第2讲 基本初等函数、函数的应用

合集下载

数学复习:第二章函数的概念、基本初等函数(Ⅰ)及函数的应用.函数模型及其应用

数学复习:第二章函数的概念、基本初等函数(Ⅰ)及函数的应用.函数模型及其应用

2.8 函数模型及其应用1.函数的实际应用(1)基本函数模型:函数模型函数解析式一次函数模型二次函数模型指数型函数模型f(x)=ba x+c(a,b,c 为常数,a>0且a≠1,b≠0)对数型函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂型函数模型f(x)=ax n+b(a,b为常数,a≠0)比较函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的单调性单调____函数单调____函数单调____函数增长速度越来越____越来越____相对平稳图象的变化随x值增大,图象与____轴接近平随x值增大,图象与____随n值变化而不同行轴接近平行2。

函数建模(1)函数模型应用的两个方面:①利用已知函数模型解决问题;②建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.(2)应用函数模型解决问题的基本过程:、、、.自查自纠1.(1)f(x)=ax+b(a,b为常数,a≠0)f(x)=ax2+bx+c(a,b,c为常数,a≠0)(2)增增增快慢y x2.审题建模解模还原手机的价格不断降低,若每隔半年其价格降低错误!,则现在价格为2 560元的手机,两年后价格可降为()A.900元B.810元C.1 440元D.160元解:半年降价一次,则两年后降价四次,其价格降为2 560×错误!错误!=810元.故选B.(错误!)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1。

3≈0。

11,lg2≈0.30)()A.2018年B.2019年C.2020年D.2021年解:设x年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x=log1。

高考数学一轮复习第二章函数的概念基本初等函数(Ⅰ)及函数的应用2.6函数与方程习题理

高考数学一轮复习第二章函数的概念基本初等函数(Ⅰ)及函数的应用2.6函数与方程习题理

§2.6函数与方程1.函数的零点(1)定义:对于函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的________,也是函数y=f(x)的图象与x轴的________.(2)函数有零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴⇔函数y=f(x) .由此可知,求方程f(x)=0的实数根,就是确定函数y=f(x)的________.一般地,对于不能用公式求根的方程f(x)=0来说,我们可以将它与________联系起来,利用函数的性质找出零点,从而求出方程的根.2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈,使得,这个c 也就是方程f(x)=0的根.3.二次函数的零点分布(即一元二次方程根的分布,见2.4节“考点梳理”5)自查自纠1.(1)f(x)=0 实数根交点的横坐标(2)有交点有零点零点函数y=f(x)2.f(a)·f(b)<0 (a,b) (a,b) f(c)=0(2015·安徽)下列函数中,既是偶函数又存在零点的是( )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1解:y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点.故选A.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3解:易知函数f (x )=2x+x 3-2单调递增,∵f (0)=1-2=-1<0,f (1)=2+1-2=1>0,∴函数f (x )在区间(0,1)内零点的个数为1.故选B .(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解:在同一平面直角坐标系中分别画出函数y =f (x ),y =g (x )的图象.如图所示,方程f (x )=g (x )有两个不相等的实根,等价于两个函数的图象有两个不同的交点.结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.故选B .方程ln x =8-2x 的实数根x ∈(k ,k+1),k ∈Z ,则k =________.解:构造函数f (x )=ln x +2x -8,∴f ′(x )=1x+2>0(x >0),则f (x )在(0,+∞)上单调递增,又f (1)=-6<0,f (2)=ln2-4<0,f (3)=ln3-2<0,f (4)=ln4>0,∴f (x )的唯一零点在(3,4)内,因此k =3.故填3.(2014·苏锡模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (x 2)+f (k -x )只有一个零点,则实数k 的值是________.解:由f (x 2)+f (k -x )=0得f (x 2)=-f (k -x ),因为f (x )是奇函数,有-f (k -x )=f (x -k ),故有f (x 2)=f (x -k ),又f (x )是R 上的单调函数,所以方程x 2=x -k 即x 2-x +k=0有唯一解,由Δ=0解得k =14,故填14.类型一 判断函数零点所在的区间(2014·北京)已知函数f (x )=6x-log 2x .在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解:f (x )在(0,+∞)为减函数,又f (1)=6>0,f (2)=2>0,f (4)=32-2=-12<0.故选C .【点拨】要判断在给定区间连续的函数是否存在零点,只需计算区间端点的函数值是否满足零点存在性定理的条件;如果题目没有给出具体区间,则需要估算函数值并利用函数的单调性等性质来求.但应注意到:不满足f (a )·f (b )<0的函数也可能有零点,此时,应结合函数性质分析判断.(2013·北京朝阳检测)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)解:∵f ′(x )=1x +2x 2>0(x >0),∴f (x )在(0,+∞)上单调递增,又f (3)=ln3-23>0,f (2)=ln2-1<0,∴f (2)·f (3)<0,∴f (x )唯一的零点在区间(2,3)内.故选B .类型二 零点个数的判断(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0, 0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.解:由题意知,方程|f (x )+g (x )|=1实根的个数即为函数y =f (x )与y =1-g (x )交点个数及函数y =f (x )与y =-1-g (x )交点个数之和,而y =1-g (x )=⎩⎪⎨⎪⎧1, 0<x ≤1,7-x 2,x ≥2,x 2-1,1<x <2,作图易知函数y =f (x )与y =1-g (x )有两个交点,又y =-1-g (x )=⎩⎪⎨⎪⎧-1, 0<x <1,5-x 2,x ≥2,x 2-3,1<x <2,作图易知函数y =f (x )与y =-1-g (x )有两个交点,因此共有4个交点.故填4.【点拨】(1)连续函数在区间[a ,b ]上满足f (a )·f (b )<0时,函数在(a ,b )内的零点至少有一个,但不能确定究竟有多少个.要更准确地判断函数在(a ,b )内零点的个数,还得结合函数在该区间的单调性、极值等性质进行判断;(2)对于解析式较复杂的函数,可根据解析式特征化为f (x )=g (x )的形式,通过考察两个函数图象的交点个数来求原函数的零点个数;(3)有时求两函数图象交点的个数,不仅要研究其走势(单调性、极值点、渐近线等),而且要明确其变化速度快慢.(2014·福建)函数f (x )=⎩⎪⎨⎪⎧x 2-2, x ≤0,2x -6+ln x ,x >0的零点个数是________. 解:当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0]上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x ,解法一:令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图象,易得两函数图象只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点.解法二:f ′(x )=2+1x,由x >0知f ′(x )>0,∴f (x )在(0,+∞)上单调递增, 而f (1)=-4<0,f (e)=2e -5>0,f (1)f (e)<0,从而f (x )在(0,+∞)上只有一个零点.综上可知,函数f (x )的零点个数是2.故填2.类型三 已知零点情况求参数范围(2014·江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解:函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数f (x )在一个周期[0,3)上的图象如图,可知当0<a <12时满足题意.故填⎝ ⎛⎭⎪⎫0,12. 【点拨】(1)解答本题的关键在于依据函数的对称性、周期性等知识作出函数图象,将函数的零点个数问题转化为求两个函数的交点个数问题;(2)对于含参数的函数零点问题,一般先分离参数,针对参数进行分类讨论,按照题目所给零点的条件,找出符合要求的参数值或范围,但讨论要注意全面及数形结合.(2015·河南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解:∵f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,∴g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2, x >a ,x 2+3x +2,x ≤a .方程-x +2=0的解为x =2,方程x 2+3x +2=0的解为x =-1或-2.若函数g (x )=f (x )-2x 恰有三个不同的零点,则⎩⎪⎨⎪⎧a <2,-1≤a ,-2≤a ,解得-1≤a <2,即实数a的取值范围是[-1,2).故选D .1.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x 轴交点的横坐标,注意它是数而不是点.2.判断函数在给定区间零点的步骤(1)确定函数的图象在闭区间[a,b]上连续;(2)计算f(a),f(b)的值并判断f(a)·f(b)的符号;(3)若f(a)·f(b)<0,则有实数解.除了用上面的零点存在性定理判断外,有时还需结合相应函数的图象来作出判断.3.确定函数f(x)零点个数(方程f(x)=0的实根个数)的方法:(1)判断二次函数f(x)在R上的零点个数,一般由对应的二次方程f(x)=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f(x)在[a,b]上的图象是连续不断的一条曲线,且是单调函数,又f(a)·f(b)<0,则y=f(x)在区间(a,b)内有唯一零点.1.函数y =x 12-⎝ ⎛⎭⎪⎫12x 的零点个数为( ) A .0B .1C .2D .3解:在同一坐标系内分别做出y 1=x ,y 2=⎝ ⎛⎭⎪⎫12x的图象,根据图象可以看出交点的个数为1.故选B .2.(2015·青岛模拟)若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .a >15B .a >15或a <-1C .-1<a <15D .a <-1解:由题可知函数f (x )的图象是一条直线,所以f (x )在区间(-1,1)上存在一个零点等价于f (-1)f (1)<0,即(1-5a )(a +1)<0.解得a >15或a <-1.故选B .3.(2013·天津)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1B .2C .3D .4解:判断函数f (x )的零点个数可转化为判断方程f (x )=2x|log 0.5x |-1=0的根的个数,由此得到|log 0.5x |=⎝ ⎛⎭⎪⎫12x ,设y 1=|log 0.5x |,y 2=⎝ ⎛⎭⎪⎫12x,则两个函数y 1与y 2的交点个数即为所求,如图所示,可知交点有两个.故选B .4.已知x 0是函数f (x )=2x+11-x的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解:由于函数g (x )=11-x =-1x -1在(1,+∞)上单调递增,函数h (x )=2x在(1,+∞)上单调递增,故函数f (x )=h (x )+g (x )在(1,+∞)上单调递增,所以函数在(1,+∞)上只有唯一的零点x 0,且在(1,x 0)上,f (x 1)<f (x 0)=0;在(x 0,+∞)上,f (x 2)>f (x 0)=0.故选B .5.(2014·黄冈九月质检)函数f (x )=⎝ ⎛⎭⎪⎫1+x -x 22+x 33cos2x 在区间[-3,3]上零点的个数为( )A .3B .4C .5D .6解:令g (x )=1+x -x22+x33, 则g ′(x )=1-x +x 2>0,故g (x )在R 上单调递增,而g (-3)g (3)<0,故g (x )在(-3,3)上仅有1个零点.作图易知y =cos2x 在[-3,3]上有4个零点,且易判断这5个零点互不相同.故选C .6.(2015·浙江模拟)函数y =ln|x -1|的图象与函数y =-2cos πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .8B .6C .4D .2解:作出两函数的大致图象如图所示.两函数图象都关于直线x =1对称,且共有6个交点, 故所有交点的横坐标之和为6.故选B .7.设f (x )=2x-x -4,x 0是函数f (x )的一个正数零点,且x 0∈(a ,a +1),其中a ∈N ,则a = .解:∵x 0是函数f (x )的一个正数零点,即f (x 0)=2x 0-x 0-4=0,知f (2)=22-2-4<0,f (3)=23-3-4>0,∴x 0∈(2,3),再由y =2x与y =x +4在(0,+∞)上只有一个交点知a 值惟一.又∵a ∈N ,∴a =2.故填2.8.(2014·安庆六校联考)已知函数f (x )=⎩⎪⎨⎪⎧|x |, x >0,-x 2-2x +1,x ≤0, 若函数g (x )=f (x )+2m 有三个零点,则实数m 的取值范围是________.解:作出函数f (x )=⎩⎪⎨⎪⎧|x |,x >0,-x 2-2x +1,x ≤0 的图象如图所示,令g (x )=f (x )+2m =0,则f (x )=-2m ,由图象知,当1≤-2m <2,即-1<m ≤-12时,直线y =-2m 与y =f (x )的图象有三个交点.故填⎝⎛⎦⎥⎤-1,-12.9.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,求函数y =f (f (x ))+1的所有零点构成的集合.解:先解方程f (t )=-1,即⎩⎪⎨⎪⎧t ≤0,t +1=-1或⎩⎪⎨⎪⎧t >0,log 2t =-1. 得t =-2或t =12.再解方程f (x )=-2和f (x )=12.即⎩⎪⎨⎪⎧x ≤0,x +1=-2或⎩⎪⎨⎪⎧x >0,log 2x =-2和⎩⎪⎨⎪⎧x ≤0,x +1=12或⎩⎪⎨⎪⎧x >0,log 2x =12. 得x =-3或x =14和x =-12或x = 2.故所求为⎩⎨⎧⎭⎬⎫-3,-12,14,2.10.若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,求实数a 的取值范围. 解:f (x )在(0,1)上恰有一个零点,显然a ≠0. ∴有两种情形:①f (0)f (1)<0,得(-1)·(2a -2)<0⇒a >1;②Δ=0且方程f (x )=0的根在(0,1)内,令Δ=0⇒1+8a =0⇒a =-18,得f (x )=-14(x 2+4x +4),此时f (x )=0的根x 0=-2∉(0,1).综上知a >1,即实数a 的取值范围为(1,+∞). 11.已知二次函数f (x )=ax 2+bx +c (a ≠0). (1)若f (-1)=0,试判断函数f (x )的零点个数;(2)若对任意x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),试证明存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立. 解:(1)∵f (-1)=0,∴a -b +c =0,b =a +c . ∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2, 当a =c 时,Δ=0,函数f (x )有一个零点; 当a ≠c 时,Δ>0,函数f (x )有两个零点.(2)证明:令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f (x 1)-f (x 2)2,g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f (x 2)-f (x 1)2,∴g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2.∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0,即g (x )=0在(x 1,x 2)内必有一个实根.即存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=||x cos (πx ),则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( ) A .5B .6C .7D .8解:原问题可转化为函数f (x )与g (x )的图象在[-12,32]上的交点个数问题.由题意知函数f (x )为偶函数,且周期为2.当x =32,12,0,-12时,g (x )=0,当x =1时,g (x )=1,且g (x )是偶函数,g (x )≥0,由此可画出函数y =g (x )和函数y =f (x )的大致图象如图所示,由图可知在⎣⎢⎡⎦⎥⎤-12,32上两函数图象有6个交点,故选B .。

2019年高考数学二轮复习2 第2讲 基本初等函数、函数与方程及函数的应用

2019年高考数学二轮复习2 第2讲 基本初等函数、函数与方程及函数的应用

第2讲 基本初等函数、函数与方程及函数的应用基本初等函数的图象与性质(综合型)指数与对数式的8个运算公式(1)a m ·a n =a m +n .(2)(a m )n =a mn .(3)(ab )m =a m b m .(4)log a (MN )=log a M +log a N .(5)log a M N =log a M -log a N .(6)log a M n=n log a M .(7)a log a N =N .(8)log a N =log b Nlog b a.[注意] (1)(2)(3)中,a >0,b >0;(4)(5)(6)(7)(8)中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.[典型例题](1)(2018·高考天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b(2)函数y =1x+ln|x |的图象大致为( )【解析】 (1)因为a =log 2e>1,b =ln 2∈(0,1),c =log 1213=log 23>log 2e>1,所以c >a >b ,故选D.(2)当x <0时,y =1x +ln(-x ),由函数y =1x ,y =ln(-x )单调递减,知函数y =1x +ln(-x )单调递减,排除C ,D ;当x >0时,y =1x +ln x ,此时f (1)=11+ln 1=1,而选项A 中函数的最小值为2,故排除A ,只有B 正确.故选B.【答案】 (1)D(2)B基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a >1和0<a <1两种情况讨论:当a >1时,两函数在定义域内都为增函数;当0<a <1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y =x α的性质要注意α>0和α<0两种情况的不同.[对点训练]1.(2018·武汉模拟)已知定义在R 上的函数f (x )=2|x-m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C.函数f (x )=2|x-m |-1为偶函数,则m =0,则f (x )=2|x |-1,a =f (log 0.53)=2log 23-1=2,b =f (log 25)=2log 25-1=4,c =f (0)=20-1=0.故c <a <b ,选C.2.已知a 是大于0的常数,把函数y =a x 和y =1ax +x 的图象画在同一平面直角坐标系中,不可能出现的是( )解析:选D.因为a >0,所以y =1ax +x 是对勾函数,若0<a ≤1,则当x >0时,y =1ax +x 的值大于等于2,函数y =a x 和y =1ax+x 的图象不可能有两个交点,故选D.函数的零点(综合型)函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[典型例题]命题角度一 确定函数零点的个数或其存在情况(1)已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)(2)设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos πx |-f (x )在区间⎣⎡⎤-12,32上零点的个数为( ) A .3 B .4 C .5D .6【解析】 (1)因为a >1,0<b <1,f (x )=a x +x -b , 所以f (-1)=1a-1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点.(2)由f (-x )=f (x ),得f (x )的图象关于y 轴对称.由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称.当x ∈[0,1]时,f (x )=x 3,所以f (x )在[-1,2]上的图象如图.令g (x )=|cos πx |-f (x )=0,得|cos πx |=f (x ),两函数y =f (x )与y =|cos πx |的图象在⎣⎡⎤-12,32上的交点有5个. 【答案】 (1)B (2)C判断函数零点个数的方法(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)利用零点存在性定理:利用该定理还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:对于给定的函数不能直接求解或画出图形时,常会通过分解转化为两个能画出的函数图象交点问题.命题角度二 已知函数零点的个数或存在情况求参数的取值范围(2018·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x, x ≤0ln x , x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【解析】 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C.【答案】 C利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的位置关系问题,从而构建不等式求解.[对点训练]1.(2018·洛阳第一次统考)已知函数f (x )满足f (1-x )=f (1+x )=f (x -1)(x ∈R ),且当0≤x ≤1时,f (x )=2x-1,则方程|cos πx |-f (x )=0在[-1,3]上的所有根的和为( )A .8B .9C .10D .11解析:选D.方程|cos πx |-f (x )=0在[-1,3]上的所有根的和即y =|cos πx |与y =f (x )在[-1,3]上的图象交点的横坐标的和.由f (1-x )=f (1+x )得f (x )的图象关于直线x =1对称,由f (1-x )=f (x -1)得f (x )的图象关于y 轴对称,由f (1+x )=f (x -1)得f (x )的一个周期为2,而当0≤x ≤1时,f (x )=2x -1,在同一坐标系中作出y =f (x )和y =|cos πx |在[-1,3]上的大致图象,如图所示,易知两图象在[-1,3]上共有11个交点,又y =f (x ),y =|cos πx |的图象都关于直线x =1对称,故这11个交点也关于直线x =1对称,故所有根的和为11.故选D.2.已知函数f (x )=e xx -kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是________.解析:由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e xx -kx =0只有一个根,即方程e x x 2=k 只有一个根,设g (x )=e x x 2,则函数g (x )=e xx 2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)e xx 3,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值g (2)=e 24,且x →0时,g (x )→+∞,x →-∞时,g (x )→0,x→+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e 24.答案:⎝⎛⎭⎫0,e 24函数的实际应用(综合型)[典型例题]某食品的保鲜时间y (单位:h)与储存温度x (单位:℃)满足的函数关系式为y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192 h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是________ h.【解析】 由已知,得e b =192,e 22k +b =48,两式相除得e 22k =14,所以e 11k =12,所以e 33k +b =(e 11k )3e b =18×192=24,即该食品在33 ℃的保鲜时间是24 h.【答案】 24应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[对点训练]1.某公司为激励创新,计划逐年加大研发资金投入.若该公司2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2021年 B .2022年 C .2023年D .2024年解析:选B.根据题意,知每年投入的研发资金增长的百分率相同,所以,从2018年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n-1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2022年投入的研发资金开始超过200万元,故选B.2.某工厂某种产品的年固定成本为250万元,每生产x 千件该产品需另投入的成本为G (x )(单位:万元),当年产量不足80千件时,G (x )=13x 2+10x ;当年产量不小于80千件时,G (x )=51x +10 000x -1 450.已知每件产品的售价为0.05万元.通过市场分析,该工厂生产的产品能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是________万元.解析:因为每件产品的售价为0.05万元,所以x 千件产品的销售额为0.05×1 000x =50x 万元.①当0<x <80时,年利润L (x )=50x -13x 2-10x -250=-13x 2+40x -250=-13(x -60)2+950,所以当x =60时,L (x )取得最大值,且最大值为L (60)=950万元;②当x ≥80时,L (x )=50x -51x -10 000x +1 450-250=1 200-⎝⎛⎭⎫x +10 000x ≤1 200-2x ·10 000x=1 200-200=1 000,当且仅当x =10 000x,即x =100时,L (x )取得最大值1 000万元.由于950<1 000, 所以当产量为100千件时,该工厂在这一产品的生产中所获年利润最大,最大年利润为1 000万元. 答案:1 000一、选择题1.函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)解析:选A.要使函数有意义需满足⎩⎪⎨⎪⎧4x -3>0,log 0.5(4x -3)>0,解得34<x <1.2.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( ) A .-2 B .4 C .3D .-2或3解析:选C.f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3.3.若a =log 1π13,b =e π3,c =log 3cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:选B.因为0<1π<13<1,所以1=log 1π1π>log 1π13>0,所以0<a <1,因为b =e π3>e 0=1,所以b >1.因为0<cosπ5<1,所以log 3cos π5<log 31=0,所以c <0.故b >a >c ,选B. 4.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C.令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).5.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.6.(2018·贵阳模拟)20世纪30年代,为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0,其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.已知5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震的最大振幅的( )A .10倍B .20倍C .50倍D .100倍解析:选D.根据题意有lg A =lg A 0+lg 10M=lg (A 0·10M).所以A =A 0·10M,则A 0×107A 0×105=100.故选D.7.函数y =x 2ln |x ||x |的图象大致是( )解析:选D.易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D.8.设x ,y ,z 为正数,且2x =3y =5z ,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z解析:选D.设2x =3y =5z =k (k >1), 则x =log 2k ,y =log 3k ,z =log 5k ,所以2x 3y =2log 2k 3log 3k =2lg k lg 2·lg 33lg k =2lg 33lg 2=lg 9lg 8>1,即2x >3y .①2x 5z =2log 2k 5log 5k =2lg k lg 2·lg 55lg k =2lg 55lg 2=lg 25lg 32<1, 所以2x <5z .② 由①②得3y <2x <5z .9.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b解析:选B.由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b =log 0.32,所以1a +1b =log 0.30.2+log 0.32=log 0.30.4,所以0<1a +1b <1,得0<a +b ab<1.又a >0,b <0,所以ab <0,所以ab <a +b <0.10.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:选C.当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x ,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象如图所示,观察到函数y =f (x )与y =e x 的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.11.已知函数f (x )是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若⎪⎪⎪⎪f (ln x )-f ⎝⎛⎭⎫ln 1x 2<f (1),则x 的取值范围是( )A.⎝⎛⎭⎫0,1e B .(0,e) C.⎝⎛⎭⎫1e ,eD .(e ,+∞)解析:选C.因为函数f (x )是定义在R 上的奇函数,所以f (ln x )-f ⎝⎛⎭⎫ln 1x =f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ), 所以⎪⎪⎪⎪f (ln x )-f ⎝⎛⎭⎫ln 1x 2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增, 所以-1<ln x <1,解得1e<x <e.12.(2018·沈阳教学质量监测)设函数f (x )是定义在R 上的偶函数,且f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫22x -1,若关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)在区间(-2,6)内有且只有4个不同的实根,则实数a 的取值范围是( )A.⎝⎛⎭⎫14,1 B .(1,4) C .(1,8)D .(8,+∞)解析:选D.因为f (x )为偶函数,且f (2+x )=f (2-x ),所以f (4+x )=f (-x )=f (x ), 所以f (x )为偶函数且周期为4,又当-2≤x ≤0时,f (x )=⎝⎛⎭⎫22x-1, 画出f (x )在(-2,6)上的大致图象,如图所示.若f (x )-log a (x +2)=0(a >0且a ≠1)在(-2,6)内有4个不同的实根,则y =f (x )的图象与y =log a (x +2)的图象在(-2,6)内有4个不同的交点.所以⎩⎪⎨⎪⎧a >1,log a (6+2)<1,所以a >8,故选D.二、填空题13.计算:2log 410-12log 225+823-(π-3)0=________.解析:2log 410-12log 225+823-(π-3)0=2×12log 210-log 25+(23)23-1=log 2105+22-1=1+4-1=4.答案:414.有四个函数:①y =x 12;②y =21-x ;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________.解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④15.(2018·高考全国卷Ⅲ)已知函数f (x )=ln(1+x 2-x )+1, f (a )=4,则f (-a )=________. 解析:由f (a )=ln(1+a 2-a )+1=4,得ln(1+a 2-a )=3,所以f (-a )=ln(1+a 2+a )+1=-ln 11+a 2+a+1=-ln(1+a 2-a )+1=-3+1=-2.答案:-216.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时.已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间的变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;11 ②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少;③到了此日13时,甲所购买的食品还在保鲜时间内;④到了此日14时,甲所购买的食品已过了保鲜时间.其中,所有正确结论的序号是________.解析:因为某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,所以24k +6=16,即4k +6=4,解得k =-12,所以t =⎩⎪⎨⎪⎧64,x ≤0,2-12x +6,x >0. ①当x =6时,t =8,故①正确; ②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414小时,到13时,甲所购买的食品不在保鲜时间内,故③错误;④由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确.所以正确结论的序号为①④.答案:①④。

第2部分 专题6 第2讲 基本初等函数、函数的应用 课件(共53张PPT)

第2部分 专题6 第2讲 基本初等函数、函数的应用 课件(共53张PPT)

log138,则( )
A.a<b<c
B.b<a<c
C.b<c<a
D.c<a<b
4
4
4
4
A
[因为
4 5
=log885,b=log85,(85
)5=84>55,所以85>5,所以45
=log885
4
4
4
>log85=b,即b<
4 5
.因为
4 5
=log1313
5
,c=log138,(13
5
)5=134<85,所以13
A.1
B.2
C.3
D.4
C [对于任意的x∈R,都有f(2+x)=f(2-x),
∴f(x+4)=f[2+(x+2)]=f[2-(x+2)]=f(-x)=f(x),
∴函数f(x)是一个周期函数,且T=4.
又∵当x∈[-2,0]时,f(x)=
2
2
x
-1,且函数f(x)是定义在R上的
偶函数,
且f(6)=1,则函数y=f(x)与y=log8(x+2)在区间(-2,6)上的图象 如图所示,
∴f(1)f
3 2
<0,根据零点存在定理可知,零点在区间
1,32
内.故选C.]
2.[判断零点的个数]设函数f(x)是定义在R上的偶函数,且对任
意的x∈R,都有f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=
2
2
x
-1,
则关于x的方程f(x)-log8(x+2)=0在区间(-2,6)上根的个数为( )
通性通法:应用函数模型解决实际问题的一般程序和解题关键 (1)一般程序:文读字语 题言⇒数建学语 模言⇒数求学解应用⇒检反验作 馈答. (2)解题关键:解答这类问题的关键是确切地建立相关函数解析 式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.

数学复习:第二章函数的概念、基本初等函数(Ⅰ)及函数的应用.二次函数

数学复习:第二章函数的概念、基本初等函数(Ⅰ)及函数的应用.二次函数

2.4 二次函数1.二次函数解析式的三种形式(1)一般式:f(x)=________ (a≠0);(2)顶点式:f(x)=________ (a≠0);(3)零点式:f(x)=________ (a≠0).2.二次函数的图象与性质二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,它的对称轴、顶点坐标、开口方向、值域、单调性分别是:(1)对称轴:x=________;(2)顶点坐标:________;(3)开口方向:a>0时,开口________,a<0时,开口________;(4)值域:a>0时,y∈________,a<0时,y∈________;(5)单调性:a>0时,f(x)在________上是减函数,在________上是增函数;a<0时,f(x)在错误!上是________,在错误!上是________.3.二次函数、二次方程、二次不等式三者之间的关系二次函数f(x)=ax2+bx+c (a≠0)的零点(图象与x轴交点的横坐标)是相应一元二次方程ax2+bx+c=0的________,也是一元二次不等式ax2+bx+c≥0(或ax2+bx+c≤0)解集的________.4.二次函数在闭区间上的最值二次函数在闭区间上必有最大值和最小值.它只能在区间的________或二次函数的________处取得,可分别求值再比较大小,最后确定最值.5.一元二次方程根的讨论(即二次函数零点的分布)设x1,x2是实系数一元二次方程ax2+bx+c=0(a>0)的两实根,则x1,x2的分布范围与系数之间的关系如表所示.根的分布(m<n<p 且m,n,p均为常图象满足的条件数)x1<x2<m① 错误!m<x1<x2② 错误!x1<m<x2③f(m)〈0。

m<x1<x2<n④ 错误!m<x1<n<x2<p⑤ 错误!m<x1=x2〈n⑥ 错误!只有一根在区间(m,n)内⑦ f(m)·f(n)〈0.自查自纠1.(1)ax2+bx+c(2)a(x-h)2+k(3)a(x-x1)(x-x2)2.(1)—错误!(2)错误!(3)向上向下(4)错误!错误!(5)错误!错误!增函数减函数3.根端点值4.端点顶点已知函数f(x)=x2-2x+3在区间上有最大值3,最小值2,则m的取值范围是( )A.C.(—∞,2]D.解:由题可知f(0)=3,f(1)=2,f(2)=3,结合图象可知1≤m≤2。

第2讲 基本初等函数

第2讲  基本初等函数
2
考点五 指数幂的运算
【例 5】【例 1】
(1)计算:
16 81
1 4
2
83
22 ;
1
(2)若 x2
1
x2
3 ,求
3
x2 x2
3
x 2 x2
2 3
的值.
规律方法 进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾 运算的顺序. 需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完 全平方公式及 apa-p=1(a≠0)简化运算.
考点九 对数函数的图象及其应用 【例 9】当 0<x≤12时,4x<logax,则 a 的取值范围是________.
规律方法 一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.
4
考点十 对数函数的性质及应用 【例 10】(1)设 a=log32,b=log52,c=log23,则它们的大小关系为________.
(2)设函数
f
x
log2
log
1 2
x,x
x ,x
0 0
,若
f(a)>f (-a),则实数
a
的取值范围是________.
规律方法 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求 解.在利用单调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
3.化简:
a
2 3
b
1 2
3a
1
2b
1 3
1 3
a
1 6
b
5 6
=________.

第2讲 基本初等函数、函数与方程

第2讲 基本初等函数、函数与方程

(2)(2017课标全国Ⅰ,11,5分)设x,y,z为正数,且2x=3y=5z,则 ( )
A.2x<3y<5z B.5z<2x<3y
C.3y<5z<2x D.3y<2x<5z
答案 (1)D (2)D 解析 (1)由x2-2x-8>0可得x>4或x<-2, 所以x∈(-∞,-2)∪(4,+∞), 令u=x2-2x-8, 则其在x∈(-∞,-2)上单调递减, 在x∈(4,+∞)上单调递增. 又因为y=ln u在u∈(0,+∞)上单调递增, 所以y=ln(x2-2x-8)在x∈(4,+∞)上单调递增.故选D.
的应用问题集中体现在函数零
6 指数函数与幂函数的单 点个数的判断,零点所在区间等
调性、大小比较
方面.近几年全国卷考查较少,
但也要引起重视.
总纲目录
总纲目录 栏目索引
考点一 基本初等函数的图象与性质
高考导航
考点二 函数的零点(高频考点)
考点三 函数的实际应用
考点聚焦
考点一 基本初等函数的图象与性质
(2)由2x=3y=5z,可设( 2 )2x=( 3 3 )3y=( 5 5 )5z=t, 因为x,y,z为正数,所以t>1, 因为 2 = 6 23 = 6 8 , 3 3 = 6 32 = 6 9 , 所以 2 < 3 3 ;
考点聚焦 高考导航
栏目索引
因为 2 =10 25 =10 32 , 5 5 =10 25 , 所以 2 > 5 5 ,所以 5 5 < 2 < 3 3 . 分别作出y=( 2 )x,y=( 3 3 )x,y=( 5 5 )x的图象,如图.

第2讲 基本初等函数、函数与方程

第2讲 基本初等函数、函数与方程

[解析] (1)设太阳的星等为 m1,天狼星的星等为 m2,则太阳与天狼星的 亮度分别为 E1,E2,由条件 m1=-26.7,m2=-1.45,m2-m1=52lgEE12,得52lgEE12 =-1.45+26.7=25.25.∴ lgEE21=25.25×25=10.1,
∴ EE21=1010.1,即太阳与天狼星的亮度的比值为 1010.1. (2)设该场 x(x∈N *)天购买一次饲料可使平均每天支付的总费用最少,平 均每天支付的总费用为 y 元. 因为饲料的保管费与其他费用每天比前一天少 200×0.03=6(元),所以 x 天饲料的保管费与其他费用共是 6(x-1)+6(x-2)+…+6=(3x2-3x)(元). 从而有 y=1x(3x2-3x+300)+200×1.8=3x00+3x+357≥417,当且仅当 3x00=3x,即 x=10 时,y 有最小值.故该场 10 天购买一次饲料才能使平均
B.0,12∪1,2 D.1,2
[解析] 关于 x 的方程 a=f(x)恰有两个不同
的实根,即函数 f(x)的图象与直线 y=a 恰有两
个不同的交点,作出函数 f(x)的图象如图所示,
由图象可得实数 a 的取值范围是0,12∪1,2,故选 B. [答案] B
数为
()
A.2
B.3
C.4
D.5
[解析] (1)因为 f′(x)=ex+3>0,所以函数 f(x)在 R 上单调
递增. 易知 f12=e21+32-4=e12-52, 因为 e<245,所以 e12<52,所以 f12<0,但 f(1)=e+3-4=
e-1>0, 所以结合选项可知,函数 f(x)的零点所在区间为12,1,故
是单调递减函数,则 f(log25),flog315,f(log53)的大小关系是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)∵f(x)在12,+∞上为减函数,且
y=log1t 2
在(0,+∞)上为减函数,∴t=x2-ax
+a 在12,+∞上为增函数,且 t>0.因此--2a≤12,且122-a2+a≥0,解得 a≤1
且 a≥-12,则 a 的取值范围为-12,1. 答案 (1)D (2)B
探究提高 1.指数函数、对数函数的图象和性质受底数 a 的影响,解决与指数、对数 函数特别是与单调性有关的问题时,首先要看底数 a 的范围. 2.研究对数函数的性质,应注意真数与底数的限制条件.如本例(2)中易只考虑 y=log1t
________.
解析 (1)函数 f(x)的定义域为(0,+∞),且函数 f(x)在(0,+∞)上为增函数.f12= log212-11=-1-2=-3<0,f(1)=log21-11=0-1<0,f(2)=log22-12=1-12=12>
2
0,f(3)=log23-13>1-13=23>0,即 f(1)·f(2)<0,∴函数 f(x)=log2x-1x的零点在区 间(1,2)内.
答案 B
3.(2020·全国Ⅲ卷)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根
据公布数据建立了某地区新冠肺炎累计确诊病例数 I(t)(t 的单位:天)的 Logistic 模型:
I(t)=1+e-0K.23(t-53),其中 K 为最大确诊病例数.当 I(t*)=0.95K 时,标志着已初步遏
A.a<b<c C.b<c<a
B.b<a<c D.c<a<b
解析
∵log53

log85

log53

1 log58

log53·log58-1 log58
<
log53+2 log582-1 log58

log2l5o2g4582-1<log2l5o2g5582-1=0,∴log53<log85.∵55<84,134<85,∴5log85<4log88=4=
第2讲 基本初等函数、函数的应用
高考定位 1.掌握二次函数、分段函数、幂函数、指数函数、对数函数的图象与 性质;2.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理; 3.能利用函数解决简单的实际问题.
真题感悟
1.(2020·全国Ⅲ卷)已知55<84,134<85.设a=log53,b=log85,c=log138,则( )
2.指数函数与对数函数的图象和性质
指 数 函 数y= ax(a>0 ,a≠1) 与 对数 函 数 y =logax(a>0, a≠1) 的图 象 和 性质 , 分 0<a<1,a>1两种情况,当a>1时,两函数在定义域内都为增函数,当0<a<1时,两 函数在定义域内都为减函数.
3.函数的零点问题
∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.
又x∈[0,2π],
∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.
故函数f(x)的零点为0,π,2π,共3个.
(2)函数 y=|log2x|-12x的零点,即方程|log2x|-12x=0 的根,即函数 y=|log2x|与 y=12x 图象的交点,画出 y=|log2x|与 y=12x的图象,易知交点有 2 个.选 C. 答案 (1)B (2)C
f(x)=1x,x>1.
若关于
x
的方程
f(x)=-14x+
a(a∈R)恰有两个互异的实数解,则 a 的取值范围为( )
A.54,94
B.54,94
C.54,94∪{1}
D.54,94∪{1}
解析 (1)函数 g(x)=f(x)+x+a 存在 2 个零点,即关于 x 的方程 f(x)=-x-a 有 2 个 不同的实根,即函数 f(x)的图象与直线 y=-x-a 有 2 个交点,作出直线 y=-x-a 与函数 f(x)的图象,如图所示,由图可知,-a≤1,解得 a≥-1.
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数 y=g(x)的图象交点的横坐标. (2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形 结合,利用两个函数图象的交点求解.
4.应用函数模型解决实际问题的一般程序
读题
建模
求解
=19⇒0.23(t*-53)=ln 19⇒t*=l0n.2139+53≈0.323+53≈66.故选 C. 答案 C
4.(2020·天津卷)已知函数 f(x)=x-3,x,x≥x<0,0.若函数 g(x)=f(x)-|kx2-2x|(k∈R)恰有 4 个 零点,则 k 的取值范围是( ) A.-∞,-12∪(2 2,+∞) B.-∞,-12∪(0,2 2) C.(-∞,0)∪(0,2 2) D.(-∞,0)∪(2 2,+∞)
热点二 函数的零点与方程
角度 1 确定函数零点个数或范围
【例 2】 (1)函数 f(x)=log2x-1x的零点所在的区间为(
)
A.0,12
B.12,1
C.(1,2)
D.(2,3)
(2)(2020·武 汉 二 模 ) 函 数
f(x)

4cos2
x 2
cos
π2-x

2sin
x - |ln(x + 1)| 的 零 点 个 数 为
2 与 t=x2-ax+a 的单调性,而忽视 t>0 恒成立的限制条件.
【训练 1】 (1)(2020·天津卷)设 a=30.7,b=13-0.8,c=log0.70.8,则 a,b,c 的大小关
系为( ) A.a<b<c
B.b<a<c
C.b<c<a
D.c<a<b
(2)(2020·济南模拟)已知函数 f(x)=l|xo+gax2,|,x->30≤,x≤0(a>0 且 a≠1),若函数 f(x)的
考点整合 1.指数式与对数式的七个运算公式
(1)am·an=am+n; (2)(am)n=amn; (3)loga(MN)=logaM+logaN; (4)logaMN =logaM-logaN; (5)logaMn=nlogaM; (6)alogaN=N; (7)logaN=llooggbbNa(注:a,b>0 且 a,b≠1,M>0,N>0).
ⅰ相切时,由 y′=-x12=-14,得 x=2,此时切点为2,12,则 a=1.
【训练2】 (1)(2019·全国Ⅲ卷)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( )
A.2
B.3
C.4
D.5
(2)函数 y=|log2x|-12x的零点个数是(
)
A.0
B.1
C.2
D.3
解析 (1)令f(x)=0,得2sin x-sin 2x=0,
即2sin x-2sin xcos x=0,
角度 2 根据函数的零点数形结合求参数
【例 3】 (1)已知函数 f(x)=elnx,x,x≤x>00,,g(x)=f(x)+x+a.若 g(x)存在 2 个零点,则 a 的取值范围是( )
A.[-1,0) C.[-1,+∞)
B.[0,+∞) D.[1,+∞)
(2)(2019·天津卷)已知函数
2 x,0≤x≤1,
图象上有且仅有两个点关于 y 轴对称,则 a 的取值范围是( )
A.(0,1)
B.(1,3)
C.(0,1)∪(3,+∞)
D.(0,1)∪(1,3)
解析 (1)因为 a=30.7>30=1,b=13-0.8=30.8>30.7,c=log0.70.8<log0.70.7=1,所 以 b>a>c.故选 D. (2)y=logax的图象关于y轴对称的图象对应的函数为y=loga(-x),函数f(x)的图象上 有且仅有两个点关于y轴对称,等价于y=loga(-x)与y=|x+2|,-3≤x≤0的图象 有且仅有一个交点.当0<a<1时,显然符合题意(图略).当a>1时,只需loga3>1, ∴1<a<3,综上所述,a的取值范围是(0,1)∪(1,3). 答案 (1)D (2)D
4log1313<5log138,∴log85<log138,∴log53<log85<log138,即 a<b<c.故选 A.
答案 A
2.(2020·全国Ⅰ卷)若2a+log2a=4b+2log4b,则( )
A.a>2b
B.a<2b
C.a>b2
D.a<b2
解析 由指数和对数的运算性质可得
2a+log2a=4b+2log4b=22b+log2b. 令f(x)=2x+log2x,则f(x)在(0,+∞)上单调递增. 又∵22b+log2b<22b+log2b+1=22b+log2(2b), ∴2a+log2a<22b+log2(2b),即f(a)<f(2b),∴a<2b. 故选B.
当 k>0 时,如图③,由 y=kx-2 与 y=x2 联立,得 x2-kx+2=0,令 Δ>0,得 k2 -8>0,解得 k>2 2或 k<-2 2(舍去),此时 y=|kx-2|与 h(x)=f(|xx|)的图象有 3 个交点. 综上,k 的取值范围为(-∞,0)∪(2,+∞).故选 D.
法二 由法一知 y=|kx-2|与 h(x)=f(|xx|)的图象有 3 个交点,令 k=-12,检验知符 合题意,可排除选项 A,B;令 k=1,检验知不符合题意,可排除选项 C.故选 D. 答案 D
制疫情,则 t*约为(ln 19≈3)( )
A.60
B.63
相关文档
最新文档