概率论第十六讲中心极限定理

合集下载

中心极限定理

中心极限定理

中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。

而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。

中心极限定理是概率论中最著名的结果之一。

它提出,大量的独立随机变量之和具有近似于正态的分布。

因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。

中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。

即:该定理是辛钦中心极限定理的特例。

在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。

(三)李亚普洛夫中心极限定理设是一个相互独立的随机变量序列,它们具有有限的数学期望和方差:。

记,如果能选择这一个正数δ>0,使当n→∞时,,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。

(四)林德贝尔格定理设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有。

中心极限定理

中心极限定理

中心极限定理第一篇:中心极限定理中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。

而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。

中心极限定理是概率论中最著名的结果之一。

它提出,大量的独立随机变量之和具有近似于正态的分布。

因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。

中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。

即:该定理是辛钦中心极限定理的特例。

在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。

(三)李亚普洛夫中心极限定理设差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方。

记,如果能选择这一个正数δ>0,使当n→∞时,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。

中心极限定理课件

中心极限定理课件

X ~ b( 200, 0.6),
X ~ b( 200, 0.6),
现在的问题是: 现在的问题是: 求满足 P { X ≤ N } ≥ 0.999 的最小 的 N. 由定理 2
X − np 近似服从 N (0, 1), 这里 np(1 − p ) np = 120, np(1 − p ) =0 个, 已知该型号 的螺丝钉的重量是一个随机变量, 期望值是100g, 的螺丝钉的重量是一个随机变量, 标准差是10g, 求一盒螺丝钉的重量超过 10.2kg 的概率. 的概率 个螺丝钉的重量, 解 设 X i 为第 i 个螺丝钉的重量, i = 1,2,L,100, 且它们之间独立同分布, 于是一盒螺丝钉的重量 且它们之间独立同分布, 为X=
棣莫佛—拉普拉斯定理是林德伯格 拉普拉斯定理是林德伯格—勒维定理 注: 棣莫佛 拉普拉斯定理是林德伯格 勒维定理 它是历史上最早的中心极限定理. 它是历史上最早的中心极限定理 的一个重要特例, 的一个重要特例,
下面的图形表明:正态分布是二项分布的逼近 下面的图形表明 正态分布是二项分布的逼近. 正态分布是二项分布的逼近
E ( X i ) = µ , D( X i ) = σ 2 , i = 1,2,L, n,L

n ∑ X i − nµ x 1 −t2 i =1 lim P ≤ x = ∫ e 2 dt. −∞ n →∞ σ n 2π
注:定理表明 当 n 充分大时, n 个具有期望和方 定理表明: 充分大时, 差的独立同分布的随机变量之的近似服从正态分布. 差的独立同分布的随机变量之的近似服从正态分布 虽然在一般情况下, 虽然在一般情况下,我们很难求出 X 1+ X 2 + L + X n

中心极限定理公式解释

中心极限定理公式解释

中心极限定理:是指概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。

这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。

它是概率论中最重要的一类定理,有广泛的实际应用背景。

在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。

中心极限定理就是从数学上证明了这一现象。

最早的中心极限定理是讨论重点,伯努利试验中,事件A出现的次数渐近于正态分布的问题。

中心极限定理的内涵和应用

中心极限定理的内涵和应用

中心极限定理的涵和应用在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。

中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。

这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。

故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。

一、独立同分布下的中心极限定理及其应用在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1:定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记nn XY ni in σμ-=∑=1则对任意实数y ,有{}⎰∞--∞→=Φ=≤yt n n t y y Y P .d e π21)(lim 22(1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。

由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。

为此,设μ-n X 的特征函数为)(t ϕ,则n Y 的特征函数为nY n t t n ⎥⎦⎤⎢⎣⎡=)()(σϕϕ又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0ϕ'=0,2)0(σϕ-=''。

于是,特征函数)(t ϕ有展开式)(211)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σϕϕϕϕ从而有=⎥⎦⎤⎢⎣⎡+-=+∞→+∞→nn Y n n t o nt t n )(21lim )(lim 22ϕ22t e -而22t e-正是N(0,1)分布的特征函数,定理得证。

这个中心极限定理是由林德贝格和勒维分别独立的在1920年获得的,定理告诉我们,对于独立同分布的随机变量序列,其共同分布可以是离散分布,也可以是连续分布,可以是正态分布,也可以是非正态分布,只要其共同分布的方差存在,且不为零,就可以使用该定理的结论。

概率论中心极限定理

概率论中心极限定理
则一年售出700辆以上汽车的概率近似为0.8665.
例2 :某餐厅每天接待400名顾客, 设每位顾的 消费额(元)服从(20, 100)上的均匀分布, 且顾客 的消费额是相互独立的. 试求: (1)该餐厅每天的平均营业额; (2)该餐厅每天的营业额在平均营业额760元 的概率.
解 设Xi为第i位顾客的消费额, Xi ~U20, 100. 所以 EXi 60, DXi 16003.
i1 n
i1
的分布函数Fn(x),对xR,一致地有
n
Xi n
lnim Fn
(
x)
limP(
n
i1
n
x)
x
1
t2
e 2 dtΦ(x).
2
(证略)
定理(说明)
n
Xi n
x
ln i mFn(x)ln i mP{i1 n
x}(x)
1 et2/2dt
2
即,n 充分大时,有
n
~ 可化为
X i n 近似地
2 (1 .6)4 1 5 0 .90
这表明:该餐厅每天的营业额在23240到24760 之间的概率近似为0.90.
例3: 某人钓鱼平均每次钓到2kg, 方差2.25kg2. 问: 至少钓多少次鱼, 才能使总重量不少200kg 的概率为0.95?
解 设此人共钓n次, 各次钓到的鱼 的重量为随机变量Xi , 则 EXi 2, DXi 2.25.
3 实际应用中当n很大时,
1 如果p很小而np不太大时, 采用泊松近似; 2 如果 np 5 和 n1 p 5 同时成立时,
采用正态近似.
下面的图形表明:正态分布是二项分布的逼近.
例4 设某保险公司有10000人投保,每人每年交保费12元,投保人每 年的死亡率为0.006.若投保人死亡,则公司付给死亡人家属1000元, 求(1)保险公司没有利润的概率;(2)每年利润不少于60000元的概率.

概率论与数理统计§中心极限定理

概率论与数理统计§中心极限定理
概率论与数理统计之中心 极限定理
• 引言 • 中心极限定理的基本概念 • 中心极限定理的证明 • 中心极限定理的应用 • 中心极限定理的扩展与推广 • 案例分析与实践应用 • 总结与展望
01
引言
主题简介
中心极限定理是概率论与数理统计中的重要概念,它描述了在独立同分布的随机 变量序列下,无论这些随机变量的分布是什么,它们的平均值的分布将趋近于正 态分布。
03
中心极限定理的证明
证明方法概述
方法一:基于特征函数的 证明
方法二:基于概率密度函 数的证明
ABCD
通过对特征函数的性质进 行分析,利用泰勒展开和 收敛性质,证明中心极限 定理。
通过分析概率密度函数的 性质,利用大数定律和收 敛定理,证明中心极限定 理。
重要极限公式
公式一: $lim_{{n to infty}} frac{S_n}{sqrt{n}} = N(0,1)$
中心极限定理的应用范围广泛,不仅限于金融、保险、医学等领域,还涉来研究的展望
01
随着大数据时代的到来,中心极限定理在处理大规模数据和复杂 随机现象方面的应用价值将更加凸显。未来研究可以进一步探索 如何优化中心极限定理的应用,提高其在实际问题中的适用性和 准确性。
02
随着数学和其他学科的交叉融合,中心极限定理与其他理 论或方法的结合应用将成为一个重要的研究方向。例如, 如何将中心极限定理与机器学习、人工智能等新兴技术相 结合,以解决更加复杂和具体的问题。
03
中心极限定理的理论基础和证明方法仍有进一步完善的空 间。未来研究可以深入探讨中心极限定理的数学原理,发 现新的证明方法和技巧,推动概率论与数理统计理论的进 一步发展。
07
总结与展望

高考数学中的概率统计中的中心极限定理

高考数学中的概率统计中的中心极限定理

高考数学中的概率统计中的中心极限定理概率统计是高考数学中非常重要的一部分,它与我们日常生活息息相关。

而中心极限定理则是概率统计中非常重要的一个定理,这个定理集成了众多科学家的智慧,为我们提供了一个可靠的方法来研究随机事件的概率与分布。

一、中心极限定理的概念中心极限定理是指在一定条件下,对于一个总体随机变量X,由n个相互独立的随机变量X1、X2、…、Xn所组成的样本平均值所满足的一些统计规律。

简单来说,中心极限定理是在满足一些条件的情况下,样本的均值会服从于一个特定的分布。

二、中心极限定理的条件中心极限定理并不是所有情况下都适用的,它需要满足一些特定的条件,这些条件包括:(1)总体分布必须存在方差;(2)样本数量n足够大;(3)样本的选取必须是独立的。

三、中心极限定理的应用中心极限定理在实际生活中的应用非常广泛,特别是在大数据分析领域中,中心极限定理被广泛地应用于数据的分布与统计分析。

以投掷一颗骰子为例,假设我们将骰子投掷10000次,那么我们可以通过中心极限定理来研究投掷结果所服从的分布规律。

根据中心极限定理,当选取的样本数量够大时,样本的平均值将在正态分布之间波动。

这个例子中,我们可以通过投掷骰子的结果来观察到中心极限定理在实际应用中的作用。

当我们投掷骰子的数量越来越多,投掷结果的分布也会越来越接近正态分布,这是中心极限定理的一个典型表现。

四、中心极限定理的意义中心极限定理是概率论中的一项重要成果,它为我们研究随机事件的概率分布提供了一个可靠的方法。

中心极限定理不仅限于数学领域,它在生物学、物理学、社会学等领域中的应用也是非常广泛的。

总之,中心极限定理是高考数学概率统计中非常重要的一个定理。

了解中心极限定理的概念、条件及应用,对我们在概率统计的学习和实践中都有着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
x t2
e 2 dt
2
林德伯格定理的意义:
被研究的随机变量可以被表示为,
许多相互独立随机变量的和,其中, 每一个随机变量对于总和只起微小的作用,
则这个总和服从
或近似服从正态分布.
定 林德伯格-列维中心极限定理

(Lindberg-levi)

[ 独立同分布的中心极限定理 ]
定 棣莫弗-拉普拉斯中心极限定理 理 (De Moivre-Laplace) 三 [ 二项分布以正态分布为极限分布 ]
系、对随机现象谁也不能起突出影响,而
均匀地起到微小作用的随机因素共同作用
(即这些因素的叠加)的结果.
若联系于此随机现象的随机变量为X ,
则它可被看成为许多相互独立的起微小作
用的因素Xk的总和
或近似服从正态分布.
,而这个X总k 和服从
k
对此现象还 可举个有趣 的例子——
高尔顿钉板 试验—— 加 以说明.
作业 P.138 习题四
19
20
22
23
*补充作业
设某农贸市场某种商品每日的价格的变化是个相互独
立且均值为0, 方差为 2 = 2的随机变量 Yn,并满足
X n X n1 Yn (n 1)
其中Xn是第n天该商品的价格.如果今天的价格为100,求1
8天后该商品的价格在 96 与 104 之间的概率.
解 若在 8 小时内检查的产品多于1900个, 即检查1900个产品所用的时间小于 8 小时.
设 X 为检查1900 个产品所用的时间(秒)
设 Xk 为检查第 k 个产品所用的时间(单位:秒), k =
1,2,…,1900
Xk 10
20
P 0.5
0.5
E( X k ) 15, D( X k ) 25
则 X ~ B( 6000 , 1/
由德莫6佛)—拉普拉斯中心极限定理,

X
近似
~
N
1000,
5000 6
P
X 6000
1 6
0.01
P
X
1000
60
1060 1000 940 1000
5000 6 5000 6
60 60
5000 6 5000 6
2 60 1 0.9624
X1, X 2 ,, X1900 相互独立同分布,
E(X ) 190015 28500 D(X ) 1900 25 47500
近似
X ~ N (28500,47500)
1900
X Xk
k 1
P(101900 X 36008) p(19000 X 28800)
28800 28500 19000 28500 47500 47500
记 Yn k1 n
则Yn为
n
X k 的标准化随机变量.
k 1
lim
n
PYn
x
( x)
即 n 足够大时,Y n 的分布函数近似于标
准正态随机变量的分布函数
n
Yn 近~似N (0,1)
X k nYn n 近似服从
k 1
N (n, n 2 )
中心极限定理的意义
在第二章曾讲过有许多随机现象服从 正态分布 是由于许多彼次没有什么相依关
定理 1 独立同分布的中心极限定理
设随机变量序列
X1, X 2 ,, X n ,
独立同一分布, 且有期望和方差:
E( X k ) , D( X k ) 2 0 , k 1,2,
则对于任意实数 x ,
n
Xk
n
lim P k1
x
n (x)
2
n

X k n
第十六讲 中心极限定理
教学目的: 1.介绍中心极限定理的思想; 2.应用,着重讲解用正态分布计算其它分布的方法;
教学内容: 第四章,§ 4.5
中心极限定理:概率论中有关随机变量 的和的极限分布是正态分布的系列定理。
设随机变量序列
X1, X2, , Xn,
相互独立, 且有期望和方差:
E(
X
i
)
n
i
,
X 解 设
表示今天该商品的价格,
0
为18
X 18
天后该商品的价格, 则
18
X18 X17 Y18 X16 Y17 Y18 X 0 Yi
18
i1
得 P(96 X18 104) P(4 Yi 4)
4
1 18
4 i1
P(
36
36
Yi
i1
) 36
(2 / 3) (2 / 3) 2(2 / 3) 1
反查标准正态函数分布表,得
3.09 99.9%
令 解得
a 120
r
3.09
48
a (3.09 48 120)r 141r (千瓦)
例5 设有一批种子,其中良种占1/6. 试估计在任选的6000粒种子中,良种 比例与 1/6 比较上下不超过1%的概率.
解 设 X 表示6000粒种子中的良种数 ,
5000 6
比较几个近似计算的结果
二项分布(精确结果) 中心极限定理
P X 1 0.01 0.9590
6000 6
P
X 6000
1 6
0.01
0.9624
Poisson 分布
P
X 6000
1 6
0.01
0.9379
Chebyshev 不等式
P
X 6000
1 6
0.01
0.7685
则 X ~ B(200,0.6) ,
由 , 德莫佛—拉普拉斯中心极限定理 有
X ~ N (120, 48) (近似)
问题转化为求 a , 使 P(0 rX a) 99.9%
P(0 rX a) a / r 120 0 120 48 48
a / r 120 (17.32) 48 0
(1) 至少命中180发炮弹的概率; (2) 命中的炮弹数不到200发的概率.
例2 售报员在报摊上卖报, 已知每个过路
人在报摊上买报的概率为1/3. 令X 是出售
了100份报时过路人的数目,求
P (280 X 320).
解 令Xi 为售出了第 i – 1 份报纸后到售出 第i 份报纸时的过路人数, i = 1,2,…,100
1.376 43.589
0.9162
例4 某车间有200台车床,每台独立工作,
开工率为0.6. 开工时每台耗电量为 r 千瓦.
问供 电所至少要供给这个车间多少电力, 才能以 99.9% 的概率保证这个车间不会因 供电不足而影响生产?
解 设至少要供给这个车间 a 千瓦的电力,
X 为开工的车床数 ,
P(280 X 320) 320603000 280603000
2
20 600
1
2
0.8165
1
0.5878
例3 检验员逐个检查某产品,每查一个需 用10秒钟. 但有的产品需重复检查一次, 再用去10秒钟. 若产品需重复检查的概率 为 0.5, 求检验员在 8 小时内检查的产品多 于1900个的概率.
D( X i
)
n
i2
0
,
i
1, 2,
n
n
令 Yn X i 则 E(Yn ) i D(Yn ) i2
i 1
i 1
i 1
Zn
Yn
E(Yn ) D(Yn )
Yn
E(Yn ) sn
,E(Zn )
0
D(Zn ) 1
定理1 林德伯格(Lindberg)定理
设相互独立随机变量
X1, X 2 ,, X n ,
满足林德伯格条件,即
0, 有
1
lim
n
sn2
n i1
|xi|Sn (x ui )2 fi (x)dx 0
其中, fi ( x) 是随机变量
X i 的概率密度
则n →∞,有
lim
n
PZn
z
1
2
x
e
t2
2 dt
(x)
n
( Xi i )
lim P i1
z
n
sn
其中, z 是任何实数
20.747 1 0.494.
第12周 问 题
一本书有 1 000 000 个印刷符号, 排版时每个符号被排错的概率为千分 之一. 校对时, 每个排版错误被改正的 概率为0.99. 求在校对后错误不多 于15 个的概率.
•• • •• • •• •
N (0, n)
n — 钉子层数
3 0 3
定理2 德莫佛—拉普拉斯中心极限定理 (DeMoivre-Laplace )
设 Y n ~ B( n , p) , 0 < p < 1, n = 1,2,…
则对任一实数 x,有
lim P Yn np x n np(1 p)
即对任意的 a < b,
1
x t2
e 2 dt
2
lim P a Yn np b 1
b t2
e 2 dt
n
np(1 p) 2 a
Y n ~ N (np , np(1-p)) (近似)
中心极限定理的应用
例1 炮火轰击敌方防御工事 100 次, 每次 轰击命中的炮弹数服从同一分布, 其数学 期望为 2 , 均方差为1.5. 若各次轰击命中 的炮弹数是相互独立的, 求100 次轰击
P(Xi k) p1 p k1 , p1/3 k 1,2,
(几何分布)
E( X i )
相关文档
最新文档