聚类分析K-means算法综述

合集下载

kmeans 算法

kmeans 算法

kmeans 算法K-Means算法,也称为K均值聚类算法,是一种无监督机器学习方法,用于将数据集分成K个簇群。

该算法的核心思想是将数据点划分为不同的簇群,使得同一簇群内的点相似度尽可能高,而不同簇群之间的相似度尽可能低。

该算法可用于许多领域,如计算机视觉、医学图像处理、自然语言处理等。

1.工作原理K-Means算法的工作原理如下:1. 首先,从数据集中随机选择K个点作为初始簇群的中心点。

2. 接下来,计算每个数据点与K个中心点之间的距离,并将它们归入距离最近的簇群中。

这个过程称为“分配”。

3. 在所有数据点都被分配到簇群后,重新计算每个簇群的中心点,即将簇群中所有数据点的坐标取平均值得出新的中心点。

这个过程称为“更新”。

4. 重复执行2-3步骤,直到簇群不再发生变化或达到最大迭代次数为止。

2.优缺点1. 简单易懂,实现方便。

2. 可用于处理大量数据集。

1. 随机初始化可能导致算法无法找到全局最优解。

2. 结果受到初始中心点的影响。

3. 对离群值敏感,可能导致簇群数量不足或簇群数量偏多。

4. 对于非球形簇群,K-Means算法的效果可能较差。

3.应用场景K-Means算法可以广泛应用于许多领域,如:1. 机器学习和数据挖掘:用于聚类分析和领域分类。

2. 计算机视觉:用于图像分割和物体识别。

3. 自然语言处理:用于文本聚类和词向量空间的子空间聚类。

4. 财务分析:用于分析财务数据,比如信用评分和市场分析。

5. 医学图像处理:用于医学影像分析和分类。

总之,K-Means算法是一种简单有效的聚类算法,可用于处理大量数据集、连续型数据、图像和文本等多种形式数据。

但在实际应用中,需要根据具体情况选择合适的簇群数量和初始中心点,在保证算法正确性和有效性的同时,减少误差和提高效率。

聚类算法一(Kmeans、层次类聚、谱类聚)

聚类算法一(Kmeans、层次类聚、谱类聚)

聚类算法⼀(Kmeans、层次类聚、谱类聚)⼀、 K-means 1、基础1 Clustering 中的经典算法,数据挖掘⼗⼤经典算法之⼀2 算法接受参数 k ;然后将事先输⼊的n个数据对象划分为 k个聚类以便使得所获得的聚类满⾜: 同⼀聚类中的对象相似度较⾼;⽽不同聚类中的对象相似度较⼩。

3 算法思想:以空间中k个点为中⼼进⾏聚类,对最靠近他们的对象归类。

通过迭代的⽅法,逐次更新各聚类中⼼的值,直⾄得到最好的聚类结果4 算法描述:(1)适当选择c个类的初始中⼼;(2)在第k次迭代中,对任意⼀个样本,求其到c各中⼼的距离,将该样本归到距离最短的中⼼所在的类;(3)利⽤均值等⽅法更新该类的中⼼值;(4)对于所有的c个聚类中⼼,如果利⽤(2)(3)的迭代法更新后,值保持不变,则迭代结束;否则,则继续迭代。

2、算法流程:输⼊:k, data[n];(1)选择k个初始中⼼点,例如c[0]=data[0],…c[k-1]=data[k-1];(2)对于data[0]….data[n], 分别与c[0]…c[k-1]⽐较,假定与c[i]差值最少,就标记为i;(3)对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;(4)重复(2)(3),直到所有c[i]值的变化⼩于给定阈值。

3、优缺点 优点:速度快,简单 缺点:最终结果跟初始点选择相关,容易陷⼊局部最优,需直到k值⼆、层次类聚 上篇k-means算法却是⼀种⽅便好⽤的聚类算法,但是始终有K值选择和初始聚类中⼼点选择的问题,⽽这些问题也会影响聚类的效果。

为了避免这些问题,我们可以选择另外⼀种⽐较实⽤的聚类算法-层次聚类算法。

顾名思义,层次聚类就是⼀层⼀层的进⾏聚类,可以由上向下把⼤的类别(cluster)分割,叫作分裂法;也可以由下向上对⼩的类别进⾏聚合,叫作凝聚法;但是⼀般⽤的⽐较多的是由下向上的凝聚⽅法。

1、分裂法: 分裂法指的是初始时将所有的样本归为⼀个类簇,然后依据某种准则进⾏逐渐的分裂,直到达到某种条件或者达到设定的分类数⽬。

kmeans的聚类算法

kmeans的聚类算法

kmeans的聚类算法K-means是一种常见的聚类算法,它可以将数据集划分为K个簇,每个簇包含相似的数据点。

在本文中,我们将详细介绍K-means算法的原理、步骤和应用。

一、K-means算法原理K-means算法基于以下两个假设:1. 每个簇的中心是该簇内所有点的平均值。

2. 每个点都属于距离其最近的中心所在的簇。

基于这两个假设,K-means算法通过迭代寻找最佳中心来实现聚类。

具体来说,该算法包括以下步骤:二、K-means算法步骤1. 随机选择k个数据点作为初始质心。

2. 将每个数据点分配到距离其最近的质心所在的簇。

3. 计算每个簇内所有数据点的平均值,并将其作为新质心。

4. 重复步骤2和3直到质心不再变化或达到预定迭代次数。

三、K-means算法应用1. 数据挖掘:将大量数据分成几组可以帮助我们发现其中隐含的规律2. 图像分割:将图像分成几个部分,每个部分可以看做是一个簇,从而实现图像的分割。

3. 生物学:通过对生物数据进行聚类可以帮助我们理解生物之间的相似性和差异性。

四、K-means算法优缺点1. 优点:(1)简单易懂,易于实现。

(2)计算效率高,适用于大规模数据集。

(3)结果可解释性强。

2. 缺点:(1)需要预先设定簇数K。

(2)对初始质心的选择敏感,可能会陷入局部最优解。

(3)无法处理非球形簇和噪声数据。

五、K-means算法改进1. K-means++:改进了初始质心的选择方法,能够更好地避免陷入局部最优解。

2. Mini-batch K-means:通过随机抽样来加快计算速度,在保证精度的同时降低了计算复杂度。

K-means算法是一种常见的聚类算法,它通过迭代寻找最佳中心来实现聚类。

该算法应用广泛,但也存在一些缺点。

针对这些缺点,我们可以采用改进方法来提高其效果。

k-means聚类方法

k-means聚类方法

k-means聚类方法1. K-means聚类方法的基本原理K-means聚类方法是一种基于划分的聚类算法,它将数据集划分为K 个簇,每个簇由与其中心距离最近的点组成。

K-means聚类方法的基本原理是:给定一组数据,将它们划分为K个簇,使得每个簇的内部距离最小,而簇之间的距离最大。

K-means算法通过迭代的方式,不断地调整簇的中心,以最小化每个簇内部的距离,从而实现最优的划分。

2. K-means聚类方法的优缺点K-means聚类方法具有计算简单、收敛快等优点,它可以将数据集划分为多个簇,每个簇内的数据点彼此具有较高的相似度,而簇与簇之间的数据点具有较低的相似度,从而有效地实现了数据分类。

但K-means聚类方法也有一些缺点,首先,K-means聚类方法的结果受初始值的影响较大,如果初始值不合理,可能导致聚类结果不理想;其次,K-means聚类方法只适用于线性可分的数据,如果数据不具有线性可分的特征,K-means聚类方法可能不能得到理想的结果;最后,K-means聚类方法没有考虑数据点之间的距离,因此可能会出现噪声数据点的情况,从而影响聚类结果。

3. K-means聚类方法的应用K-means聚类方法可以用于多种应用,如机器学习、数据挖掘、模式识别、图像处理等。

其中,最常见的应用是基于K-means聚类方法的聚类分析,用于将数据分成不同的组,以便更好地理解和分析数据。

此外,K-means聚类方法也可以用于多维数据可视化,以及探索数据中隐藏的模式和趋势。

K-means聚类方法还可以用于客户分类,以及市场细分,以更好地了解客户行为和需求。

此外,K-means聚类方法还可以用于语音识别,文本分类,图像分类等。

4. K-means聚类方法的参数调整K-means聚类方法的参数调整主要有两个:K值和距离度量标准。

K 值决定聚类的数量,距离度量标准决定两个点之间的距离。

参数调整的目的是为了让聚类结果尽可能满足用户的要求。

聚类分析及k-means算法

聚类分析及k-means算法

举例应用
中国男足近几年到底在亚洲处于几流水平?下 图是采集的亚洲15只球队在2005年-2010年间大 型杯赛的战绩
对数据做了如下预处理:对于世界杯,进入决赛 圈则取其最终排名,没有进入决赛圈的,打入预 选赛十强赛赋予40,预选赛小组未出线的赋予50。 对于亚洲杯,前四名取其排名,八强赋予5,十六 强赋予9,预选赛没出现的赋予17。这样做是为了 使得所有数据变为标量,便于后续聚类。
处理后的数据如下:
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现 抽取日本、巴林和泰国的值作为三个类的种子, 即初始化三个类的中心为
A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
相似性度量指标
空间距离 相似系数(similarity coefficient)
空间距离
假使每个样品有p个变量,则每个样品都 可以看成p维空间中的一个点,n个样品 就是p维空间中的n个点,则第i样品与第
j 样品之间的距离记为 dij
样品距离必须满足的条件
➢ 对称性 dij d ji 0 ➢ 三角不等式 dij dik d jk ➢ dij 0 则样品i与样品j不相等
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰
国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类 的中心点。
斜交空间距离
相似系数

K均值优化算法综述

K均值优化算法综述

K均值优化算法综述K均值(K-means)算法是一种聚类方法,通过计算数据对象之间的距离进行聚类。

它的核心思想是:将数据集分成K个簇,每个簇由其内部所有对象作为元素。

其中,聚类的簇数K需要在算法执行前被预设或在处理过程中生成。

K均值算法具有以下几个优点:1. 原理简单且易于理解。

2. 适用于处理较大的数据集。

3. 能够对非常大的数据集进行高效的聚类处理。

4. 可以很好地处理各种类型的数据。

5. 在实践中已被广泛使用,并在许多领域得到了验证。

虽然K均值算法的性能在许多领域都得到了广泛应用,但是它也存在一些缺点,例如:1. 它假设每个数据点都属于唯一的一个簇,而现实中的数据经常存在不确定性。

2. 当使用K均值算法时,簇的数量必须预先指定,这可以导致算法的簇数量不准确。

3. 由于初始聚类点的位置是随机选择的,所以可能会得到不同的聚类结果,或者结果可能会收敛到不太好的局部最优解。

为了解决这些问题,已经提出了许多K均值算法的优化方法。

以下是一些常见的优化算法。

1. 带约束的K均值算法在K均值算法中,每个数据点只属于一个簇。

但是有时候,一个数据点可能属于多个簇。

这时候,就需要使用带约束的K均值算法。

带约束的K均值算法是一种约束优化问题,它将数据点打上标签,以便每个数据点只能被打上一个标签,而不是多个标签。

自适应K均值(AK-means)算法是一种改进的K均值算法。

它对传统K均值算法进行了改进,将其自适应用于处理不同分布和数据密度的数据。

AK-means 分为两个阶段,第一个阶段中,通过分析数据的分布和密度,自动选择最适合的K值,第二个阶段中,对数据进行聚类。

二分K均值(BKM)算法是一种改进的K均值算法,即先将所有数据点看做一个簇,然后将簇一分为二,使其成为两个簇。

然后选择其中一个簇进行划分,一直迭代下去,直到簇的数量达到预设的值K为止。

在传统K均值算法中,每个数据点都是唯一的且不可变的。

但是,实际上,某些数据点可能会属于多个簇,而某些数据点可能会被错误地分配到一个簇中。

K-means聚类算法

K-means聚类算法1. 概述K-means聚类算法也称k均值聚类算法,是集简单和经典于⼀⾝的基于距离的聚类算法。

它采⽤距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越⼤。

该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独⽴的簇作为最终⽬标。

2. 算法核⼼思想K-means聚类算法是⼀种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中⼼,然后计算每个对象与各个种⼦聚类中⼼之间的距离,把每个对象分配给距离它最近的聚类中⼼。

聚类中⼼以及分配给它们的对象就代表⼀个聚类。

每分配⼀个样本,聚类的聚类中⼼会根据聚类中现有的对象被重新计算。

这个过程将不断重复直到满⾜某个终⽌条件。

终⽌条件可以是没有(或最⼩数⽬)对象被重新分配给不同的聚类,没有(或最⼩数⽬)聚类中⼼再发⽣变化,误差平⽅和局部最⼩。

3. 算法实现步骤1、⾸先确定⼀个k值,即我们希望将数据集经过聚类得到k个集合。

2、从数据集中随机选择k个数据点作为质⼼。

3、对数据集中每⼀个点,计算其与每⼀个质⼼的距离(如欧式距离),离哪个质⼼近,就划分到那个质⼼所属的集合。

4、把所有数据归好集合后,⼀共有k个集合。

然后重新计算每个集合的质⼼。

5、如果新计算出来的质⼼和原来的质⼼之间的距离⼩于某⼀个设置的阈值(表⽰重新计算的质⼼的位置变化不⼤,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终⽌。

6、如果新质⼼和原质⼼距离变化很⼤,需要迭代3~5步骤。

4. 算法步骤图解上图a表达了初始的数据集,假设k=2。

在图b中,我们随机选择了两个k类所对应的类别质⼼,即图中的红⾊质⼼和蓝⾊质⼼,然后分别求样本中所有点到这两个质⼼的距离,并标记每个样本的类别为和该样本距离最⼩的质⼼的类别,如图c所⽰,经过计算样本和红⾊质⼼和蓝⾊质⼼的距离,我们得到了所有样本点的第⼀轮迭代后的类别。

此时我们对我们当前标记为红⾊和蓝⾊的点分别求其新的质⼼,如图d所⽰,新的红⾊质⼼和蓝⾊质⼼的位置已经发⽣了变动。

K-means算法详解


算法实例
O x y
1
2 3 4 5Βιβλιοθήκη 00 1.5 5 5
2
0 0 0 2
数据对象集合S见表1,作为一个聚类分析的二 维样本,要求的簇的数量k=2。 O (1)选择 O1 0,2 , 2 0,0 为初始的簇中心, 即 M 1 O1 0,2 , M 2 O2 0,0 。 (2)对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇。 对 O3 : 2 2

0 5
0 5
2

2 2
2
2
5
29
1
5
5
2



0 2

• 因为 d M 1 , O 5 d M 2 , O 5 所以将 O 5分配给 C
• 更新,得到新簇
E1 0 0
2 2
C1 O1 ,O5

2
C 2 O 2 , O 3 , O 4
xi1,xi2,„xid和xj1,xj2,„xjd分别是样本xi和xj对应d个描 述属性A1,A2,„Ad的具体取值。 • 样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj) 来表示,距离越小,样本xi和xj越相似,差异度越小;距
离越大,样本xi和xj越不相似,差异度越大。
欧式距离公式如下:
d xi , x j
x
d k 1
ik
x jk
2
平均误差准则函数
• K-means聚类算法使用误差平方和准则函数来评价聚类 性能。给定数据集X,其中只包含描述属性,不包含类别
属性。假设X包含k个聚类子集X1,X2,„XK;各个聚类子集
中的样本数量分别为n1,n2,„,nk;各个聚类子集的均值代 表点(也称聚类中心)分别为m1,m2,„,mk。 • 误差平方和准则函数公式为:

K均值优化算法综述

K均值优化算法综述K均值聚类算法(k-means clustering)是一种常用的聚类算法,它是最简单、最易于理解和实现的聚类算法之一。

早在1967年,Lloyd提出了K均值算法。

经过多年的发展和优化,K均值算法已经成为一种非常成熟和有效的聚类方法。

K均值算法的基本思想是:给定一个数据集和预设的聚类数K,将数据集分为K个聚类,每个聚类内的样本之间的距离尽可能小,而不同聚类之间的距离尽可能大。

K均值算法的核心是通过迭代的方式,不断优化聚类的结果。

具体来说,K均值算法的步骤如下:1. 初始化:随机选择K个样本作为初始的质心。

2. 分配样本:对每个样本,根据其与各个质心的距离,将其分配到与之距离最近的质心所代表的聚类中。

3. 更新质心:对每个聚类,计算该聚类中所有样本的平均值,得到新的质心。

4. 重复步骤2-3,直到质心不再发生变化。

K均值算法的优点是简单易懂、计算效率高,可以处理大规模数据集。

K均值算法也存在一些缺点:1. 对初始质心的选择敏感:由于算法的质心是随机选择的,因此初始质心的选择可能导致不同的聚类结果。

为了克服这一问题,通常会进行多次聚类试验,选择聚类效果最好的结果。

2. 对聚类数目的选择要求高:由于K均值算法需要预先指定聚类的数目K,如果对K的选择不准确,可能导致聚类结果不理想。

有一些扩展的K均值算法,如谱聚类和层次聚类,可以自动选择聚类数目。

还有一些评估指标,如轮廓系数和DB指数,可以辅助选择最优的聚类数目。

3. 对异常值敏感:K均值算法对异常值非常敏感,即使一个异常值存在于某个聚类中,也可能导致整个聚类结果的偏移。

一种解决方法是使用离群点检测算法,将异常值从数据集中剔除或进行修正。

为了克服K均值算法的一些局限性,人们对其进行了各种优化和改进。

有一些优化的初始质心选择方法,如k-means++算法,可以更合理地选择初始质心。

还有一些修改的K均值算法,如加权K均值算法和模糊K均值算法,可以处理非球形聚类和重叠聚类等问题。

k-means聚类算法实验总结 -回复

k-means聚类算法实验总结-回复K-means聚类算法是一种常用的无监督学习算法,广泛应用于数据挖掘、图像分割、文本分类等领域。

本文将基于我对K-means聚类算法的实验总结,分步详细介绍这一算法的原理、实验设置、实验结果及其分析。

希望通过本文的总结,读者能够对K-means算法有一个更全面的了解。

一、算法原理K-means聚类算法的原理比较简单,其基本步骤如下:1. 初始化k个聚类中心,可以是随机选择样本或根据经验预设;2. 对于每个样本,计算其与各个聚类中心的距离,并将其划分到距离最近的聚类中心所属的类别;3. 调整聚类中心的位置,将各个类别内的样本点的均值作为新的聚类中心,重复步骤2,直到聚类中心的位置不再变化或达到预设的最大迭代次数。

二、实验设置为了验证K-means聚类算法的性能,我选择了UCI机器学习库中的Iris 数据集作为实验数据集。

该数据集包含150个样本,每个样本有4个属性。

为了方便可视化,将数据集中的前两个属性作为横纵坐标,将样本点分布在二维平面上。

在实验中,我使用Python编程语言实现了K-means聚类算法,并使用matplotlib库绘制了聚类结果的散点图。

实验中设置聚类的类别数k为3,迭代次数上限为100。

三、实验结果及分析执行K-means聚类算法后,得到了如下图所示的聚类结果:[图1 聚类结果图]根据聚类结果可以看出,三个类别的样本点被分别用不同的颜色表示,并且通过散点图可以很直观地看到各个样本点与聚类中心的距离。

为了更客观地评估K-means的聚类性能,我采用了两项指标:聚类准确率和轮廓系数。

聚类准确率是将聚类结果与原始类别进行对比,计算分类正确的样本数量占总样本数量的比例。

通过计算实验结果,我得到了聚类准确率为85.33。

轮廓系数是一种评价聚类结果的衡量指标,其数值范围在-1到1之间,越接近于1表示聚类越紧密、样本点越相似,越接近于-1表示聚类越分散、样本点越不相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类分析K-means算法综述
摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。

关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势
算法概述
K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。

评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。

解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。

k-means 算法基本步骤
(1)从n个数据对象任意选择k 个对象作为初始聚类中心
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分
(3)重新计算每个(有变化)聚类的均值(中心对象)
(4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2)
形式化描述
输入:数据集D,划分簇的个数k
输出:k个簇的集合
(1)从数据集D中任意选择k个对象作为初始簇的中心;
(2)Repeat
(3)For数据集D中每个对象P do
(4)计算对象P到k个簇中心的距离
(5)将对象P指派到与其最近(距离最短)的簇;
(6)End For
(7)计算每个簇中对象的均值,作为新的簇的中心;
(8)Until k个簇的簇中心不再发生变化
对算法已有优化方法的分析
(1)K-means算法中聚类个数K需要预先给定
这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。

在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。

文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。

文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。

(2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解
不同的初始值,结果往往不同。

K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。

因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。

目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。

对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。

(3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大
所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。

在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。

无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

算法的应用领域
聚类分析是数据挖掘中的一个重要的研究领域,是一种数据划分或分组处理的重要手段和方法。

聚类无论是在商务领域,还是在生物学、Web文档分类、图像处理等其他领域都得到了有效的应用,目前聚类算法大体上分为划分的方法、基于层次的方法,基于密度的方法、基于网格的方法、基于模型的方法。

聚类的用途体现在数字图像处理(Digital Image Processing)即计算机图像处理,就是利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术。

最早出现于20世纪50年代,它作为一门学科大约形成于20世纪60年代初期。

它以改善图像的质量为对象,以改善人的视觉效果为目的。

在处理过程中,输入低质量图像,输出质量高图像,图像增强、复原、编码、压缩等都是图像处理常用的方法。

聚类的用途是很广泛的,数字图像处理在航天、航空、星球探测、通信技术、军事公安、生物工程和医学等领域都有广泛的应用,并取得了巨大的成就。

算法未来的研究方向
聚类分析可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。

它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

聚类渗透在生活中的方方面面,21世纪是信息时代,人们的生活与科技信息密切相关,科技创新是人类文明进步的一个标志,使得人类花更多的精力投入在科技研究领域当中,而聚类在科技领域中起到了很大的推进作用,所以未来的研究方向应在科技领域。

算法应用的发展趋势
聚类算法接近生活,与生活密切相关,并且在生活中扮演着越来越重要的角色,促使更多的人投入到聚类算法的研究当中,算法得到拓展,演变出更多的变体,涉及更多的东西,迫使算法越来越完善,越来越贴近生活。

总的来说,聚类算法在前人的基础上,不断在进步,一路发展下去,让算法更好地服务于人类,谱写人类的文明史。

相关文档
最新文档