K-means算法简介
kmeans算法代码

kmeans算法代码摘要:1.K-means 算法简介2.K-means 算法的基本原理3.K-means 算法的代码实现4.K-means 算法的应用示例5.总结正文:一、K-means 算法简介K-means 算法是一种聚类算法,用于将一组数据分成K 个簇(cluster),使得每个数据点与其所属簇的中心点(均值)距离最小。
该算法是由J.MacQueen 在1967 年提出的,是数据挖掘和机器学习领域中常用的聚类方法之一。
二、K-means 算法的基本原理K-means 算法的基本原理可以概括为两个步骤:初始化中心点和迭代计算。
1.初始化中心点:在数据集中选择K 个数据点作为初始中心点,可以随机选择,也可以通过一定策略进行选择。
2.迭代计算:根据当前中心点,将数据集划分为K 个簇,每个数据点与其所属簇的中心点距离最小。
然后计算每个簇的中心点,并重复上述过程,直到中心点不再发生变化,聚类结果稳定。
三、K-means 算法的代码实现下面是一个简单的Python 实现,使用numpy 库进行计算:```pythonimport numpy as npdef kmeans(data, K, max_iters=100):# 初始化中心点centroids = data[np.random.choice(data.shape[0], K,replace=False)]for _ in range(max_iters):# 根据中心点划分簇labels = np.argmin(np.sum((data[:, np.newaxis] - centroids) ** 2, axis=2), axis=1)# 计算新的中心点new_centroids = np.array([data[labels == k].mean(axis=0) for k in range(K)])# 判断收敛条件,中心点变化小于1e-4 时停止迭代if np.linalg.norm(new_centroids - centroids) < 1e-4:breakcentroids = new_centroidsreturn centroids, labels# 示例数据data = np.random.rand(100, 2)# 进行K-means 聚类,K=2,最大迭代次数为100centroids, labels = kmeans(data, 2, max_iters=100)print("聚类结果:", labels)print("簇中心点:", centroids)```四、K-means 算法的应用示例K-means 算法广泛应用于数据挖掘、机器学习、图像处理等领域。
k-means算法步骤及原理

k-means算法是一种基础的聚类算法,其原理和步骤如下:
原理:
k-means算法的主要目标是将n个数据点划分为k个簇,并使每个数据点与所属簇的中心点(即质心)的距离最小化。
其基本思路为先随机选择k个质心,然后迭代地执行以下两个步骤:
1. 簇分配:对于每个数据点,计算其与k个质心的距离,将其分配到距离最近的簇;
2. 更新质心:对于每个簇,计算其中所有数据点的均值,将其作为新的质心。
重复执行以上两个步骤,直到簇不再发生变化或达到最大迭代次数。
最终的簇划分结果即为算法的输出。
步骤:
1. 选择簇数k和数据集;
2. 初始化k个质心,可以随机选择或手动指定;
3. 对于每个数据点,计算其与k个质心的距离,将其分配到距离最近的簇;
4. 对于每个簇,重新计算质心,即将所有数据点的坐标求平均值;
5. 重复执行第3和第4步,直到簇不再发生变化或达到最大迭代次数;
6. 输出簇划分结果。
需要注意的是,k-means算法的结果可能会受到初始质心的影响。
因此,为了得到更好的结果,可以多次运行算法并选择最佳的簇划分结果。
同时,k-means算法要求数据点之间的距离可计算,因此对于某些非欧式距离的情况,需要进行适当的转换或修改算法。
聚类算法:K-Means和DBSCAN的比较

聚类算法:K-Means和DBSCAN的比较K-Means和DBSCAN是两种常见的聚类算法,它们在数据挖掘和机器学习领域具有重要的应用价值。
本文将比较这两种算法的优缺点、适用场景等方面,以期帮助读者更好地理解它们的特点和区别。
1. K-Means算法K-Means算法是一种基于距离的聚类算法,它的基本思想是将数据集划分为K个簇,使得每个样本点都属于与其最近的簇。
具体来说,K-Means算法的工作流程如下:(1)随机初始化K个中心点;(2)将每个样本点分配到距离最近的中心点所对应的簇中;(3)更新每个簇的中心点,即将该簇内所有样本点的均值作为新的中心点;(4)重复执行步骤(2)和(3),直到中心点不再发生变化或达到迭代次数上限。
K-Means算法的优点包括实现简单、计算高效等,适用于数据量较大的情况。
但它也存在一些缺点,比如对初始中心点的选择敏感,容易陷入局部最优解,不适用于发现非凸簇等情况。
2. DBSCAN算法DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法是一种基于密度的聚类算法,它的核心思想是通过样本点的密度来发现聚类簇。
DBSCAN算法的具体步骤如下:(1)以任意顺序选择一个未访问的样本点;(2)计算该样本点的邻域内的样本点个数,若超过预设的阈值,则标记为核心点,否则标记为噪声点;(3)将与核心点密度相连的样本点放入同一个簇中,并继续递归地扩展该簇;(4)重复执行步骤(1)和(2),直到所有样本点都被访问为止。
DBSCAN算法的优点在于可以发现任意形状的簇,并且对噪声数据具有鲁棒性,不受初始参数的影响。
但它也存在一些局限性,比如对密度不同的簇难以处理,对参数的敏感性较强等。
3. K-Means和DBSCAN的比较K-Means和DBSCAN是两种不同的聚类算法,它们在很多方面存在明显的差异。
下面将分别从适用场景、对数据特点的适应性、算法复杂度等方面对它们进行比较。
K-均值聚类算法

4.重复分组和确定中心的步骤,直至算法收敛;
2.算法实现
输入:簇的数目k和包含n个对象的数据库。 输出:k个簇,使平方误差准则最小。
算法步骤:
1.为每个聚类确定一个初始聚类中心,这样就有K 个初始 聚类中心。
2.将样本集中的样本按照最小距离原则分配到最邻近聚类
给定数据集X,其中只包含描述属性,不包含 类别属性。假设X包含k个聚类子集X1,X2,„XK;各 个聚类子集中的样本数量分别为n1,n2,„,nk;各个 聚类子集的均值代表点(也称聚类中心)分别为m1, m2,„,mk。
3.算法实例
则误差平方和准则函数公式为:
k
2
E p mi
i 1 pX i
单个方差分别为
E1 0 2.52 2 22 2.5 52 2 22 12.5 E2 13.15
总体平均误差是: E E1 E2 12.5 13.15 25.65 由上可以看出,第一次迭代后,总体平均误差值52.25~25.65, 显著减小。由于在两次迭代中,簇中心不变,所以停止迭代过程, 算法停止。
示为三维向量(分别对应JPEG图像中的红色、绿色 和蓝色通道) ; 3. 将图片分割为合适的背景区域(三个)和前景区域 (小狗); 4. 使用K-means算法对图像进行分割。
2 015/8/8
Hale Waihona Puke 分割后的效果注:最大迭代次数为20次,需运行多次才有可能得到较好的效果。
2 015/8/8
例2:
2 015/8/8
Ox y 102 200 3 1.5 0 450 552
数据对象集合S见表1,作为一个 聚类分析的二维样本,要求的簇的数 量k=2。
K-means算法详解

算法实例
O x y
1
2 3 4 5Βιβλιοθήκη 00 1.5 5 5
2
0 0 0 2
数据对象集合S见表1,作为一个聚类分析的二 维样本,要求的簇的数量k=2。 O (1)选择 O1 0,2 , 2 0,0 为初始的簇中心, 即 M 1 O1 0,2 , M 2 O2 0,0 。 (2)对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇。 对 O3 : 2 2
0 5
0 5
2
2 2
2
2
5
29
1
5
5
2
0 2
• 因为 d M 1 , O 5 d M 2 , O 5 所以将 O 5分配给 C
• 更新,得到新簇
E1 0 0
2 2
C1 O1 ,O5
和
2
C 2 O 2 , O 3 , O 4
xi1,xi2,„xid和xj1,xj2,„xjd分别是样本xi和xj对应d个描 述属性A1,A2,„Ad的具体取值。 • 样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj) 来表示,距离越小,样本xi和xj越相似,差异度越小;距
离越大,样本xi和xj越不相似,差异度越大。
欧式距离公式如下:
d xi , x j
x
d k 1
ik
x jk
2
平均误差准则函数
• K-means聚类算法使用误差平方和准则函数来评价聚类 性能。给定数据集X,其中只包含描述属性,不包含类别
属性。假设X包含k个聚类子集X1,X2,„XK;各个聚类子集
中的样本数量分别为n1,n2,„,nk;各个聚类子集的均值代 表点(也称聚类中心)分别为m1,m2,„,mk。 • 误差平方和准则函数公式为:
K-Means聚类算法

K-Means聚类算法K-Means聚类算法是一种常用的无监督学习算法,在数据挖掘、图像处理、信号处理等领域有广泛的应用。
聚类算法是将相似的对象归为一类,不同的类之间尽可能的不相似。
K-Means聚类算法是一种基于距离测量的算法,它将数据点分为K个簇,每个簇的中心点与相应的数据点之间的距离最小。
1.初始化K个簇的中心点。
2.将每个数据点分配到离它最近的簇中。
3.计算每个簇的新中心点。
4.重复步骤2和3,直到簇的中心点不再发生变化或达到预定的循环次数。
在算法中,K是指聚类的簇数,每个簇的中心点是从数据点中随机选择的。
在第二个步骤中,每个数据点会被分配到离它最近的簇中,这一步是K-Means聚类算法最重要的一步。
在第三个步骤中,每个簇的新中心点是通过计算该簇中所有数据点的平均值得到的。
1.简单易懂:K-Means聚类算法实现简单,易于理解。
2.计算速度快:该算法的时间复杂度为O(K*n*I),其中n是数据点的数量,I是迭代次数,因此算法速度较快。
3.可用于大规模数据:K-Means聚类算法可以处理大规模的数据集。
1.对初始值敏感:算法中随机选择簇的中心点,这会影响聚类结果。
如果初始值不理想,聚类结果可能会很糟糕。
2.需要指定簇数:需要事先指定簇的数量K,这对于有些问题来说可能是一个难点。
3.对数据分布的要求较高:K-Means聚类算法对数据分布的要求较高,如果数据分布不太符合预期,聚类结果可能会非常差。
在实际应用中,K-Means聚类算法可以用于数据挖掘、模式识别、图像分割等领域。
例如,在图像处理中,可以使用K-Means聚类算法将像素分为不同的颜色组。
在信号处理中,可以使用K-Means聚类算法将信号分为不同的频段组。
实际应用中,需要根据具体问题来选择聚类算法。
k-means介绍

k-means介绍
K-means是一种基于聚类的分析方式,其主要用于在给定数据集中寻找相似的数据。
K-means算法旨在将数据分为不同的簇,以便深入研究每个簇的特点。
举个例子,假设我们有一个文本数据集,其中包括1000条新闻报道。
我们无法人工阅读每一条新闻,但我们可以使用K-means算法将
相似性高的新闻组合在一起,并向用户显示每个簇中的关键字,以便
用户可以快速了解这个主题的描述和内容。
K-means的思想是,以其中一个数据点为中心,选取固定数量的K
个点,将数据点分配到最近的中心点。
将每个中心点与其所分配的数
据点的平均值作为新的中心点。
重复这个步骤,直到达到最终收敛值。
这个算法会将当前的数据分为多个簇,每个簇包含了最近的中心点及
其分配的所有数据点。
K-means算法的优缺点
K-means算法有以下优点:
1.快速:K-means算法速度非常快,易于实现。
2.有效性:效果非常好,可以很好地识别相似的数据点并将它们分配到定义的簇中。
3.适用范围广:K-means适用于几乎所有类型的数据,因此被认为是一种广泛使用的算法。
但是,K-means算法也有一些缺点,如下所示:
1.初始点的选择非常重要:如果选取的K个点不是很好,那么整个算法的结果也不会很准确。
2.对数据密度敏感:K-means对于不同密度的数据不能进行很好地处理。
3.不适用于大型数据集:当数据集很大时,K-means的算法执行效率会非常低,而且可能会产生不可接受的结果。
k-means方法

k-means方法1.原理:2.算法步骤:(1)初始化:随机选择K个质心作为初始聚类中心。
(2)聚类分配:对于每个数据点,计算其与各个质心的距离,将其分配到距离最近的簇中。
(3)质心更新:计算每个簇中所有数据点的均值作为新的质心。
(4)重复步骤2和3,直到质心变化小于一定阈值或达到预定的迭代次数。
3.应用实例:(1)图像分割:将图像分成不同的区域,每个区域内的像素具有相似的颜色或纹理。
(2)市场细分:根据用户购买行为和偏好,将用户划分为不同的市场细分,以便有针对性地进行推销。
(3)异常检测:通过将待检测数据点与聚类中心的距离进行比较,可以识别出异常或离群点。
(4)基因表达数据分析:根据基因表达数据的相似性,将样本划分为不同的基因簇,以揭示基因之间的相关性和功能。
4.算法优缺点:(1)优点:- k-means方法简单,易于实现和理解。
-算法收敛速度较快,尤其适用于大规模数据集。
-对于处理数值型数据效果较好。
(2)缺点:- k-means对于初始聚类中心的选择较为敏感,可能导致不同的初始值得到不同的聚类结果。
-该方法对于处理非凸形状的数据集(如环形)效果不佳。
-需要提前确定簇的个数K,对于未知K的情况可能需要进行多次试验。
5.改进方法:为了克服k-means的缺点,研究人员提出了一些改进方法,例如:(1)k-means++算法:改进了初始质心的选择方法,使得初始质心更加分散,并能更好地避免局部最优解。
(2)谱聚类(Spectral Clustering):采用了基于图论的方法,通过计算数据点之间的相似度矩阵,利用特征值分解进行降维和聚类。
(3)层次聚类(Hierarchical Clustering):通过自下而上或自上而下的方式逐步合并或划分簇,形成一个簇的层级结构。
综上所述,k-means方法是一种简单且高效的聚类算法,通过迭代更新质心和重新分配数据点来实现聚类。
它在图像分割、市场细分、异常检测等领域有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K-means聚类算法K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。
最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。
看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。
聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。
而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。
聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。
比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。
在聚类问题中,给我们的训练样本是,每个,没有了y。
K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:1、随机选取k个聚类质心点(cluster centroids)为。
2、重复下面过程直到收敛 {对于每一个样例i,计算其应该属于的类对于每一个类j,重新计算该类的质心}K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。
质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。
重复迭代第一步和第二步直到质心不变或者变化很小。
下图展示了对n个样本点进行K-means聚类的效果,这里k取2。
K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。
下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:J函数表示每个样本点到其质心的距离平方和。
K-means是要将J调整到最小。
假设当前J没有达到最小值,那么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。
这两个过程就是内循环中使J单调递减的过程。
当J递减到最小时,和c也同时收敛。
(在理论上,可以有多组不同的和c值能够使得J取得最小值,但这种现象实际上很少见)。
由于畸变函数J是非凸函数,意味着我们不能保证取得的最小值是全局最小值,也就是说k-means对质心初始位置的选取比较感冒,但一般情况下k- means达到的局部最优已经满足需求。
但如果你怕陷入局部最优,那么可以选取不同的初始值跑多遍k-means,然后取其中最小的J对应的和c输出。
下面累述一下K-means与EM的关系,首先回到初始问题,我们目的是将样本分成k 个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将 x归类。
由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。
如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x 的最佳类别了,x顺手就聚类了。
但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让 P(x,y)最大。
但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y 可以指定。
这个过程有几个难点,第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。
第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。
这些问题在以后的篇章里回答。
这里只是指出EM的思想,E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。
然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。
上面的阐述有点费解,对应于K-means来说就是我们一开始不知道每个样例对应隐含变量也就是最佳类别。
最开始可以随便指定一个给它,然后为了让P(x,y)最大(这里是要让J最小),我们求出在给定c情况下,J最小时的(前面提到的其他未知参数),然而此时发现,可以有更好的(质心与样例距离最小的类别)指定给样例,那么得到重新调整,上述过程就开始重复了,直到没有更好的指定。
这样从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来使J最小化。
这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。
总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。
基本简介k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
编辑本段处理流程k-means 算法基本步骤(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心;(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;(3)重新计算每个(有变化)聚类的均值(中心对象);(4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2)。
算法分析和评价k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
算法的时间复杂度上界为O(n*k*t), 其中t是迭代次数。
k-means算法是一种基于样本间相似性度量的间接聚类方法,属于非监督学习方法。
此算法以k为参数,把n 个对象分为k个簇,以使簇内具有较高的相似度,而且簇间的相似度较低。
相似度的计算根据一个簇中对象的平均值(被看作簇的重心)来进行。
此算法首先随机选择k个对象,每个对象代表一个聚类的质心。
对于其余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似的聚类中。
然后,计算每个聚类的新质心。
重复上述过程,直到准则函数会聚。
k-means算法是一种较典型的逐点修改迭代的动态聚类算法,其要点是以误差平方和为准则函数。
逐点修改类中心:一个象元样本按某一原则,归属于某一组类后,就要重新计算这个组类的均值,并且以新的均值作为凝聚中心点进行下一次象元素聚类;逐批修改类中心:在全部象元样本按某一组的类中心分类之后,再计算修改各类的均值,作为下一次分类的凝聚中心点。
编辑本段实现方法补充一个Matlab实现方法:function [cid,nr,centers] = cskmeans(x,k,nc)% CSKMEANS K-Means clustering - general method.%% This implements the more general k-means algorithm, where% HMEANS is used to find the initial partition and then each% observation is examined for further improvements in minimizing % the within-group sum of squares.%% [CID,NR,CENTERS] = CSKMEANS(X,K,NC) Performs K-means% clustering using the data given in X.%% INPUTS: X is the n x d matrix of data,% where each row indicates an observation. K indicates% the number of desired clusters. NC is a k x d matrix for the % initial cluster centers. If NC is not specified, then the% centers will be randomly chosen from the observations.%% OUTPUTS: CID provides a set of n indexes indicating cluster% membership for each point. NR is the number of observations% in each cluster. CENTERS is a matrix, where each row% corresponds to a cluster center.%% See also CSHMEANS% W. L. and A. R. Martinez, 9/15/01% Computational Statistics Toolboxwarning off[n,d] = size(x);ifnargin< 3% Then pick some observations to be the cluster centers.ind = ceil(n*rand(1,k));% We will add some noise to make it interesting.nc = x(ind,:) + randn(k,d);end% set up storage% integer 1,...,k indicating cluster membershipcid = zeros(1,n);% Make this different to get the loop started.oldcid = ones(1,n);% The number in each cluster.nr = zeros(1,k);% Set up maximum number of iterations.maxiter = 100;iter = 1;while ~isequal(cid,oldcid) &iter<maxiter% Implement the hmeans algorithm% For each point, find the distance to all cluster centersfori = 1:ndist = sum((repmat(x(i,:),k,1)-nc).^2,2);。