超短波无线通信系统物理层的设计与实现
短波通信系统的设计与实现

短波通信系统的设计与实现短波通信是一种广域无线电通信方式,适合于长距离和跨区域的通信。
它具有可靠性高、抗干扰能力强等优点,广泛应用于航空、海运、野外探险、应急救援和国防等领域。
本文将介绍短波通信系统的设计与实现。
一、系统设计1. 频率规划短波频率在3 MHz至30 MHz范围内,被分为多个频带。
在频率规划中,需要考虑以下几个因素:(1)频带选择:不同频带具有不同的传播特性,需要根据通信距离、天气条件和使用环境等因素来选择频带。
(2)频率选择:在同一频带内选择频率可以实现多路通信,需要针对不同通信需求选择不同频率。
(3)频率稳定性:短波频率的稳定性对通信质量影响很大,因此需要选择稳定性较好的频率。
2. 信号调制信号调制是将原始信息转换成适合无线电传输的信号形式。
在短波通信中,常用的调制方式有两个:(1)幅度调制(AM):将原始信息的幅度调节成与载波同步的波形,适用于低速数据传输和语音通信。
(2)频率调制(FM):将原始信息的频率调节成与载波同步的波形,适用于高速数据传输和无线电广播。
3. 发射机发射机是将调制后的信号送入天线,发射出去的设备。
在短波通信中,发射机应具备以下特点:(1)输出功率大:短波通信需要跨越长距离,因此需要输出功率较大的发射机。
(2)频率稳定:频率稳定性对通信质量影响较大,因此需要选择频率稳定性较好的发射机。
(3)调制灵活:应该具备多种调制方式以适应不同通信需求。
4. 天线天线是收发短波信号的主要设备,其特点对通信质量和传输距离影响较大。
在设计短波通信系统时,需要考虑以下几个因素:(1)频率:天线的设计要根据频率来进行,以达到最佳的阻抗匹配和较高的增益。
(2)方向:对于需要定向收发的情况,应选择定向天线,以增强发送信号和接收信号的方向性。
(3)阻抗匹配:天线与发射机之间的阻抗匹配对信号的传输距离和传输效率有很大影响,应该进行精确匹配。
二、系统实现1. 硬件配置短波通信系统的实现需要使用到多种硬件设备,如信号源、功放、调制器、解调器、天线等。
超短波电台宽带通信技术研究与实现

目录第一章绪论 (1)1.1 选题依据 (1)1.2 超短波电台通信国内外发展现状与趋势 (2)1.3 OFDM技术的发展及应用 (4)1.4 论文的主要工作和章节安排 (7)第二章 OFDM技术与超短波无线通信信道特性 (8)2.1 OFDM技术基本原理 (8)2.1.1 OFDM系统的基带模型 (8)2.1.2 保护间隔和循环前缀 (11)2.2 多径信道的描述参数 (12)2.2.1 瑞利/莱斯衰落 (12)2.2.2 时延扩展与相干带宽 (13)2.2.3 多普勒扩展与相干时间 (14)2.3 超短波电台通信信道特性 (15)2.3.1 信道的多径时延分布 (15)2.3.2 信道的多普勒分析 (17)2.4 本章小结 (19)第三章基于OFDM的无线宽带通信信号处理技术 (21)3.1 通信系统帧结构设计 (21)3.1.1 OFDM参数设计 (21)3.1.2 相位参考符号 (24)3.1.3 OFDM符号与成帧 (25)3.2 基带信号处理 (26)3.2.1 卷积编码和维特比译码 (26)3.2.2 差分调制和解调 (29)3.2.3 QPSK映射和QPSK解调 (30)3.2.4 频率交织和频率交织解调 (30)3.2.5 系统同步算法 (32)3.3 中频信号处理 (36)3.3.1 整数倍内插 (37)3.3.2 带通采样 (38)3.3.3 整数倍抽取 (39)3.4 本章小结 (40)第四章信号处理硬件平台及接口技术 (41)4.1 硬件平台及接口 (41)4.2 嵌入式系统及设备驱动 (42)4.2.1 嵌入式Linux系统 (42)4.2.2 嵌入式驱动程序 (43)4.3 ARM与DSP通信技术实现 (44)4.3.1 HPI读写 (44)4.3.2 HPI加载DSP技术 (45)4.4 ARM与FPGA通信技术实现 (46)4.4.1 S3C2410的GPIO读写 (46)4.4.2 通过GPIO加载FPGA技术 (46)4.5 DSP与FPGA通信技术实现 (48)4.6 ARM与PC机通信技术实现 (50)4.7 本章小结 (52)第五章超短波电台OFDM通信系统的实现 (53)5.1 DSP基带信号处理实现 (53)5.1.1 EDMA与中断实现 (53)5.1.2 发送端DSP信号处理 (55)5.1.3 接收端DSP信号处理 (56)5.2 FPGA中频信号处理实现 (60)5.2.1 数字上变频实现 (60)5.2.2 数字下变频实现 (62)5.3 超短波电台通信系统视频传输设计实现 (63)5.3.1 发送端视频数据传输设计 (64)5.3.2 接收端视频数据传输设计 (66)5.4 通信系统性能测试及性能分析 (67)5.5 本章小结 (72)结论 (73)参考文献 (75)攻读硕士学位期间发表的论文与研究成果清单 (77)致谢 (78)第一章绪论1.1 选题依据超短波(Very High Frequency,VHF)通信是指利用30MHz~300MHz超短波频段电磁波进行的无线电通信,也叫甚高频通信。
手持式超短波通信平台硬件设计与实现

4、电源模块
电源模块是整个系统的动力来源,需要稳定且持续地提供电能。本设计中, 电源模块采用了一块3.7V锂电池和一块5V稳压芯片,将锂电池的电量转换为5V电 压,为整个系统提供稳定的电能。同时,为了延长电池的使用寿命,电源模块还 采用了电量监测和提示充电等功能。
5、天线模块
天线模块是手持式超短波通信平台实现无线通信的关键部件,其性能直接影 响到整个系统的通信质量。本设计中,天线模块采用了一款半波偶极子天线,能 够在超短波频段内实现较好的信号接收和发射。同时,为了适应不同的使用环境, 天线模块还采用了可拆卸设计,方便携带和使用。
3、数字信号处理模块
数字信号处理模块包括FFT变换和谱图生成两个部分。其中,FFT变换部分采 用快速傅里叶变换(FFT)算法,将输入信号从时域转换到频域;谱图生成部分 采用绘图算法,将FFT变换的结果绘制成谱图。
4、显示模块
显示模块采用液晶显示屏(LCD),将谱图显示出来,以便用户观察和分析。 实现方法
参考内容
引言
随着科技的不断发展,手持式频谱仪在电子工程、通信、信号处理等领域的 应用越来越广泛。传统的手持式频谱仪通常采用分立元件实现,具有体积大、成 本高、稳定性差等缺点。因此,本次演示提出了一种基于嵌入式系统(SoC)的 手持式频谱仪的硬件设计与实现方法,旨在实现小型化、高性能、低成本、高稳 定性的频谱分析仪。
二、实现方法
为了实现手持式超短波通信平台的高性能和稳定性,需要注意以下几点:
1、硬件抗干扰设计:超短波通信容易受到电磁干扰的影响,因此需要采取 多种抗干扰措施来提高系统的稳定性和可靠性。例如,在电路设计上可以采用电 磁屏蔽、滤波等手段;在材料选择上可以采用金属外壳等具有电磁屏蔽效果的材 质来提高设备的抗干扰能力。
设计一个短波通信报告

设计一个短波通信报告引言短波通信是一种无线电通信技术,主要用于远距离通信。
它利用短波频段的电波,在大气中反射和折射的特性,进行远距离传输。
本报告将介绍一个设计的短波通信系统。
设计目标设计一个短波通信系统,以满足以下目标:1. 能够在全球范围内进行远距离通信。
2. 提供可靠的通信连接,能够抵抗大气干扰和电离层变化等影响。
3. 具备高效的信号调制和解调技术,以提高传输速率。
4. 实现安全的通信,保护通信内容不被窃取和篡改。
5. 具备灵活的频率调谐功能,以适应不同的通信需求。
系统设计1. 发射器发射器是短波通信系统的核心组件,用于将输入信号调制并发送到空中。
它由以下部分组成:- 调制器:用于将输入信号调制成合适的短波信号。
常用的调制方式包括振幅调制(AM)、频率调制(FM)和相移键控(PSK)等。
- 功率放大器:用于增强调制后的信号的功率,以便在大气中传播时有足够的信号能量。
- 频率合成器:用于生成所需的通信频率,并通过调谐电路将发射频率调整到所需的值。
- 天线:用于将发射的电波辐射到空中,以实现远距离传输。
2. 接收器接收器负责接收来自空中的信号,并将其解调还原为原始输入信号。
它由以下部分组成:- 天线:用于接收由发射器辐射的电波。
- 放大器:用于增强接收到的信号的强度,以便后续处理。
- 解调器:用于从接收信号中提取出原始信号。
常见的解调方式包括振幅解调、频率解调和相位解调等。
- 滤波器:用于去除非目标频率上的干扰信号,以增强接收信号的质量。
- 解码器:用于将解调后的信号转换成原始输入信号。
3. 系统控制系统控制模块负责整个短波通信系统的运行和调节。
它含有以下功能:- 频率调谐:用户可以通过控制模块进行频率调节,以适应不同的通信需求。
- 发射和接收控制:控制模块负责调度发射器和接收器之间的通信连接,以确保正常的信息传输。
- 错误检测和纠正:控制模块可以实现误码检测和纠正技术,增强系统对传输错误的容忍性。
超短波通信系统的物理层仿真精确建模方法研究

通常情况下 , 在超短波通信仿真系统中, 物理层 因素 的影响是使用经验模型公式实现的, 其仿真的精确性受限
于所使用的经验模型公式。然而, 这些经验模型公式在考
虑环境因素的影响时. 只是根据经验的统计信息或者理论 计算获得数据, 而没有与具体的场景 、 设备等相结合 , 无法
精确地刻画场景设备间的差异。
通信仿真建模是通信系统仿真建模的关键环节。 超短波位
于无线电波中的甚高频波段,其传播方式为直线传输 , 地
理环境 以及 电磁干扰等因素对通信链路的性能具有很大 影响. 在超短波通信仿真系统的物理层建模时必须考虑这
些因素的影响。
于无线信号传播模型和有限状态 自动机理论的无线局域
网物理层协议仿真建模方法, 建立的物理层仿真模型能够
实 际 情 况 。 了提 高 仿 真 模 型 的有 效 性 , 对 超 短 波 通 信 系 统 的特 点 以 及 物 理 层 信 道 模 型 和 地 形 为 针
因 素 对 超 短 波 通 信 的 影 响 . 文 设 计 了 一 种 结 合 O E + 通 信 模 型 、i l k信 道 模 型 和 WI 本 MN T + Smu n i 模
() iun 信道仿真模型 2 S lk m i
超短波电台的技术实现和解决方案

超短波电台的技术实现和解决方案超短波(Ultra-Short Wave,简称USW)电台是一种广泛应用于无线电通信领域的设备,通常用于远距离传输和接收无线信号。
本文将详细介绍超短波电台的技术实现和解决方案,包括其工作原理、主要组成部分以及应用场景。
一、超短波电台的工作原理超短波电台主要利用无线电技术将音频信号通过电波传播。
其工作原理可以简单地分为三个步骤:音频输入、射频调制与发射、接收与解调。
1. 音频输入:音频输入是指将声音转换为电信号的过程。
一般而言,超短波电台会配备麦克风或其他音频输入设备,将实际声音输入系统。
2. 射频调制与发射:在这一步骤中,音频信号将通过射频调制成可传播的电波。
超短波电台会执行一系列的编码和调制过程,将音频信息嵌入到射频信号中。
一旦射频信号调制完成,它将通过天线传输出去。
3. 接收与解调:当射频信号到达目标接收器时,它将由该接收器的天线接收。
接收器将信号解调,并恢复音频信息。
通常,解调的过程包括滤波、解调和放大。
二、超短波电台的主要组成部分在超短波电台中,有几个重要的组成部分,包括:调频器、电源、天线、扩音器等。
1. 调频器:调频器用于将音频信号转换为射频信号。
它能够将音频信号进行编码、调制和放大,输出高频的射频信号。
2. 电源:电源是为超短波电台提供所需电力的装置。
电源可以采用直流电源或交流电源,以保证超短波电台的正常工作。
3. 天线:天线用于接收和发送电台信号。
它是信号的传输工具,负责将射频信号从电台传递到目标接收器,或从目标发射器传递到电台。
4. 扩音器:扩音器是用于增强音频信号的装置。
它将音频信号从电台中放大,以提高声音的音量和质量。
三、超短波电台的应用场景超短波电台具有广泛的应用场景,包括广播电台、航空通信、海事通信、紧急救援等。
1. 广播电台:广播电台是超短波电台最常见的应用之一。
它们通过超短波频段向广大听众传播音频信息。
广播电台广泛应用于新闻、音乐、体育比赛等领域,为公众提供丰富多样的娱乐和信息。
无线通信系统物理层的传输方案设计

(无线局域网场景)一、PBL问题二:试设计一个完整的无线通信系统物理层的传输方案,要求满足以下指标:1. Data rate :54Mbps, Pe<=10-5 with Eb/N0 less than 25dB2. 20 MHz bandwidth at 5 GHz frequency band3. Channel model :设系统工作在室内环境,有4条径,无多普勒频移,各径的相对时延为:[0 2 4 6],单位为100ns ,多径系数服从瑞利衰落,其功率随时延变化呈指数衰减:[0 -8 -16 -24]。
请给出以下结果:A. 收发机结构框图,主要参数设定B. 误比特率仿真曲线(可假定理想同步与信道估计)二、系统选择及设计设计1、系统要求20MHz带宽实现5GHz频带上的无线通信系统;速率要求: R=54Mbps;误码率要求: Pe <=10^ (-5)。
2、方案选取根据参数的要求,选择802.11a作为方案的基准,并在此基础上进行一些改进,使实际的系统达到设计要求。
802.11a中对于数据速率、调制方式、编码码率及OFDM子载波数目的确定如表1 所示。
表1 802.11a定义的数据速率、调制方式、编码码率及OFDM子载波数目的与时延扩展、保护间隔、循环前缀及OFDM符号的持续时间相关的参数如表2 所示。
表2 1802.11a定义的与时延扩展、保护间隔、循环前缀及OFDM符号的持续时间相关的参数参考标准选择OFDM系统来实现,具体参数的选择如下述。
3、OFDM简介OFDM的基本原理是将高速信息数据编码后分配到并行的N个相互正交的子载波上,每个载波上的调制速率很低(1/N),调制符号的持续间隔远大于信道的时间扩散,从而能够在具有较大失真和突发性脉冲干扰环境下对传输的数字信号提供有效的保护。
OFDM系统对多径时延扩散不敏感,若信号占用带宽大于信道相干带宽,则产生频率选择性衰落。
OFDM的频域编码和交织在分散并行的数据之间建立了联系,这样,由部分衰落或干扰而遭到破坏的数据,可以通过频率分量增强的部分的接收数据得以恢复,即实现频率分集。
短波通信系统的设计与实现

短波通信系统的设计与实现第一章短波通信系统概述短波通信系统是一种利用短波频段的无线通信系统,具有传输距离长、覆盖范围广、抗干扰能力强等优点,被广泛应用于军事、民用、广播等领域。
本章将从短波通信系统的基本原理、特点和应用等方面进行介绍。
1.1 短波通信系统的基本原理短波通信系统是利用电磁波在大气电离层中的反射和传播实现远距离通信的一种系统,其原理是利用发射机将信号转换为电磁波并传输到大气电离层上空,再由大气电离层反射回地面接收机接收。
由于电离层存在交错不定的电子浓度层次,使得短波信号能够反射和穿透这些层次,因此能够在不同区域之间传输。
短波通信系统还可利用波束形成技术使其具有通过目标点、提高信噪比、抑制目标干扰等能力。
1.2 短波通信系统的特点短波通信系统具有传输距离远、传输速率低、频段资源丰富、抗干扰能力强、不受区域限制等特点。
传输距离远:短波通信系统的传输距离可达数百甚至几千千米,在相对较小功率的情况下即可实现跨越县市地区和国界的通信。
传输速率低:短波通信系统的传输速率相较于高速率、高频段的通信方式较低,但在一些特殊应用领域(如军事、远洋航海等)中已经足够。
频段资源丰富:短波通信系统的频段资源较为丰富,涵盖了HF和MF频段,频段覆盖了整个短波电磁频谱,同时可以利用不同的调制方式(如AM、SSB、CW、DSB等)和不同的调频带宽适应不同的通信需求。
抗干扰能力强:短波通信系统具有良好的抗干扰能力,能够在大气遭受闪电、电磁干扰、电离层扰动等自然因素和恶劣环境中依然保持通信。
不受区域限制:短波通信系统完全不受区域限制,越是处于偏远、山区、海洋等区域,反而越能展现出其通信的优势。
1.3 短波通信系统的应用短波通信系统主要应用领域包括:军事、民用、广播等。
军事应用:短波通信是军事通信的重要手段之一。
一些困难地区、战争环境和敌人大面积干扰的情况下,短波通信系统能够提供一种较可靠和保密的通信手段,提高战场指挥和作战效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超短波无线通信系统物理层的设计与实现随着电子技术的高度发展,现代高技术战场逐步趋向数字化、网络化。
指挥通信系统传输的信息量急剧上升,传输业务种类也越来越多,21世纪的数字化战场要求实现无缝隙通信,以高速数据来完成综合业务的传输,希望有一种宽带数据传输设备即宽带数据电台组成战术无骨干网,经过互联网协议实现各部队之间的信息共享。
为了满足这种需求,我们采用软件无线电的思想,以FPGA+DSP结构为主的硬件平台,采用高速跳频、纠错编码等抗干扰措施,设计实现了一个超短波无线通信系统。
由于软件无线电对硬件的依赖程度很小,具有高度的开放性、灵活性和可编程性,使得通信系统的开发将重点放在软件的研究上,因此可以很好的解决通信系统的标准问题,极大缩短通信系统开发的时间和成本。
论文作者参与了该系统物理层的设计与实现及系统测试工作。
该系统为超短波无线通信系统,在物理层的设计上采用了很多相关理论来保证设计要求的满足。
本论文论述了系统中用到的变频、同步、编译码、调制解调的设计及实现。
本论文还介绍了系统用到的一些其他技术。
最后,大量的测试结果表明我们的产品达到了设计要求。