2005—数三真题、标准答案及解析
2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xx xdx ______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D)32ln 8+.[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( (A)πab . (B)π2ab . (C)π)(b a +. (D)π2ba + .[ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ ]字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy=dxπ- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim 23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x x xdx 4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰10221)2(xxxdx⎰-22cos )sin 2(cos sin πdttt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程xx y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= 43 . 【分析】 题设相当于已知1)()(lim 0=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 2==-+→k x x x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→nnn x x f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C)32ln 8+-. (D)32ln 8+.[ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()((A)πab . (B)π2ab . (C)π)(b a +. (D) π2ba + .[ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 =++⎰⎰σd y f x f y f b x f aD)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D⎰⎰+++++])()()()()()()()([21=.2241222ππσba b a d b a D+=⋅⋅+=+⎰⎰ 应选(D).(11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u ∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1-=-x x ex f 则(A) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则22211211=++αλαλαk k k ,)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得BA E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→xx x x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f (16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y Sx S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有 ⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--y xdtt t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ 两边对y 求导得)(ln )11(21y y yϕ-=-,故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2,.0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,得022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f2=∂∂,y yf2-=∂∂, 于是 )(),(2y C x y x f +=,且yy C 2)(-=',从而 Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=xfA ,)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,42>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D∈≤+=, }),(,1),{(222D y x y x y x D ∈>+=,于是 σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x =⎰⎰--221)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j jβ不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有1=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。
2005—数二真题、标准答案及解析

2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xxxdx______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ . (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x uy x u ∂∂=∂∂∂. [ ] (12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1Ta =α,)1,,1(2Ta =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. (23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则π=x dy= dx π- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xxx x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=,1)1(lim )(lim23=+=+∞→+∞→xx x x x f x x []23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x xxdx4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰1221)2(x xxdx⎰-22cos )sin 2(cos sin πdt tt tt =.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey x x =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k=43. 【分析】 题设相当于已知1)()(lim0=→x x x αβ,由此确定k 即可.【详解】 由题设,200cos arcsin 1lim )()(limkxxx x x x x x -+=→→αβ =)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 20==-+→k xx x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标. 【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为: )3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ D ] 【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D ⎰⎰+++++)()()()()()()()([21 =.2241222ππσb a b a d b a D+=⋅⋅+=+⎰⎰ 应选(D). (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x uy x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22xu ∂∂、22y u∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x y x u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (12)设函数,11)(1-=-x xex f 则 (B) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(E) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ∞=→)(l i m 0x f x ,所以x=0为第二类间断点;0)(l i m 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A EA A EB -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y S x S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系.【详解】 如图,有⎰--=+-=xx tt x e dt e e x S 01)1(21)]1(21[)(, ⎰-=ydt t t y S 12))((ln )(ϕ,由题设,得 ⎰-=--y xdt t t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ两边对y 求导得)(ln 11(21y y yϕ-=-, 故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,100='===x x y y 的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可. 【详解】 dtdy t dx dt dt dy y sin 1-=⋅=', sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,得 022=+y dt y d . 解此微分方程,得 221211s i n c o s x C x C t C tC y -+=+=, 将初始条件2,100='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f 于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值. 【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x xf 2=∂∂,y y f 2-=∂∂, 于是 )(),(2y C x y x f +=,且 y y C 2)(-=',从而 C y y C +-=2)(,再由f(1,1)=2,得 C=2, 故 .2),(22+-=y x y x f 令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且 2)0,0(22=∂∂=xf A ,0)0,0(2=∂∂∂=y x f B ,2)0,0(22-=∂∂=y f C , 042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点. 再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x f F y x λλλλλ 得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y x D ⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是 σd y x D ⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x =⎰⎰--20210)1(πθrdr r d ⎰⎰-++D dxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x =8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j j β不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时, →A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a . 而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示. 又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a , 由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有01=-a 或022=--a a ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。
2005年河南省专升本高等数学真题答案及解析

1河南省2005年普通高等学校 专科毕业生进入本科阶段学习考试高等数学 答案及解析一、单项选择题(每小题2分,共计60分) 1.答案:C【解析】:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.答案:D【解析】:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3.答案:B【解析】: ⇒-x e x~12~12x e x -,应选B.4.答案:B【解析】:2)1(2lim2)1(22121lim 21lim 21lim e n n n nn n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.答案:C【解析】:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.答案:D 【解析】:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.答案:A【解析】:对方程yx exy +=两边微分得)(dy dx eydx xdy yx +=++,即dy x e dx ey y x yx )()(-=-++,dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.答案:B 【解析】:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='=''⇒ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.答案:A【解析】:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A. 10.答案:B【解析】:在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.211.答案:C 【解析】:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.答案:B【解析】:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.答案:B【解析】:两边对x 求导 22111)()1()(xx f x e e x f xx-=⇒-⨯=,应选B. 14.答案:A【解析】:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A. 15.答案:C 【解析】:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.答案:A【解析】:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.答案:D 【解析】:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.答案:B 【解析】:x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.答案:A 【解析】:⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.答案:D【解析】:n s n s ρρρρ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D. 21.答案:B 【解析】:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B. 22.答案:C 【解析】:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.答案:B【解析】:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.答案:A325.答案:C【解析】:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.答案:B【解析】:L :,2⎩⎨⎧==x y xx x 从0变到1 , 1422210410310332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.答案:B【解析】:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n nn 是收敛的,但∑∞=1321n n是32=p 的级数发散的,从而级数∑∞=-1321)1(n nn条件收敛,应选B. 28. 答案:C 【解析】:正项级数∑∞=1n nu与∑∞=1n nv收敛⇒∑∞=12n nu与∑∞=12n nv收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n nv u+∑∞=收敛 ,应选C.29. 答案:D【解析】:注意对所给的方程两边求导进行验证,可得通解应为222C y xy x =+-,应选D. 30.答案:A【解析】:微分方程的特征方程为0βλ22=+,有两个复特征根i βλ±=,所以方程的通解为t C t C x βsin βcos 21+=,应选A.二、填空题(每小题2分,共30分) 1.答案:116)2(2+-=-x x x f【解析】:⇒+-=⇒++-+=+32)(3)1(2)1()1(22x x x f x x x f116)2(2+-=-x x x f .2.答案:1=a【解析】:因10)6(lim 0)2(lim 222=⇒=-+⇒=-→→a ax x x x x .3.答案:02π12=+--y x 【解析】:2111121=+='===x x x y k ,则切线方程为)1(214π-=-x y , 即02π12=+--y x 02π12=+--y x .44.答案:dx x xe x dy xx]1ln 1[21+-= 【解析】:dx x x e x x x x d edy ey x x x xxx xx]1ln 1[)ln (21ln ln +-=+=⇒=++ .5.答案:),21(∞+ 或),21[∞+【解析】:⇒>⇒⎪⎩⎪⎨⎧>>-⇒-='21001414x x xx x x y ),21(∞+ 或),21[∞+. 6.答案:),1(e【解析】:104)1(21=⇒=-=''⇒⨯='x xx x e y xe y x x,得拐点为),1(e .7.答案:271【解析】:等式x dt t f x ⎰=3)(两边求导有13)(23=x x f ,取3=x 有271)27(=f . 8.答案:45 【解析】:⎰⎰⎰'-'='=''10101012)2(41)2(21)2(21)2(x d x f x f x x f xd dx x f x 45)0(41)2(41)2(21)2(41)2(2110=+-'=-'=f f f x f f . 9.答案:0 【解析】:0)0(00=⇒=⇒=='-f x xey x.10.答案:C x x ++|cos |ln【解析】:⎰⎰++=++=+-C x x xx x x d dx x x x |cos |ln cos )cos (cos sin 1.11. 答案:6【解析】: 6||2210101=⨯=⇒+-=-=⨯b a S k j i k j i b a ρρρρρρρρρρ .12.答案:)()(z x y z y z ++【解析】:令y z z xy z z x F ln ln ln +-=-= ,则221,1,1zz x z z x F y F z F z y x +-=--='='='.)(;2z x y z F F y z z x z F F x z z y z x +=''-=∂∂+=''-=∂∂ ,所以)()(z x y z y z y z x z ++=∂∂+∂∂ .513.答案:821π- 【解析】:积分区域在极坐标系下表示为}10,4πθ0|)θ,{(≤≤≤≤=r r D ,则 ⎰⎰⎰⎰⎰⎰-=⎪⎭⎫ ⎝⎛=104π021024π02θ)1θ(sec θcos θsin θ)(rdr d rdr d dxdy x y D8π21)θθ(tan 21θ)1θ(sec 214π024π02-=-=-=⎰d .14.答案:)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n【解析】:21121112111)2)(1(323)(2x x x x x x xx x f -++=-++=-+=-+=, 所以)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n .15.答案:xe B Ax x 22)(+【解析】:2是特征方程04λ4λ2=+-的二重根,且)12(+x 是一次多项式,特解应设为 xe B Ax x 22)(+.三、计算题(每小题5分,共40分)1.xx x x x cos sin 1lim2-+→.【解析】:x x x x x x x xx x x x x cos sin 1)cos sin 1(limcos sin 1lim 2020-+++=-+→→ )cos sin 1(lim cos sin 1lim20x x x x x x x x x ++⨯-+=→→ xx x xx x x x x x cos sin 22lim 2cos sin 1lim 20020+=-+=→→34314sin cos 31lim4000=⨯=-=→x x x x .2.已知2arctan )(,2523x x f x x y ='⎪⎭⎫ ⎝⎛+-=,求0=x dx dy . 【解析】:令u x x =+-2523,则)(u f y = , 22)25(162523arctan 2523)(+⨯⎪⎭⎫ ⎝⎛+-='⎪⎭⎫ ⎝⎛+-'=⨯=x x x x x u f dx du du dy dx dy ,3.求不定积分⎰+dx xx 231.【解析】:⎰⎰⎰+=+=+222223111x d x dx x x x dx x x)1(11)(1122222222x d x x x x d x x x ++-+=+-+=⎰⎰C x x x ++-+=23222)1(321.4.设⎪⎩⎪⎨⎧<+≥+=0,210),1ln()(x xx x x f ,求⎰-20)1(dx x f .【解析】:令t x =-1 ,则⎰⎰-=-112)()1(dt t f dx x f⎰⎰⎰⎰+++=+=--10011001)1ln(21)()(dt t dt t dt t f dt t f ⎰+-+++=-1010011)1ln()2ln(dt tt t t t⎰+--+=10)111(2ln 2ln dt t12ln 3)1ln(2ln 21010-=++-=t t .5.设),sin (22y x y e f z x += ,其中),(v u f 可微,求yz x z ∂∂∂∂,. 【解析】:令v y x u y e x=+=22,sin ,则),(v u f z =,复合关系结构如图05-1所示,x vv z x u u z x z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂),(2),(sin v u f x v u f y e v u x'+'=,yvv z y u u z y z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂ ),(2),(cos v u f y v u f y e v u x'+'=.6.求⎰⎰D dxdy y x 22,其中D 是由2,1===x x y xy 及所围成的闭区域.【解析】:积分区域如图05-2所示,曲线x y xy ==,1在第一象限内的交点为(1,1),积分区域可表示为:x y xx ≤≤≤≤1,21.则⎰⎰⎰⎰⎰-==21121222122)1(dx y x dy y x dx dxdy y x x xx x D z vu x xy y 图05-1xx 图05-27⎰⎰-=⎥⎦⎤⎢⎣⎡-=213212)(1dx x x dx x x x49242124=⎪⎪⎭⎫ ⎝⎛-=x x . 7.求幂级数12012)1(+∞=∑+-n n n x n 的收敛域(考虑区间端点).【解析】: 这是缺项的标准的幂级数,因为 221232113212lim )1(1232)1(lim lim ρx n n x x n n x u u n n n n n n nn n =++=-+⋅+-==∞→+++∞→+∞→, 当1ρ<,即11<<-x 时,幂级数绝对收敛; 当1ρ>,即1>x 或1-<x 时,幂级数发散; 当1ρ=,即1±=x 时,若1=x 时,幂级数化为∑∞=+-012)1(n nn 是交错级数,满足来布尼兹定理的条件,是收敛的,若1-=x 时,幂级数化为∑∞=++-0112)1(n n n 也是交错级数,也满足来布尼兹定理的条件,是收敛的.故幂级数的收敛域为[-1,1].8.求微分方程 0cos 2)1(2=-+'+x xy y x 通解. 【解析】:微分方程可化为 1cos 1222+=++'x xy x x y ,这是一阶线性非齐次微分方程,它对应的齐次线性微分方程0122=++'y x x y 的通解为12+=x Cy . 设非齐次线性微分方程的通解为1)(2+=x x C y ,则222)1()(21)(+-+'='x x xC x x C y ,代入方程得x x C cos )(=',所以C x x C +=sin )(.故原微分方程的通解为1sin 2++=x Cx y (C 为任意常数).四、应用题(每小题7分,共计14分)1. 一房地产公司有50套公寓要出租,当月租金定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每月需花费200元的维修费.试问租金定为多少可获得最大收入?最大收入是多少? 【解析】:设每套公寓租金为x 元时,所获收入为y 元,则 )2000(),200](100200050[>---=x x x y , 整理得 ),14000007200(10012-+-=x x y )72002(1001+-='x y 均有意义,8令0='y 得唯一可能的极值点3600=x ,而此时0501<-=''y ,所以3600=x 是使y 达到极大值的点,即为最大值的点.最大收入为115600340034)2003600](1002000360050[=⨯=---=y (元).故 租金定为每套3600元时,获得的收入最大,最大收入为115600元. 2.平面图形由抛物线x y 22=与该曲线在点)1,21(处法线所围成,试求: (1)该平面图形的面积;(2)该平面图形绕x 轴旋转所成的旋转体的体积.【解析】:平面图形如图05-3所示,切点)1,21(A 处的切线斜率为21='=x y k ,由x y 22=得yy 1=',故A 点处的切线斜率 1121='='===y x y y k ,从而A 点处的法线斜率为-1, 法线方程为023=-+y x . 联立方程组⎪⎩⎪⎨⎧=-+=02322y x xy 得另一交点)3,29(-B(1) 把该平面图形看作Y 型区域,其面积为316)6223(2)23(1332132=--=⎥⎦⎤⎢⎣⎡--=--⎰y y y dy y y S ;(2) 根据抛物线的对称性知,该平面图形绕x 轴旋转所成的旋转体的体积等于平面图形OBC 绕x 轴旋转所成旋转体的体积,有故 ⎰⎰+--=--=292329233229022290)312349(ππ)23(π2πx x x xdx x xdx V xπ445]9481[π=-=. 五、证明题(6分)试证:当0>x 时,有xx x x 11ln 11<+<+. 【证明】:构造函数x x f ln )(=,它在)0(∞+,内连续, 当0>x 时,函数在区间]1,[x x +上连续,且xx f 1)(='. 故)(x f 在]1,[x x +上满足Lagrange 中值定理,存在)1,(ξ+∈x x , 使得)ξ()()1(f x f x f '=-+,)1ξ(+<<x x .x图05-3023=-y9而x f x 1ξ1)ξ(11<='<+,故有xx x x 1ln )1ln(11<-+<+, 即0>x 时,xx x x 11ln 11<+<+成立.。
2005年数学考研真题分类解析

第一部分 高等数学一、函数、极限与连续1.(数二)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k=43 .【分析】 题设相当于已知1)()(lim=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(limkxxx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k21143cos 1arcsin lim2==-+→kxxx x x ,得.43=k【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算. 2.(数二)设函数,11)(1-=-x xe xf 则( )(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(l i m 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:+∞=-+→1lim1x xx ,.1lim 1-∞=--→x x x 从而+∞=-→+11lim x x x e ,.0lim 11=-→-x xx e3.(数二)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→xxx dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用洛必塔法则,但分子分母求导前应先变形. 【详解】 由于⎰⎰⎰=-=-=-00)())(()(xxxut x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→x xxx xxx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 00)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f xduu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f【评注】 本题容易出现的错误是:在利用一次洛必塔法则后,继续用洛必塔法则⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=.21)()()()(lim='++→x f x x f x f x f x错误的原因:f(x)未必可导. 4.(数三、数四)极限12sinlim 2+∞→x x x x = 2 .【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12s i nl i m 2+∞→x x x x =.212lim 2=+∞→x x xx【评注】 若在某变化过程下,)(~)(x x αα,则 ).()(lim )()(lim x x f x x f αα=5.(数三、四)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则. 【详解】 )1(1lim)111(lim 20xxx xx ex e x x xex --→-→-+-+=--+=2201limxex x xx -→+-+ =xex xx 221lim-→-+=.2322lim=+-→xx e【评注】 本题属基本题型,在里用罗必塔法则求极限的过程中,应注意利用无穷小量的等价代换进行简化.二、导数与微分1.(数一)设函数nnn xx f 31lim)(+=∞→,则f(x)在),(+∞-∞内( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim)(3=+=∞→nnn xx f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xx x f n nn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).【评注】 本题综合考查了数列极限和导数概念两个知识点. 2.(数二)设xx y )sin 1(+=,则π=x dy= dx π- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]s i n 1c o s )s i n 1[l n ()s i n 1l n (xx x x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y ys i n 1c o s )s i n 1l n (1+++=',于是 ]sin 1cos )sin 1[ln()sin 1(xx x x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.3.(数二)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是( )(A)32ln 81+. (B) 32ln 81+-.(C) 32ln 8+-. (D) 32ln 8+.【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).【评注】注意本题法线的斜率应为-8. 此类问题没有本质困难,但在计算过程中应特别小心,稍不注意答案就可能出错.三、中值定理与导数的应用 1.(数一)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 【评注】 中值定理的证明问题是历年出题频率最高的部分,而将中值定理与介值定理或积分中值定理结合起来命题又是最常见的命题形式. 2.(数一)曲线122+=x xy 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=212lim)(lim22=+=∞→∞→xx xxx f x x ,[]41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
考研数学三(微积分)历年真题试卷汇编15(题后含答案及解析)

考研数学三(微积分)历年真题试卷汇编15(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2005年)当a取值为( )时,函数f(x)=2x3一9x2+12x—a恰有两个不同的零点。
A.2。
B.4。
C.6。
D.8。
正确答案:B解析:由f’(x)=6x2一18x+12=6(x一1)(x一2),知可能极值点为x=1,x=2,当x<1和x>2时,函数单调增加,1<x<2时,函数单调减小,且f(1)=5一a,f(2)=4一a。
可见当a=4时,f(1)=1>0,且=一∞,由单调性和零点存在性定理可知,函数在(-∞,1)上有唯一的零点,而此时f(2)=0,在(1,2)和(2,+∞)上无零点,因此a=4时,f(x)恰好有两个零点。
故应选B。
知识模块:微积分2.(2001年)设函数f(x)的导数在x=a处连续,又,则( )A.x=a是f(x)的极小值点。
B.x=a是f(x)的极大值点。
C.(a,f(a))是曲线y=f(x)的拐点。
D.x=a不是f(x)的极值点,(a,f(a))也不是曲线y=f(x)的拐点。
正确答案:B解析:又函数f(x)的导数在x=a处连续,根据函数在某点连续的定义,左极限等于右极限且等于函数在该点的值,所以f’(a)=0,于是即f’(a)=0,f”(a)=一1<0,根据判定极值的第二充分条件知x=a是f(x)的极大值点,因此,正确选项为B。
知识模块:微积分3.(2004年)设f(x)=|x(1-x)|,则( )A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点。
B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点。
C.x=0是f(x)的极值点,且(O,O)是曲线y=f(x)的拐点。
D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点。
正确答案:C解析:令φ(x)=x(x一1),则φ(x)=是以直线x=为对称轴,顶点坐标为开口向上的一条抛物线,与x轴相交的两点坐标为(0,0),(1,0),f(x)=|φ(x)|的图形如图。
2005年全国硕士研究生入学统一考试数学三真题及答案

全国硕士研究生入学统一考试数学三试题答案一、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1)极限12sinlim 2+∞→x xx x = . 【答案】2【考点】等价无穷小 【难易度】★ 【详解】 解析:12sinlim 2+∞→x x x x 22lim 2.1x xx x →∞=+等 (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 . 【答案】2xy =【考点】变量可分离的微分方程;一阶线性微分方程【难易度】★★ 【详解】解析:方法一:原方程可化为0)(='xy ,积分得 C xy =, 代入初始条件2)1(=y 得C =2,故所求特解为 2xy =. 方法二:按变量分离法解之. 由0=+'y y x ,分离变量为dy dx dx dx=- 积分ln ln ln y x C =-+.改写为Cy x=. 去掉绝对值号,认为C 可取负值,得通解C y x=. 以2)1(=y 代入得C =2,得特解2xy =. (3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dz.【答案】2ed (e 2)d x y ++ 【考点】全微分形式不变性 【难易度】★★ 【详解】 解析:[]e y xe e x zy x y x 2)0,1()1ln()0,1(=+++=∂∂++,2)0,1(11)0,1(+=⎥⎦⎤⎢⎣⎡+++=∂∂+e y x xe y z y x ,于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a = .【答案】12【考点】向量组线性相关的充分必要条件 【难易度】★★ 【详解】解析:方法一:由题设,有21110100011010210111-1-1-2-1-1-13211212-2-1-2-2-1-143212312a a a a a a a a a a a -----==-=-------(1)(21)0a a =--=得21,1==a a , 但题设1≠a ,故.21=a方法二:令1234223411231123112300120012[,,,]112011101111101220011a a a a a a a a αααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦11230111001200021a a ⎡⎤⎢⎥---⎢⎥=⎢⎥-⎢⎥-+⎣⎦ 向量组线性相关⇒1234[,,,]4r αααα<1a ⇒=或12a =,1a =不合题意,故 12a =.(5)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1Λ中任取一个数,记为Y , 则}2{=Y P = .【答案】1348【考点】全概率公式;条件概率 【难易度】★★★【详解】解析:}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(,)X Y 的概率分布为X Y 0 10 0.4 a 1 b 0.1若随机事件}0{=X 与}1{=+Y X 相互独立,则a = ,b = . 【答案】0.4,0.1【考点】二维离散型随机变量的概率分布;二维随机变量独立性的概念 【难易度】★★ 【详解】解析:方法1:显然0.40.11a b +++=,可知0.5a b += 又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P ,而 {0,1}{0,1};{0}{0,0}{0,1}0.4;{1}{0,1}{1,0}0.5;P X X Y P X Y a P X P X Y P X Y a P X Y P X Y P X Y a b =+=========+===++====+===+=代入独立等式,得(0.4)0.5a a =+⨯,解得0.4,0.1a b ==,故应选(B). 方法2:如果把独立性理解为{10}{1}P X Y X P X Y +===+=即{1|0}{1}0.5;P Y X P X Y a b ===+==+= {00}1{10}P Y X P Y X ===-==,所以{00}{10}P Y X P Y X ======0.5;因此{0,0}{0,1}P X Y P X Y =====,即0.4a =. 又因为0.5a b +=,得0.1b =. 方法3:如果把独立性理解为{10}{11}P X Y X P X Y X +===+==所以}1{}1,1{}0{}0,1{===+====+X P X Y X P X P X Y X P即}1{}1,0{}0{}0,1{=======X P X Y P X P X Y P得bba a +=+1.04.0 又因为0.40.11a b +++=,可知0.5a b +=联立解得:1.0,4.0==b a二、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰有两个不同的零点.( ) (A ) 2. (B ) 4. (C ) 6. (D ) 8. 【答案】(B ) 【考点】零点定理 【难易度】★★ 【详解】解析:12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为1,2x x ==,从而知划分成3个严格单调区间:(,1),(1,2),(2,)-∞+∞,分别为严格单调增、严格单调减、严格单调增,并且lim ,lim x x →-∞→+∞=-∞=+∞.当4a =时,,则区间(,1)-∞内正好有一个零点,区间(1,2)内无零点,(2)f 正好是一个零点,区间(2,)+∞内无零点. 故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则( )(A ) 123I I I >>. (B )321I I I >>.(C ) 312I I I >>. (D )213I I I >>. 【答案】(A )【考点】二重积分的性质 【难易度】★★ 【详解】解析:在区域}1),{(22≤+=y x y x D 上,除点及边界有221x y +=外,有>22y x +>222()x y +而在01u ≤≤内,cos u 是严格单调减函数,于是22cos()x y <+<222)cos(y x +因此<+⎰⎰σd y x D22cos <+⎰⎰σd y x D )cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0Λ=>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是( )(A )∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C ))(1212∑∞=-+n n n a a收敛. (D ))(1212∑∞=--n n n a a收敛.【答案】(D )【考点】收敛级数的基本性质 【难易度】★★ 【详解】解析:方法一:排除法. 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A ),(B )选项.又)(1212∑∞=-+n n n a a =2114-13312122(21)44n n n n n n n n+=>=--g ,发散.排除(C ), 故应选(D ). 事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.方法二:证明(D )正确,将题设收敛的级数∑∞=--11)1(n n n a 展开11234561(1)---n n n a a a a a a a ∞-=-=+++∑L1234562121---()n n n a a a a a a a a ∞-=+++=-∑L 加括号()()()由级数基本性质知,收敛级数可以任意添加括号,故应选(D ). (10)设x x x x f cos sin )(+=,下列命题中正确的是( )(A ) (0)f 是极大值,)2(πf 是极小值. (B )(0)f 是极小值,)2(πf 是极大值.(C ) (0)f 是极大值,)2(πf 也是极大值. (D ) (0)f 是极小值,)2(πf 也是极小值.【答案】(B )【考点】函数单调性的判别;函数的极值 【难易度】★ 【详解】解析:x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又x x x x f sin cos )(-='',且02)2(,01)0(<-=''>=''ππf f ,故(0)f 是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是( )(A )若)(x f '在(0,1)内连续,则)(x f 在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则)(x f 在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则)(x f 在(0,1)内有界. (D )若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. 【答案】(C )【考点】拉格朗日中值定理 【难易度】★★ 【详解】解析:方法1:排斥法: 设1()f x x =, 则()f x 及21()f x x'=-均在(0,1)内连续,但()f x 在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).方法2:论证法.在区间(0,1)内()f x '有界,故存在0M >,对于(0,1)内的一切x ,有()f x M '≤.在(0,1)内取0x ,固定之.再取(0,1)x ∈,用拉格朗日中值定理,有00()()()(),(0,1)f x f x f x x ξξ'=+-∈于是000()()()()f x f x f x x f x M ξ'≤+-≤+, 所以()f x 在(0,1)内有界.(12)设矩阵A =33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为( )(A )33. (B )3. (C )31. (D )3. 【答案】(A )【考点】伴随矩阵 【难易度】★★★ 【详解】解析:由T A A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T或1=A ;而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是( )(A ) 01=λ. (B ) 02=λ. (C ) 01≠λ. (D ) 02≠λ. 【答案】(B )【考点】矩阵的特征向量的性质;向量组线性无关的判别法; 【难易度】★★ 【详解】解析:方法一:令0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 因12λλ≠,故21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B ).方法二: 由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,由12λλ≠,知21,αα线性无关,从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B ).(14)设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是( )(注:大纲已不要求)(A ) )).16(4120),16(4120(05.005.0t t +-(B ) )).16(4120),16(4120(1.01.0t t +-(C ) )).15(4120),15(4120(05.005.0t t +- (D ))).15(4120),15(4120(1.01.0t t +-三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ 【考点】等价无穷小;洛必达法则【难易度】★★ 【详解】解析:)1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+=2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e(16)(本题满分8分)设()f u 具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【考点】多元复合函数二阶偏导数的求法【难易度】★★ 【详解】解析:由已知条件可得),()())(())((2y x f x y f x y y x y x yf x y x y f x g x x '+'-=''+''=∂∂ )(1)()()()(22222yxf y x y f x y x y f x y xg x "+"-+''-=∂∂ ),(1)()(2423yxf y x y f x y x y f x y "+"+'=),()()(1))(()())((yxf y x y x f x y f x y x y x yf y x f x y x y f yg y y '-+'=''++''=∂∂),()(1)()()()(132********yxf y x x y f x y x f y x y x f y x y x f y x x y f x yg "+"="+'+'-"=∂∂所以 )()()()(222222222222x y f x y y x f y x x y f x y x y f x y y g y x g x "-"+"+'=∂∂-∂∂)(2yx f y x "- ).(2xyf x y '=(17)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【考点】二重积分的性质;利用直角坐标计算二重积分;利用极坐标计算二重积分【难易度】★★★ 【详解】解析:D 如图.2210x y +-=为以O 为中心半径为1 的圆周,划分D 如图为 1D 与2D .222222211,(,)11,(,)x y x y D x y x y x y D ⎧+-∈⎪+-=⎨--∈⎪⎩方法1:221Dxy d σ+-⎰⎰=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x前一个积分用直角坐标做,2211222201(1)(1)xD xy dxdy dx x y dy -+-=+-⎰⎰⎰⎰3122222011[(1)(1)1(1-)]33x x x x dx =----+-⎰ 33221111222200002222[()(1)](1)3333x x dx x dx dx x dx =-+-=-+-⎰⎰⎰⎰ 4201212311cos 333342238tdt πππ=-+=-+=-+⎰g g g .后一个积分用极坐标做,11222220011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. =⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π方法2:由于区域2D 的边界复杂,计算该积分较麻烦,可以将2D 内的函数“扩充”到整个区域D =12D D ⋃,再减去“扩充”的部分,就简化了运算.即222(1)d D x y σ+-=⎰⎰22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 因此221Dx y d σ+-⎰⎰=122(1)D x y d σ--⎰⎰222(1)D x y d σ++-⎰⎰122(1)D xy d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰1222(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰由极坐标112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 而3111222220001(1)(1)[(1)]03Dx x y d dy x y dx y x dy σ+-=+-=+-⎰⎰⎰⎰⎰311220011221[1]()[]033333y y dy y dy y =+-=-=-=-⎰⎰ 所以221Dx y d σ+-⎰⎰=.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数()S x . 【考点】幂级数的和函数;幂级数和函数逐项求导;幂级数和函数逐项积分 【难易度】★★★ 【详解】解析:设∑∞=-+=12)1121()(n n x n x S ,∑∞=+=121121)(n nx n x S ,∑∞==122)(n n x x S , 则2221211111()(1)()()2121n nn n n n S x x x x S x S x n n ∞∞∞====-=-=-++∑∑∑,).1,1(-∈x 由于∑∞==122)(n nxx S =221xx -,).1,1(-∈x 21212212111(())()(),(1,1)21211n n nn n n x x x xS x x x n n x ++∞∞∞==='''====∈-++-∑∑∑,因此⎰-++-=-=xxxx dt t t x xS 022111ln 211)(, (1,1)x ∈-又由于0)0(1=S ,故1111ln,1,()210.0,x x S x x xx +⎧-+<⎪=-⎨=⎪⎩所以)()()(21x S x S x S -=21111ln,1,02110.0,x x x x x x x +⎧-+-<≠⎪=--⎨=⎪⎩(19)(本题满分8分)设(),()f x g x 在[0,1]上的导数连续,且(0)0f =,0)(≥'x f ,0)(≥'x g .证明:对任何[0,1]a ∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(【考点】函数单调性的判别;定积分的基本性质【难易度】★★ 【详解】解析:方法一:将a 看成变限设 =)(x F ⎰⎰-'+'xg x f dt t g t f dt t f t g 01)1()()()()()(,则()F x 在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即()F x 在[0,1]上单调递减.注意到 =)1(F ⎰⎰-'+'11)1()1()()()()(g f dt t g t f dt t f t g ,而⎰⎰⎰'-=='110110)()()()()()()()(dt t g t f t f t g t df t g dt t f t g=⎰'-1)()()1()1(dt t g t f g f ,故(1)0F =.因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有 ⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 0)()()()()()(=⎰'-adx x g x f a g a f 0)()()()(,⎰⎰'+'adx x g x f dx x f x g 01)()()()(=⎰⎰'+'-1)()()()()()(dx x g x f dx x g x f a g a f a⎰'+1.)()()()(adx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈, ⎰⎰-='≥'101)]()1()[()()()()(a g g a f dx x g a f dx x g x f ,从而⎰⎰'+'adx x g x f dx x f x g 01)()()()().1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分) 已知齐次线性方程组(I ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (II )⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值.【考点】齐次线性方程组解的判定;齐次线性方程组有非零解的充分必要条件;线性方程组的同解【难易度】★★ 【详解】解析:方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换12310123501111002a a ⎡⎤⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,从而2a =. 此时,方程组(i )的系数矩阵可化为123101235011112000⎡⎤⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 故T)1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得 2,1==c b 或.1,0==c b 当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211,显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101,显然此时方程组(i )与(ii )的解不相同.综上所述,当2a =,b=1,c=2时,方程组(i )与(ii )同解. (21)(本题满分13分) 设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I ) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I )的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. 【考点】二次型正定的判定 【难易度】★★ 【详解】解析:(Ⅰ)因为 Tn 1mTE OC A E P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=,E A C O E n 1T m ⎥⎦⎤⎢⎣⎡-=- 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=n1mT n 1T mT E OC A E B C C A E AC O E DP P.C A C B O O A E OC A E C A C B O C A 1T n1m1T ⎥⎦⎤⎢⎣⎡-=-⎥⎦⎤⎢⎣⎡-=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (Ⅱ)矩阵C A C B T1--是正定矩阵.D 是对称阵,知DP P T 是对称阵,且A 是对称阵,故1T B C A C --是对称阵,又D和1T A o o B C A C -⎡⎤⎢⎥-⎣⎦合同,且D 正定,故1T A o o B C A C -⎡⎤⎢⎥-⎣⎦正定,故对任意的00Y ⎡⎤≠⎢⎥⎣⎦,恒有[]1100,()0TT T T A o Y Y B C A C Y o B C A C Y --⎡⎤⎡⎤=->⎢⎥⎢⎥-⎣⎦⎣⎦故C A C B T1--为正定矩阵. (22)(本题满分13分)设二维随机变量(,)X Y 的概率密度为1,01,02,(,)0,.x y x f x y <<<<⎧=⎨⎩其他求:(I ) (,)X Y 的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z (III )}.2121{≤≤X Y P 【考点】二维连续型随机变量的边缘密度;二维连续型随机变量分布函数的计算;条件概率的计算【难易度】★★★ 【详解】 解析:(Ⅰ)如右图,关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=2001,,.0,xx dy ⎧<<⎪⎨⎪⎩⎰其他=2,01,0,.x x <<⎧⎨⎩其他关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=12,02,.0,y dx y ⎧<<⎪⎨⎪⎩⎰其他=02,1,2.0,yy ⎧<<-⎪⎨⎪⎩其他(II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ; 2) 当20<≤z 时,22(){2}(,)1(,)Z x y zx y zF z P X Y z f x y dxdy f x y dxdy -≤->=-≤==-⎰⎰⎰⎰12021x zz dx dy -=-⎰⎰=241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: 20,0,1(),02,4 2.1,Z z F z z z z z ⎧<⎪⎪=-≤<⎨⎪≥⎪⎩ 故所求的概率密度为:102,1,()2.0,Z z z f z ⎧<<-⎪=⎨⎪⎩其他(III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P(23)(本题满分13分)设)2(,,,21>n X X X n Λ为来自总体2(0,)N σ的简单随机样本,其样本均值为X ,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y 的方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c .【考点】随机变量方差的计算公式;随机变量的方差的性质;协方差的性质;简单随机样本 【难易度】★★★★ 【详解】解析:由题设,知)2(,,,21>n X X X n Λ相互独立,且),,2,1(,02n i DX EX i i Λ===σ,∑==ni i X n X 11,易知:011=⎪⎭⎫⎝⎛=∑=n i i X n E X E ,n X D nX n D X D ni i n i i 212111σ==⎪⎭⎫ ⎝⎛=∑∑== n DX n X X Cov n X n X Cov X X Cov i ni i i n i i i i 2111),(1)1,(),(σ====∑∑==(I )()2(,)i i i i DY D X X DX Cov X X DX =-=-+2222n nσσσ=-+ .12σnn -=(II )),(),(11X X X X Cov Y Y Cov n n --=),(),(),(),(11X X Cov X X Cov X X Cov X X Cov n n +--=X D n+-=22σ .112222σσσnn n -=+-=(III )())()(])[(])([1212121n n n n Y Y E Y Y D c Y Y cE Y Y c E +++=+=+)],(2[)(1211n n Y Y Cov DY DY c Y Y cD ++=+= 222)2(2]211[σσσ=-=--+-=c nn n n n n n c , 故 .)2(2-=n nc。
考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2014年] 行列式A.(ad—bc)2B.一(ad—bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:解一令则此为非零元素仅在主、次对角线上的行列式由命题2.1.1.1(1),即得|A|=一(ad—bc)(ad—bc)=一(ad一bc)2.仅(B)入选.解二将|A|按第1行展开,然后可利用命题2.1.1.1(2),即式(2.1.1.5)直接写出结果:解三仅(B)入选.解四仅(B)入选.(注:命题2.1.1.1 设非零元素仅在主、次对角线上的2n阶、2n一1阶行列式分别为D2n,D2n-1,则命题2.1.2.3 设A,B分别是m阶与n阶矩阵,则) 知识模块:线性代数2.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:解一由A3=O得E=E-A3=(E-A)(E+A+A3),E=E+A3=(E+A)(E -A+A3).由命题2.2.1.2知,E-A,E+A均可逆.仅(C)入选.解二因A3=0,即A为幂零矩阵,其n个特征值全部都等于零,则A的矩阵多项式f1(A)=E-A的n个特征值为f1(λ)|λ=0=(1-λ)|λ=0=1.因而|E-A|=1≠0,故E一A可逆.A的另一个矩阵多项式f2(A)=E+A的n个特征值为f2(λ)|λ=0=(1+λ)|λ=0=1.故|E+A|=1,所以E+A可逆.知识模块:线性代数3.[2017年] 设α为n维单位列向量,E为n阶单位矩阵,则( ).A.E—ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E一2ααT不可逆正确答案:A解析:令A=ααT,则A2=A.又令AX=λX,由(A2-A)X=(λ2-λ)X=0得λ2-λ=0,即λ=0或λ=1.因为tr(A)=αTα=1=λ1+…+λn故得A的特征值为λ1=…=λn-1=0,λn=1.而E-ααT的特征值为λ1=…=λn-1=1,λn=0,从而|E-ααT|=0,E-ααT不可逆.仅(A)入选.知识模块:线性代数4.[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).A.B.3C.1/3D.正确答案:A解析:解一显然矩阵A满足命题2.2.2.1中的三个条件,因而由该命题得|A|=1.将|A|按第1行展开得到1=|A|=a11A11+a12A12+a13A13=a112+a122+a132=3a112,故仅(A)入选.解二由A*=AT,即其中Aij为|A|中元素aij的代数余子式,得aij=Aij(i,j=1,2,3).将|A|按第1行展开,得到|A|=a11A11+a12A12+a13A13=a112+122+a132=3a112>0.又由A*=AT得到|A*|=|A|3-1=|AT|=|A|,即|A|(|A|=1)=0,而|A|>0,故|A|-1=0,即|A|=1,则3a112=1.因a11>0,故仅(A)入选.注:命题2.2.2.1 设A为n(n≥3)阶实矩阵,其元素分别与其代数余子式相等(aij=Aij(i,j=1,2,…,n),即AT-A*或A=(A*)T)且其中一元素不等于0,则其行列式|A|等于1.知识模块:线性代数5.[2009年] 设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( ).A.B.C.D.正确答案:B解析:解一令则|C|=(-1)2×2|A||B|=2×3=6,即分块矩阵可逆,则由C*=|C|C-1得到解二因对任一四阶矩阵C,有C*C=CC*=|C|4,其中C*为C的伴随矩阵.下面用直接验证法进行选择.对于选项(A),有其中E2,E4分别为二阶、四阶单位矩阵.对于选项(B),有满足伴随矩阵的性质.对选项(C)、(D),分别有由此可知,仅(B)入选.知识模块:线性代数6.[2004年] 设n阶矩阵A与B等价,则必有( ).A.当|A|=a(a≠0)时,|B|=aB.当|A|=a(a≠0)时,|B|=-aC.当|A|≠0时,|B|=0D.当|A|=0时,|B|=0正确答案:D解析:解一因A与B等价,由命题2.2.5.4(1)知,仅(D)入选.(注:命题2.2.5.4 (1)矩阵等价的必要条件是矩阵的行列式同时为零或同时不为零.)解二因A与B等价,其秩必相等.当|A|=0时,秩(A)<n,故秩(B)<n,于是|B|=0.所以选项(D)正确.因秩(A)=秩(B),不一定有|A|=|B|或|A|=-|B|,故(A)、(B)不成立.至于(C),显然有秩(A)>秩(B),故(C)不成立.仅(D)入选.解三因A与B等价,由矩阵等价的必要条件知,存在可逆矩阵P与Q,使得A=PBQ.两边取行列式得|A|=|P||B||Q|,而|P|≠0,|Q|≠0,因而|A|与|B|同时为零或同时不为零.故当|A|=0时,必有|B|=0.仅(D)入选.知识模块:线性代数7.[2013年] 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ).A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B解析:解一对矩阵A,C分别按列分块,记A=[α1,α2,…,αn],C=[γ1,γ2,…,γn],又令B=(bγij)γn×n,则由AB=C得到可见,C的列向量组可由A的列向量组线性表出.因B可逆,由A=CB-1类似可证,A的列向量组也可由C的列向量组线性表出.由两向量组等价的定义知,仅(B)入选.解二因可逆矩阵可表示成若干个初等矩阵的乘积,而每个初等矩阵表示一次初等变换,可逆矩阵B左乘矩阵A,于是A经过有限次初等列变换化为C,而初等列变换能保持变换前的矩阵与变换后所得矩阵的列向量组的等价关系(见命题2.3.1.3),因而仅(B)入选.注:命题2.3.1.3 如果矩阵A 经有限次初等行(列)变换化成矩阵B(即A≌B),则A的行(列)向量组与B的行(列)向量组等价.知识模块:线性代数8.[2003年] 设α1,α2,…,α3均为n维向量,下列结论中不正确的是( ).A.若对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ksαs≠0,则α1,α2,…,αs线性无关B.若α1,α2,…,αs线性相关,则对于任意一组不全为零的数k1,k2,…,ks,有k1α1+k2α2+…+ksαs=0C.α1,α2,…,αs线性无关的充分必要条件是此向量组的秩为sD.α1,α2,…,α3线性无关的必要条件是其中任意两个向量线性无关正确答案:B解析:解一(A)正确.事实上,若α1,α2,…,α3线性相关,则存在一组不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0.这定义的逆否命题就是选项(A)中的命题.可见(A)成立.若α1,α2,…,αs线性相关,由其定义知,存在一组而不是任意一组不全为零的数k1,k2,…,ks使得k1α1+k2αs+…+ksαs=0.(B)不成立.由“向量组α1,α2,…,αs线性无关的充要条件是秩([α1,α2,…,αs])=s”知,(C)也成立.因α1,α2,…,αn线性无关的必要条件是其任一部分向量组线性无关.当然其中任意两个向量也线性无关,(D)也成立.仅(B)入选.解二可举反例证明(B)不正确:向量组α1=[1,0]T,α2=[4,0]T线性相关,但对于一组不全为零的常数k1=1,k2=0,却有k1α1+k2α2=α1=[1,0]T≠0.知识模块:线性代数9.[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.A.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性相关B.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性无关C.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性相关D.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性无关正确答案:A解析:解一由定义知,若α1,α2,…,αs线性相关,则存在不全为零的数c1,c2,…,cs,使得c1α1+c2α2+…+csαs=0.用A左乘等式两边,得c1A α1+c2Aα2+…+csAαs=0,于是Aα1,Aα2,…,Aαs线性相关.仅(A)入选.解二若α1,α2,…,αs线性相关,则秩([α1,α2,…,αs])其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为( ).A.α1,α2,α3B.α1,α2,α4C.α1,α3,α4D.α2,α3,α4正确答案:C解析:因故α1,α3,α4线性相关.仅(C)入选.知识模块:线性代数11.[2007年] 设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).A.α1一α2,α2一α3,α3一α1B.α1+α2,α2+α3,α3+α1C.α1—2α2,α2—2α3,α3—2α1D.α1+2α2,α2+2α3,α3+2α1正确答案:A解析:解一用观察易知,选项(A)中向量有关系(α1-α2)+(α2-α3)+(α3-α1)=0,故(A)中向量线性相关.解二由命题2.3.2.3判别之.s=3为奇数,k=3也为奇数,故(A)中向量线性相关.(注:命题2.3.2.3 已知向量组α1,α2,…,αs(s≥2)线性无关,设β1=α1±α2,β2=α2±α3,…,βs-1=αs-1±αs,βs=αs±α1,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则(1)当s与k的奇偶性相同时,向量组β1,β2,…,βs线性相关;(2)当s与k的奇偶性不同时,向量组β1,β2,…,βs线性无关.) 解三用线性相关的定义判定.为此令x1(α1-α2)+x2(α2-α3)+x3(α3-α1)=0,即(x1-x3)α1+(-x1+x2)α2+(-x2+x3)α3=0.因α1,α2,α3线性无关,故因其系数矩阵行列式等于零,故上述方程组有非零解,即α1-α2,α2-α3,α3-α1线性相关.知识模块:线性代数12.[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件正确答案:A解析:记β1=α1+kα3,β2=α2+lα3,则若α1,α2,α3线性无关,则[α1,α2,α3]为可逆矩阵,故秩即β1=α1+kα3,β2=α2+lα3线性无关.反之,设α1,α2线性无关,α3=0,则对任意常数k,l必有α1+kα3,α2+lα3线性无关,但α1,α2,α3线性相关,故α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的必要但非充分条件.仅(A)入选.知识模块:线性代数填空题13.[2016年] 行列式正确答案:λ4+λ3+2λ2+3λ+4解析:知识模块:线性代数14.[2010年] 设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=________.正确答案:3解析:|A+B-1|=|AE+EB-1|=|ABB-1+AA-1B-1|=|A(B+A-1)B-1|=|A||B+A-1||B-1|=|A||A-1+B ||B|-1=3×2×(1/2)=3.解二|A+B-1|=|EA+B-1E|=|B-1BA+B-1A-1A|=|B-1||B+A-1||A|=|B|-1|B+A-1||A|=(1/2)×2×3=3.知识模块:线性代数15.[2006年] 设矩阵E为二阶单位矩阵,矩阵A满足BA=B+2E,则|B|=____________.正确答案:2解析:解一由BA=B+2E得到B(A-E)=2E,两边取行列式利用命题2.1.2.1(2)和(5)得到|B||A—|=|2E|=22|E|=4.而故|B|=2.解二解一中没有求出矩阵B.但若要求出也不难.由B(A—E)=2E知B==2(A-E)-1而故从而|B|=2.(注:命题2.1.2.1 设A=[aij]n×n,B=[bij]n×n,E为n阶单位矩阵,k为常数.(2)|AB|=|A||B|,|AB|=|BA|,但AB≠BA;(5)|kA|=kn|A|,但[kaij]n ×n=k[aij]n×n=kA;) 知识模块:线性代数16.[2008年] 设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=_________.正确答案:3解析:解一因A的特征值为1,2,2,故A-1的特征值为1,1/2,1/2.因而4A-1一E的特征值为λ1=4×1—1=3,λ2=4×(1/2)一1=1,λ3=4×(1/2)一1=1,故|4A-1一E|=λ1λ2λ3=3×1×1=3.解二所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如果A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP—diag(1,2,2)①=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4.PΛ-1P-1一PEP-1=P(4Λ-1-E)P-1,两端取行列式得到|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,l /2)一E|=|diag(3,1,1)|=3.知识模块:线性代数17.[2003年] 设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵A=E-ααT,B=E+(1/a)ααT,其中A的逆矩阵为B,则a=____________.正确答案:-1解析:解一由题设有A-1=B,故AB=E,注意到αTα=2a2(是一个数),有E=AB-(E-ααT)[E+(1/a)ααT]=E+(1/a)ααT-ααT-(1/a)α(αTα)αT =E+[1/a-1-(1/a)·2a2]ααT=E+(1/a-1-2a)ααT,故(1/a-1-2a)ααT=O.因ααT≠O,所以1/a-1-2a=0,即(2a-1)(a+1)=0.因而a=1/2或a=-1.因a<0,故a=-1.解二因(E-A)2=(ααT)2=ααTααT=(αTα)ααT=2a2ααT=2a2(E-A),即A2-2A+2a2A=2a2E-E,亦即A[A-(2-2a2)E]=(2a2-1)E,故A可逆,且由题设有故整理得到而ααT≠O,故(a+1)(2a-1)=0,又因a<0,故a=-1.知识模块:线性代数18.[2012年] 设A为三阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A 的第1行与第2行得矩阵B,则|BA*|=__________.正确答案:-27解析:由题设有B=E12A,两边右乘A*,得到BA*=E12AA*=|A|E12E=|A|E12,则|BA*|=||A|E12|=|A|3|E12|=33×(-1)=-27.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
2005年福建高考理科数学试题及答案

2005年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数iz -=11的共轭复数是( )A .i 2121+B .i 2121-C .i -1D .i +1 2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是 ( )A .15B .30C .31D .64 3.在△ABC 中,∠C=90°,),3,2(),1,(==k 则k 的值是 ( )A .5B .-5C .23D .23-4.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m 其中真命题的个数是( )A .0B .1C .2D .35.函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( )A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a6.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( )A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==7.已知p :,0)3(:,1|32|<-<-x x q x 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中 点,则异面直线A 1E 与GF 所成的角是( ) A .515arccos B .4πC .510arccosD .2π9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+11.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-12.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 则方程0)(=x f 在区间(0,6)内解的个数的最小值是( )A .2B .3C .4D .5第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A) 2. (8)设 I 1
D
(B) 4.
(C) 6.
(D) 8.
D D
[
]
cos
x 2 y 2 d , I 2 cos( x 2 y 2 )d , I 3 cos( x 2 y 2 ) 2 d ,其中
D ቤተ መጻሕፍቲ ባይዱ( x, y) x 2 y 2 1} ,则
P{Y 2} =______.
(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件 { X 0} 与 { X Y 1} 相互独立,则 a= , b= .
二、选择题(本题共 8 小题,每小题 4 分,满分 32 分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内) (7)当 a 取下列哪个值时,函数 f ( x) 2 x 9 x 12 x a 恰好有两个不同的零点.
(19) (本题满分 8 分) 设 f(x),g(x)在[0,1]上的导数连续,且 f(0)=0, f ( x) 0 , g ( x) 0 .证明:对任何 a [0,1] ,有
a
0
g ( x) f ( x)dx f ( x) g ( x)dx f (a) g (1).
2
2
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 4 - 页 共 16 页
2005 年考研数学(三)真题解析
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上) (1)极限 lim x sin
x
2x = 2 . x 1
2
【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】
1 1 1 1 (B) (20 t 0.05 (16),20 t 0.05 (16)). (20 t 0.1 (16),20 t 0.1 (16)). 4 4 4 4 1 1 1 1 (C) (20 t 0.05 (15),20 t 0.05 (15)). (D) (20 t 0.1 (15),20 t 0.1 (15)). [ ] 4 4 4 4
3 2
(A) 2. (B) 4. (C) 6. (D) 8. [ B ] 【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极 值为零时,函数 f(x)恰好有两个不同的零点. 【详解】
f ( x) 6 x 2 18x 12 = 6( x 1)( x 2) ,知可能极值点为 x=1,x=2,且
x y
( x 1) ln(1 y) ,则 dz
(1, 0 )
________.
(4)设行向量组 (2,1,1,1) , (2,1, a, a) , (3,2,1, a) , (4,3,2,1) 线性相关,且 a 1 ,则 a=_____. (5)从数 1,2,3,4 中任取一个数,记为 X, 再从 1,2,, X 中任取一个数,记为 Y, 则
2
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 2 - 页 共 16 页
计算二重积分
x
D
2
y 2 1d ,其中 D {( x, y) 0 x 1,0 y 1} .
(18) (本题满分 9 分) 求幂级数
( 2n 1 1) x
n 1
1
2n
在区间(-1,1)内的和函数 S(x).
1 0 .
(B)
2 0 . (C) 1 0 .
2
(D)
2 0 .
2
[
]
(14) 设一批零件的长度服从正态分布 N ( , ) ,其中 , 均未知. 现从中随机抽取 16 个零件, 测得样本均值 x 20(cm) ,样本标准差 s 1(cm) ,则 的置信度为 0.90 的置信区间是
1, 0 x 1,0 y 2 x, f ( x, y) 其他. 0,
求: (I) (X,Y)的边缘概率密度 f X ( x), f Y ( y) ; (II) Z 2 X Y 的概率密度 f Z ( z ). ( III ) P{Y
1 1 X }. 2 2
【分析】 首先所有概率求和为 1,可得 a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定 a,b 的取值. 【详解】 由题设,知 a+b=0.5 又事件 { X 0} 与 { X Y 1} 相互独立,于是有
P{X 0, X Y 1} P{X 0}P{X Y 1} ,
同解,求 a,b, c 的值. (21) (本题满分 13 分) 设D
A T C
T
C 为正定矩阵,其中 A,B 分别为 m 阶,n 阶对称矩阵,C 为 m n 矩阵. B
E (I) 计算 P DP ,其中 P m o
T
A 1C ; En
1
(II)利用(I)的结果判断矩阵 B C A C 是否为正定矩阵,并证明你的结论. (22) (本题满分 13 分) 设二维随机变量(X,Y)的概率密度为
z x 1 , xe x y y 1 y
于是
dz
(1, 0 )
2edx (e 2)dy .
1 . 2
(4)设行向量组 (2,1,1,1) , (2,1, a, a) , (3,2,1, a) , (4,3,2,1) 线性相关,且 a 1 ,则 a= 【分析】 四个 4 维向量线性相关,必有其对应行列式为零,由此即可确定 a. 【详解】 由题设,有
代入初始条件得 C=2,故所求特解为 xy=2. (3)设二元函数 z xe
x y
( x 1) ln(1 y) ,则 dz
(1, 0 )
2edx (e 2)dy .
【分析】 基本题型,直接套用相应的公式即可. 【详解】
z e x y xe x y l n 1 ( y) , x
(A)
a2n1 收敛, a2n 发散 .
n 1 n 1
(B)
a2n 收敛, a2n1 发散.
n 1 n 1
(C)
(a2n1 a2n ) 收敛.
n 1
(D)
(a
n 1
2 n 1
a 2 n ) 收敛.
[
]
(10)设 f ( x) x sin x cos x ,下列命题中正确的是
2 1 1 1 2 1 a a 3 2 1 a 4 3 2 1
(a 1)(2a 1) 0 , 得 a 1, a
1 1 ,但题设 a 1 ,故 a . 2 2
(5)从数 1,2,3,4 中任取一个数,记为 X, 再从 1,2,, X 中任取一个数,记为 Y, 则
P{Y 2} =
13 48
.
【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即 为完备事件组或样本空间的划分. 【详解】
P{Y 2} = P{X 1}P{Y 2 X 1} + P{X 2}P{Y 2 X 2}
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 5 - 页 共 16 页
(A) 三 、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分 8 分) 求 lim (
x 0
1 x 1 ). x x 1 e
y x x y
2 2g 2 g y . x 2 y 2
(16) (本题满分 8 分) 设 f(u)具有二阶连续导数,且 g ( x, y ) f ( ) yf ( ) ,求 x (17) (本题满分 9 分)
(A) (C)
I 3 I 2 I1 . I 2 I1 I 3 .
(B) I 1 I 2 I 3 . (D)
I 3 I1 I 2 .
[
]
(9)设 an 0, n 1,2,, 若
a
n 1
n
发散,
(1)
n 1
n 1
a n 收敛,则下列结论正确的是
2005 年考研数学(三)真题
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上) (1)极限 lim x sin
x
2x = x 1
2
.
(2) 微分方程 xy y 0 满足初始条件 y(1) 2 的特解为______. (3)设二元函数 z xe
* T * T
]
[
]
(12) 设矩阵 A= (aij ) 33 满足 A A , 其中 A 是 A 的伴随矩阵, A 为 A 的转置矩阵. 若 a11 , a12 , a13 为三个相等的正数,则 a11 为
(A)
3 . 3
(B)
3. (C)
1 . 3
(D)
3.
[
]
(13)设 1 , 2 是矩阵 A 的两个不同的特征值,对应的特征向量分别为 1 , 2 ,则 1 , A(1 2 ) 线 性无关的充分必要条件是 (A)
(23) (本题满分 13 分)
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 3 - 页 共 16 页
设 X 1 , X 2 ,, X n (n 2) 为 来 自 总 体 N(0,
2 )的简单随机样本, X 为样本均值,记
Yi X i X , i 1,2,, n.
求: (I) Yi 的方差 DYi , i 1,2,, n ; (II) Y1 与 Yn 的协方差 Cov(Y1 , Yn ). (III)若 c(Y1 Yn ) 是 的无偏估计量,求常数 c.