB 的斜率不存在或者为0时,11m n +==当直线AB 的斜率存在且不为0时,设直线AB 的方程为()2y k x =-, 设()11,A x y ,()22,B x y 联立方程得()222,28,y k x x y ⎧=-⎪⎨+=⎪⎩消去y 并化简得()2222128880k x k x k +-+-=, 因为()()()()222228412883210kk k k ∆=--+-=+>,所以2122812k x x k +=+,()21228112k x x k-=+. 所以)22112k m k+==+,同理可得)2212k n k +=+.所以222211122118k km n k k⎫+++=+=⎪++⎭为定值.21.解:(1)由()()0120f f=+,得()01f=-.因为()()'2'220x xf x e e f=--,所以()()''0220f f=--,解得()'00f=.所以()22x xf x e e=-,()()'22221x x x xf x e e e e=-=-,当(),0x∈-∞时,()'0f x<,则函数()f x在(),0-∞上单调递减;当()0,x∈+∞时,()'0f x>,则函数()f x在()0,+∞上单调递增.(2)令()()()221x x xg x af x e x ae a e x=-+=-++,根据题意,当()0,x∈+∞时,()0g x<恒成立. ()()()()'222211211x x x xg x ae a e ae e=-++=--.①当12a<<,()ln2,x a∈-+∞时,()'0g x>恒成立,所以()g x在()ln2,a-+∞上是增函数,且()()()ln2,g x g a∈-+∞,所以不符合题意;②当12a≥,()0,x∈+∞时,()'0g x>恒成立,所以()g x在()0,+∞上是增函数,且()()()0,g x g∈+∞,所以不符合题意;③当0a≤时,因为()0,x∈+∞,所有恒有()'0g x<,故()g x在()0,+∞上是减函数,于是“()0g x<对任意()0,x∈+∞都成立”的充要条件是()00g≤,即()210a a-+≤,解得1a≥-,故10a-≤≤.综上,a的取值范围是[]1,0-.22.解:(1)在直线l的参数方程中消去t可得,34x y a--+=,将cosxρθ=,sinyρθ=代入以上方程中,所以,直线l的极坐标方程为3cos sin04aρθρθ--+=.同理,圆C的极坐标方程为26cos6sin140ρρθρθ--+=.(2)在极坐标系中,由已知可设1,3Mπρ⎛⎫⎪⎝⎭,2,3Aπρ⎛⎫⎪⎝⎭,3,3Bπρ⎛⎫⎪⎝⎭.联立2,36cos6sin140,πθρρθρθ⎧=⎪⎨⎪--+=⎩可得(23140ρρ-++=,所以233ρρ+=+因为点M 恰好为AB的中点,所以132ρ+=,即3,23M π⎛⎫+ ⎪ ⎪⎝⎭.把3M π⎫⎪⎪⎝⎭代入3cos sin 04a ρθρθ--+=,得(31130224a +⨯-+=,所以94a =. 23.解:(1)当2m =,1n =-时,()2321f x x x =+--.不等式()2f x <等价于()()3,223212,x x x ⎧<-⎪⎨⎪-++-<⎩ 或()()31,2223212,x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或()()1,223212,x x x ⎧>⎪⎨⎪+--<⎩解得32x <-或302x -≤<,即0x <. 所以不等式()2f x <的解集是(),0-∞.(2)由题设可得,()3,3,3233,3,23,,2x n x n f x x x n x n x n x n x ⎧⎪+-<-⎪⎪=+-+=++-≤≤-⎨⎪⎪-+->-⎪⎩所以函数()f x 的图象与x 轴围成的三角形的三个顶点分别为3,03n A +⎛⎫-⎪⎝⎭,()3,0B n -,,322nn C ⎛⎫-- ⎪⎝⎭. 所以三角形ABC 的面积为()2613332326n n n n -+⎛⎫⎛⎫-+-=⎪⎪⎝⎭⎝⎭. 由题设知,()26246n ->,解得6n <-.。
2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2018 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5 分)=()A.i C.D.2.(5 分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9 B.8 C.5 D.43.(5 分)函数f(x)=的图象大致为()A.B.C.D.4.(5 分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5 分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x x x6.(5 分)在△ABC 中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5 分)为计算S=1﹣+ ﹣+…+ ﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5 分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如30=7+23.在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是()A.B.C.D.9.(5 分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5 分)若f(x)=cosx﹣sinx 在[﹣a,a]是减函数,则a 的最大值是()A.B.C.D.π 11.(5 分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5 分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C 的离心率为()A.B.C.D.二、填空题:本题共 4 小题,每小题 5 分,共20 分。
2018年高考真题——理科数学(全国卷Ⅰ)+Word版含解析

2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( ) A .0B .12C .1D .22.已知集合{}2|20A x x x =-->,则A =R( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A 334B 233C 324D 32二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- - -
- - -专业资料-
绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体
工整,笔迹清楚
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草
稿纸、试卷上答题无效
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地
区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。得到
如下饼图:
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是()
- - -
- - -专业资料-
新农村建设后,种植收入减少
新农村建设后,其他收入增加了一倍以上
新农村建设后,养殖收入增加一倍
新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
7某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应
点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路
径中,最短路径的长度为()
- - -
- - -专业资料-
A.5B.6C.7D.8
10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的
直径分别为直角三角形ABC的斜边BC,直角边AB,AC。△ABC的三边所围成的区域记为Ⅰ,
黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ 、Ⅱ 、Ⅲ的概率
分别记为123,,ppp,则()
17(12分)
- - -
- - -专业资料-
- - -
- - -专业资料-
现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为p的值。已知
每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付
25元的赔偿费用
(i)若不对该箱余下的产品作检验,这一箱的检验费用与赔偿费用的和记为X,求EX;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-
- - -
- - -专业资料-