高考物理力学计算题(二十)含答案与解析

合集下载

高考物理模拟专题力学计算题(三十)含答案与解析

高考物理模拟专题力学计算题(三十)含答案与解析

高考物理力学计算题(三十)含答案与解析评卷人得分一.计算题(共40小题)1.观光旅游、科学考察经常利用热气球,保证热气球的安全就十分重要。

科研人员进行科学考察时,气球、座舱、压舱物和科研人员的总质量为为M=1000kg,在空中停留一段时间后,由于某种故障,气球受到的空气浮力减小,当科研人员发现气球在竖直下降时,气球速度为v0=2m/s,此时开始,经t0=4s气球继续匀加速下降h1=16m,科研人员立即抛掉一些压舱物,使气球匀速下降。

不考虑气球由于运动而受到的空气阻力。

求:(1)气球加速下降阶段的加速度大小a:(2)抛掉压舱物的质量m:(3)气球从静止开始经过t=12s的时间内下落的总高度h总。

2.如图甲所示为一景区游乐滑道,游客坐在坐垫上沿着花岗岩滑道下滑,他可依靠手脚与侧壁间的摩擦来控制下滑速度。

滑道简化图如图乙所示,滑道由AB、BC、CD三段组成,各段之间平滑连接。

AB段和CD段与水平面夹角为θ1,竖直距离均为h0,BC段与水平面夹角为θ2,竖直距离为h0.一质量为m的游客从A点由静止开始下滑,到达底端D 点时的安全速度不得大于,若使用坐垫,坐垫与滑道底面间摩擦不计,若未使用坐垫,游客与各段滑道底面间的摩擦力大小恒为重力的0.1倍,运动过程中游客始终不离开滑道,空气阻力不计。

已知sinθ1=,sinθ1=,求(1)若游客使用坐垫且与侧壁间无摩擦自由下滑,则游客在BC段增加的动能△E k;(2)若游客未使用坐垫且与侧壁间无摩擦自由下滑,则游客到达D点时是否安全;(3)若游客使用坐垫下滑,且游客安全到达D点,则全过程克服侧壁摩擦力做功的最小值。

3.如图所示,枭龙战机为中国和巴基斯坦联合研制的多用途战斗机。

在一次试飞任务中,质量m=60kg的驾驶员驾驶战斗机径直向上运动,从某一时刻起以恒定加速度a加速上升,10s后竖直方向速度大小为20m/s,接下来10s内竖直爬升了300m,之后在竖直方向做匀减速运动,再经过20s到达最高点,求:(1)枭龙战机在加速上升过程中的加速度;(2)前20s内座位对驾驶员的支持力大小;(3)这40s内枭龙战斗机在竖直方向上的位移。

高考物理力学计算题(二十一)含答案与解析

高考物理力学计算题(二十一)含答案与解析

高考物理力学计算题(二十一)含答案与解析评卷人得分一.计算题(共40小题)1.如图甲所示为商场内的螺旋滑梯,小孩从顶端A处进入,由静止开始沿滑梯自然下滑(如图乙),并从低端B处滑出。

已知总长度L=20m,A、B间的高度差h=12m。

(1)假设滑梯光滑,则小孩从B处滑出时的速度v1为多大?(2)若有人建议将该螺旋滑梯改建为倾斜直线滑梯,并保持高度差与总长度不变。

已知小孩与滑梯间的动摩擦因数μ=0.25,若小孩仍从顶端由静止自然下滑,则从底端滑出时的速度v2多大?(3)若小孩与滑梯间的动摩擦因数仍为0.25,你认为小孩从螺旋滑梯底端B处滑出的速度v3与(2)问中倾斜直线滑梯滑出的速度v2哪个更大?简要说明理由。

2.如图所示,在竖直平面内有一倾角θ=37°的传送带,两皮带轮AB轴心之间的距离L =3.2m,沿顺时针方向以v0=2m/s匀速运动。

一质量m=2kg的物块P从传送带顶端无初速度释放,物块P与传送带间的动摩擦因数μ=0.5.物块P离开传送带后在C点沿切线方向无能量损失地进入半径为m的光滑圆弧形轨道CDF,并沿轨道运动至最低点F,与位于圆弧轨道最低点的物块Q发生完全弹性碰撞,碰撞时间极短。

物块Q的质量M=1kg,物块P和Q均可视为质点,重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)求物块P从传送带离开时的速度大小;(2)传送带对物块P做功为多少;(3)物块P与物块Q碰撞后瞬间,物块P对圆弧轨道压力大小为多少。

3.随着科技的发展,我国未来的航空母舰上将安装电磁弹射器以缩短飞机的起飞距离,如图所示,航空母舰的水平跑道总长L=180m,其中电磁弹射区的长度为L1=80m,在该区域安装有直线电机,该电机可从头至尾提供一个恒定的牵引力F牵.一架质量为m=2.0×104kg的飞机,其喷气式发动机可以提供恒定的推力F推=1.2×105N.假设飞机在航母上的阻力恒为飞机重力的0.2倍。

高考物理力学计算题(二十二)含答案与解析

高考物理力学计算题(二十二)含答案与解析

高考物理力学计算题(二十二)含答案与解析评卷人得分一.计算题(共40小题)1.最近,台风“山竹”的出现引起多地暴雨,致使高速公路上的司机难以看清前方道路,严重影响道路交通安全。

某高速公路同一直线车道上同向匀速行驶的轿车和货车,其速度大小分别为v1=40m/s,v2=25m/s,轿车在与货车距离x0=22m时才发现前方有货车,若此时轿车立即刹车,则轿车要经过x=160m才能停下来。

两车可视为质点。

(1)若轿车刹车时货车仍以速度v2匀速行驶,通过计算分析两车是否会相撞;(2)若轿车在刹车的同时给货车发信号,货车司机经t0=2s收到信号并立即以大小为a2=5m/s2的加速度加速行驶,通过计算分析两车是否会相撞。

2.如图所示,足够宽的水平传送带以v0=2m/s的速度沿顺时针方向运行,质量m=0.4kg 的小滑块被光滑固定挡板拦住静止在传送带上的A点。

t=0时,在小滑块上施加沿挡板方向的拉力F,使之沿挡板做a=1m/s2的匀加速直线运动。

已知小滑块与传送带间的动摩擦因数μ=0.2,重力加速度g=10m/s2,求:(1)t=0时,拉力F的大小及t=2s时小滑块所受摩擦力的功率;(2)请分析推导出拉力F与t满足的关系式。

3.如图所示,位于光滑水平桌面上的小滑块P和Q都可视作质点,质量分别为2m和m。

Q与轻质弹簧相连(弹簧处于原长)。

设开始时P和Q分别以2v和v初速度向右匀速运动,当小滑块P追上小滑块Q与弹簧发生相互作用,在以后运动过程中,求:(1)弹簧具有的最大弹性势能?(2)小滑块Q的最大速度?4.如图所示,质量均为M的木块A、B并排放在光滑水平面上,A上固定一根轻质细杆,轻杆上端的小钉(质量不计)O上系一长度为L的细线,细线的另一端系一质量为m的小球C,现将C球的细线拉至水平,由静止释放,求:(1)两木块刚分离时,A、B、C速度各为多大?(2)两木块分离后,悬挂小球的细线与竖直方向的最大夹角多少?5.跳伞运动员做低空跳伞表演,当直升机悬停在离地面224m高时,运动员离开飞机作自由落体运动,运动了5s后,打开降落伞,展伞后运动员减速下降至地面,若运动员落地速度为5m/s,取g=10m/s2,求运动员匀减速下降过程的加速度大小和时间。

高中物理力学经典的题库(含答案)

高中物理力学经典的题库(含答案)

高中物理力学计算题汇总经典精解(50题)1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2)图1-732.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:(1)飞机在竖直方向上产生的加速度多大?方向怎样?(2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2)(3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位?(注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体)3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少?4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求(1)2秒末物块的即时速度.(2)此后物块在水平面上还能滑行的最大距离.5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求图1-74(1)推力F的大小.(2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离?6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m.(1)若网球在网上0.1m处越过,求网球的初速度.(2)若按上述初速度发球,求该网球落地点到网的距离.取g=10/m·s2,不考虑空气阻力.7.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:图1-70(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度.8.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F.图1-719.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少?10.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度)图1-7211.地球质量为M,半径为R,万有引力常量为G,发射一颗绕地球表面附近做圆周运动的人造卫星,卫星的速度称为第一宇宙速度.(1)试推导由上述各量表达的第一宇宙速度的计算式,要求写出推导依据.(2)若已知第一宇宙速度的大小为v=7.9km/s,地球半径R=6.4×103km,万有引力常量G=(2/3)×10-10N·m2/kg2,求地球质量(结果要求保留二位有效数字).12.如图1-75所示,质量2.0kg的小车放在光滑水平面上,在小车右端放一质量为1.0kg的物块,物块与小车之间的动摩擦因数为0.5,当物块与小车同时分别受到水平向左F1=6.0N的拉力和水平向右F2=9.0N的拉力,经0.4s同时撤去两力,为使物块不从小车上滑下,求小车最少要多长.(g取10m/s2)图1-7513.如图1-76所示,带弧形轨道的小车放在上表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切,且AB段光滑,BC段粗糙.现有一个离车的BC面高为h的木块由A点自静止滑下,最终停在车面上BC段的某处.已知木块、车、船的质量分别为m1=m,m2=2m,m3=3m;木块与车表面间的动摩擦因数μ=0.4,水对船的阻力不计,求木块在BC面上滑行的距离s是多少?(设船足够长)图1-7614.如图1-77所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球,今使手握的一端在水平桌面上做半径为R、角速度为ω的匀速圆周运动,且使绳始终与半径R的圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求:图1-77(1)小球做匀速圆周运动的线速度大小.(2)小球在运动过程中所受到的摩擦阻力的大小.15.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因数为μ=0.1.(g取10m/s2)图1-78(1)求小木块C运动至AB右端面时的速度大小v2.(2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s.16.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.图1-79(1)若B的右端距挡板s=4m,要使A最终不脱离B,则木板B的长度至少多长?(2)若B的右端距挡板s=0.5m,要使A最终不脱离B,则木板B的长度至少多长?17.如图1-80所示,长木板A右边固定着一个挡板,包括挡板在内的总质量为1.5M,静止在光滑的水平地面上.小木块B质量为M,从A的左端开始以初速度v0在A上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B恰好滑到A的左端就停止滑动.已知B与A间的动摩擦因数为μ,B在A板上单程滑行长度为l.求:图1-80(1)若μl=3v02/160g,在B与挡板碰撞后的运动过程中,摩擦力对木板A做正功还是负功?做多少功?(2)讨论A和B在整个运动过程中,是否有可能在某一段时间里运动方向是向左的.如果不可能,说明理由;如果可能,求出发生这种情况的条件.18.在某市区内,一辆小汽车在平直的公路上以速度vA向东匀速行驶,一位观光游客正由南向北从班马线上横过马路.汽车司机发现前方有危险(游客正在D处)经0.7s作出反应,紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下.为了清晰了解事故现场.现以图1-81示之:为了判断汽车司机是否超速行驶,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经31.5m后停下来.在事故现场测得AB=17.5m、BC=14.0m、BD=2.6m.问图1-81①该肇事汽车的初速度vA是多大?②游客横过马路的速度大小?(g取10m/s2)19.如图1-82所示,质量mA=10kg的物块A与质量mB=2kg的物块B放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k=400N/m.现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,求(g取10m/s2)图1-82(1)力F的最大值与最小值;(2)力F由最小值达到最大值的过程中,物块A所增加的重力势能.20.如图1-83所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接,置于水平的气垫导轨上.用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧.两滑块一起以恒定的速度v0向右滑动.突然,轻绳断开.当弹簧伸长至本身的自然长度时,滑块A的速度正好为零.问在以后的运动过程中,滑块B是否会有速度等于零的时刻?试通过定量分析,证明你的结论.图1-8321.如图1-84所示,表面粗糙的圆盘以恒定角速度ω匀速转动,质量为m的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径.弹簧的劲度系数为k,物体在距转轴R处恰好能随圆盘一起转动而无相对滑动,现将物体沿半径方向移动一小段距离,若移动后,物体仍能与圆盘一起转动,且保持相对静止,则需要的条件是什么?图1-8422.设人造地球卫星绕地球作匀速圆周运动,根据万有引力定律、牛顿运动定律及周期的概念,论述人造地球卫星随着轨道半径的增加,它的线速度变小,周期变大.23.一质点做匀加速直线运动,其加速度为a,某时刻通过A点,经时间T通过B点,发生的位移为s1,再经过时间T通过C点,又经过第三个时间T通过D点,在第三个时间T内发生的位移为s3,试利用匀变速直线运动公式证明:a=(s3-s1)/2T2.24.小车拖着纸带做直线运动,打点计时器在纸带上打下了一系列的点.如何根据纸带上的点证明小车在做匀变速运动?说出判断依据并作出相应的证明.25.如图1-80所示,质量为1kg的小物块以5m/s的初速度滑上一块原来静止在水平面上的木板,木板的质量为4kg.经过时间2s以后,物块从木板的另一端以1m/s相对地的速度滑出,在这一过程中木板的位移为0.5m,求木板与水平面间的动摩擦因数.图1-80图1-8126.如图1-81所示,在光滑地面上并排放两个相同的木块,长度皆为l=1.00m,在左边木块的最左端放一小金属块,它的质量等于一个木块的质量,开始小金属块以初速度v0=2.00m/s向右滑动,金属块与木块之间的滑动摩擦因数μ=0.10,g取10m/s2,求:木块的最后速度.27.如图1-82所示,A、B两个物体靠在一起,放在光滑水平面上,它们的质量分别为mA=3kg、mB=6kg,今用水平力FA推A,用水平力FB拉B,FA和FB随时间变化的关系是FA=9-2t(N),FB=3+2t(N).求从t=0到A、B脱离,它们的位移是多少?图1-82图1-8328.如图1-83所示,木块A、B靠拢置于光滑的水平地面上.A、B的质量分别是2kg、3kg,A的长度是0.5m,另一质量是1kg、可视为质点的滑块C以速度v0=3m/s沿水平方向滑到A上,C与A、B间的动摩擦因数都相等,已知C由A滑向B的速度是v=2m/s,求:(1)C与A、B之间的动摩擦因数;(2)C在B上相对B滑行多大距离?(3)C在B上滑行过程中,B滑行了多远?(4)C在A、B上共滑行了多长时间?29.如图1-84所示,一质量为m的滑块能在倾角为θ的斜面上以a=(gsinθ)/2匀加速下滑,若用一水平推力F作用于滑块,使之能静止在斜面上.求推力F的大小.图1-84图1-8530.如图1-85所示,AB和CD为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0m,一个质量为m=1kg的物体在离弧高度为h=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则(1)物体在斜面上(不包括圆弧部分)走过路程的最大值为多少?(2)试描述物体最终的运动情况.(3)物体对圆弧最低点的最大压力和最小压力分别为多少?31.如图1-86所示,一质量为500kg的木箱放在质量为2000kg的平板车的后部,木箱到驾驶室的距离L=1.6m,已知木箱与车板间的动摩擦因数μ=0.484,平板车在运动过程中所受阻力是车和箱总重的0.20倍,平板车以v0=22.0m/s恒定速度行驶,突然驾驶员刹车使车做匀减速运动,为使木箱不撞击驾驶室.g取1m/s2,试求:(1)从刹车开始到平板车完全停止至少要经过多长时间.(2)驾驶员刹车时的制动力不能超过多大.图1-86图1-8732.如图1-87所示,1、2两木块用绷直的细绳连接,放在水平面上,其质量分别为m1=1.0kg、m2=2.0kg,它们与水平面间的动摩擦因数均为μ=0.10.在t=0时开始用向右的水平拉力F=6.0N拉木块2和木块1同时开始运动,过一段时间细绳断开,到t=6.0s时1、2两木块相距Δs=22.0m(细绳长度可忽略),木块1早已停止.求此时木块2的动能.(g取10m/s2)33.如图1-88甲所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B静止在光滑水平面上,一个质量为m的小木块(可视为质点)A以水平速度v0=4.0m/s滑上B的左端,之后与右端挡板碰撞,最后恰好滑到木板B的左端,已知M/m=3,并设A与挡板碰撞时无机械能损失,碰撞时间可以忽略不计,g取10m/s2.求(1)A、B最后速度;(2)木块A与木板B之间的动摩擦因数.(3)木块A与木板B相碰前后木板B的速度,再在图1-88乙所给坐标中画出此过程中B相对地的v-t图线.图1-8834.两个物体质量分别为m1和m2,m1原来静止,m2以速度v0向右运动,如图1-89所示,它们同时开始受到大小相等、方向与v0相同的恒力F的作用,它们能不能在某一时刻达到相同的速度?说明判断的理由.图1-89图1-90图1-9135.如图1-90所示,ABC是光滑半圆形轨道,其直径AOC处于竖直方向,长为0.8m.半径OB处于水平方向.质量为m的小球自A点以初速度v水平射入,求:(1)欲使小球沿轨道运动,其水平初速度v的最小值是多少?(2)若小球的水平初速度v小于(1)中的最小值,小球有无可能经过B点?若能,求出水平初速度大小满足的条件,若不能,请说明理由.(g取10m/s2,小球和轨道相碰时无能量损失而不反弹)36.试证明太空中任何天体表面附近卫星的运动周期与该天体密度的平方根成反比.37.在光滑水平面上有一质量为0.2kg的小球,以5.0m/s的速度向前运动,与一个质量为0.3kg的静止的木块发生碰撞,假设碰撞后木块的速度为4.2m/s,试论证这种假设是否合理.38.如图1-91所示在光滑水平地面上,停着一辆玩具汽车,小车上的平台A是粗糙的,并靠在光滑的水平桌面旁,现有一质量为m的小物体C以速度v0沿水平桌面自左向右运动,滑过平台A后,恰能落在小车底面的前端B处,并粘合在一起,已知小车的质量为M,平台A离车底平面的高度OA=h,又OB=s,求:(1)物体C刚离开平台时,小车获得的速度;(2)物体与小车相互作用的过程中,系统损失的机械能.39.一质量M=2kg的长木板B静止于光滑水平面上,B的右端离竖直挡板0.5m,现有一小物体A(可视为质点)质量m=1kg,以一定速度v0从B的左端水平滑上B,如图1-92所示,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞前后速度大小不变.①若v0=2m/s,要使A最终不脱离B,则木板B的长度至少多长?②若v0=4m/s,要使A最终不脱离B,则木板B又至少有多长?(g取10m/s2)图1-92图1-9340.在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,动摩擦因数为μ,滑块CD上表面为光滑的1/4圆弧,它们紧靠在一起,如图1-93所示.一可视为质点的物块P质量也为m,它从木板AB右端以初速v0滑入,过B点时速度为v0/2,后又滑上滑块,最终恰好滑到最高点C处,求:(1)物块滑到B处时,木板的速度vAB;(2)木板的长度L;(3)物块滑到C处时滑块CD的动能.41.一平直长木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板,如图1-94所示.设A、B两小物块与长木板C间的动摩擦因数均为μ,A、B、C三者质量相等.①若A、B两小物块不发生碰撞,则由开始滑上C到静止在C上止,B通过的总路程是多大?经过的时间多长?②为使A、B两小物块不发生碰撞,长木板C的长度至少多大?图1-94图1-9542.在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与一轻弹簧固定相连,弹簧的另一端与小车左端固定连接,将弹簧压缩后用细线将m栓住,m静止在小车上的A点,如图1-95所示.设m与M间的动摩擦因数为μ,O点为弹簧原长位置,将细线烧断后,m、M开始运动.(1)当物体m位于O点左侧还是右侧,物体m的速度最大?简要说明理由.(2)若物体m达到最大速度v1时,物体m已相对小车移动了距离s.求此时M的速度v2和这一过程中弹簧释放的弹性势能Ep?(3)判断m与M的最终运动状态是静止、匀速运动还是相对往复运动?并简要说明理由.43.如图1-96所示,AOB是光滑水平轨道,BC是半径为R的光滑1/4圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一质量为m的小子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,恰能到达圆弧最高点C(小木块和子弹均可看成质点).问:(1)子弹入射前的速度?(2)若每当小木块返回或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧能上升的最大高度为多少?图1-96图1-9744.如图1-97所示,一辆质量m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反,平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车第一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会从平板车右端滑下,平板车至少多长?(M可当作质点处理)45.如图1-98所示,质量为0.3kg的小车静止在光滑轨道上,在它的下面挂一个质量为0.1kg的小球B,车旁有一支架被固定在轨道上,支架上O点悬挂一个质量仍为0.1kg的小球A,两球的球心至悬挂点的距离均为0.2m.当两球静止时刚好相切,两球心位于同一水平线上,两条悬线竖直并相互平行.若将A球向左拉到图中的虚线所示的位置后从静止释放,与B球发生碰撞,如果碰撞过程中无机械能损失,求碰撞后B球上升的最大高度和小车所能获得的最大速度.图1-98图1-9946.如图1-99所示,一条不可伸缩的轻绳长为l,一端用手握着,另一端系一个小球,今使手握的一端在水平桌面上做半径为r、角速度为ω的匀速圆周运动,且使绳始终与半径为r的圆相切,小球也将在同一水平面内做匀速圆周运动.若人手提供的功率恒为P,求:(1)小球做圆周运动的线速度大小;(2)小球在运动过程中所受到的摩擦阻力的大小.47.如图1-100所示,一个框架质量m1=200g,通过定滑轮用绳子挂在轻弹簧的一端,弹簧的另一端固定在墙上,当系统静止时,弹簧伸长了10cm,另有一粘性物体质量m2=200g,从距框架底板H=30cm的上方由静止开始自由下落,并用很短时间粘在底板上.g取10m/s2,设弹簧右端一直没有碰到滑轮,不计滑轮摩擦,求框架向下移动的最大距离h多大?图1-100图1-101图1-10248.如图1-101所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=M/2的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能E.49.一轻弹簧直立在地面上,其劲度系数为k=400N/m,在弹簧的上端与盒子A连接在一起,盒子内装物体B,B的上下表面恰与盒子接触,如图1-102所示,A和B的质量mA=mB=1kg,g=10m/s2,不计阻力,先将A向上抬高使弹簧伸长5cm后从静止释放,A和B一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小.(1)试求A的振幅;(2)试求B的最大速率;(3)试求在最高点和最低点A对B的作用力.参考解题过程与答案1.解:由匀加速运动的公式v2=v02+2as得物块沿斜面下滑的加速度为a=v2/2s=1.42/(2×1.4)=0.7ms-2,由于a<gsinθ=5ms-2,可知物块受到摩擦力的作用.图3分析物块受力,它受3个力,如图3.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律有mgsinθ-f1=ma,mgcosθ-N1=0,分析木楔受力,它受5个力作用,如图3所示.对于水平方向,由牛顿定律有f2+f1cosθ-N1sinθ=0,由此可解得地面的作用于木楔的摩擦力f2=mgcosθsinθ-(mgsinθ-ma)cosθ=macosθ=1×0.7×(/2)=0.61N.此力的方向与图中所设的一致(由指向).2.解:(1)飞机原先是水平飞行的,由于垂直气流的作用,飞机在竖直方向上的运动可看成初速度为零的匀加速直线运动,根据h=(1/2)at2,得a=2h/t2,代入h=1700m,t=10s,得a=(2×1700/102)(m/s2)=34m/s2,方向竖直向下.(2)飞机在向下做加速运动的过程中,若乘客已系好安全带,使机上乘客产生加速度的力是向下重力和安全带拉力的合力.设乘客质量为m,安全带提供的竖直向下拉力为F,根据牛顿第二定律F+mg=ma,得安全带拉力F=m(a-g)=m(34-10)N=24m(N),∴安全带提供的拉力相当于乘客体重的倍数n=F/mg=24mN/m·10N=2.4(倍).(3)若乘客未系安全带,飞机向下的加速度为34m/s2,人向下加速度为10m/s2,飞机向下的加速度大于人的加速度,所以人对飞机将向上运动,会使头部受到严重伤害.3.解:设月球表面重力加速度为g,根据平抛运动规律,有h=(1/2)gt2,①水平射程为L=v0t,②联立①②得g=2hv02/L2.③根据牛顿第二定律,得mg=m(2π/T)2R,④联立③④得T=(πL/v0h).⑤4.解:前2秒内,有F-f=ma1,f=μN,N=mg,则a1=(F-μmg)/m=4m/s2,vt=a1t=8m/s,撤去F以后a2=f/m=2m/s,s=v12/2a2=16m.5.解:(1)用力斜向下推时,箱子匀速运动,则有Fcosθ=f,f=μN,N=G+Fsinθ,联立以上三式代数据,得F=1.2×102N.(2)若水平用力推箱子时,据牛顿第二定律,得F合=ma,则有F-μN=ma,N=G,联立解得a=2.0m/s2.v=at=2.0×3.0m/s=6.0m/s,s=(1/2)at2=(1/2)×2.0×3.02m/s=9.0m,推力停止作用后a′=f/m=4.0m/s2(方向向左),s′=v2/2a′=4.5m,则s总=s+s′=13.5m.6.解:根据题中说明,该运动员发球后,网球做平抛运动.以v表示初速度,H表示网球开始运动时离地面的高度(即发球高度),s1表示网球开始运动时与网的水平距离(即运动员离开网的距离),t1表示网球通过网上的时刻,h表示网球通过网上时离地面的高度,由平抛运动规律得到s1=vt1,H-h=(1/2)gt12,消去t1,得v=m/s,v≈23m/s.以t2表示网球落地的时刻,s2表示网球开始运动的地点与落地点的水平距离,s表示网球落地点与网的水平距离,由平抛运动规律得到H=(1/2)gt22,s2=vt2,消去t2,得s2=v2Hg≈16m,网球落地点到网的距离s=s2-s1≈4m. 7.解:设经过时间t,物体到达P点(1)xP=v0t,yP=(1/2)(F/m)t2,xP/yP=ctg37°,联解得t=3s,x=30m,y=22.5m,坐标(30m,22.5m)(2)vy=(F/m)t=15m/s,∴v=220yv v += 513m/s,tgα=vy/v0=15/10=3/2,∴α=arctg(3/2),α为v与水平方向的夹角. 8.解:在0~1s内,由v-t图象,知a1=12m/s2,由牛顿第二定律,得F-μmgcosθ-mgsinθ=ma1,①在0~2s内,由v-t图象,知a2=-6m/s2,因为此时物体具有斜向上的初速度,故由牛顿第二定律,得 -μmgcosθ-mgsinθ=ma2,②②式代入①式,得F=18N.9.解:在传送带的运行速率较小、传送时间较长时,物体从A到B需经历匀加速运动和匀速运动两个过程,设物体匀加速运动的时间为t1,则(v/2)t1+v(t-t1)=L,所以t1=2(vt-L)/v=(2×(2×6-10)/2)s=2s.为使物体从A至B所用时间最短,物体必须始终处于加速状态,由于物体与传送带之间的滑动摩擦力不变,所以其加速度也不变.而a=v/t=1m/s2.设物体从A至B所用最短的时间为t2,则 (1/2)at22=L,t2=2L a =2101⨯=25s.vmin=at2=1×25m/s=25m/s. 传送带速度再增大1倍,物体仍做加速度为1m/s2的匀加速运动,从A至B的传送时间为4.5.10.解:启动前N1=mg,升到某高度时N2=(17/18)N1=(17/18)mg,对测试仪N2-mg′=ma=m(g/2), ∴g′=(8/18)g=(4/9)g,GmM/R2=mg,GmM/(R+h)2=mg′,解得:h=(1/2)R.11.解:(1)设卫星质量为m,它在地球附近做圆周运动,半径可取为地球半径R,运动速度为v,有 GMm/R2=mv2/R得v=GM R.(2)由(1)得:M=v2R/G==6.0×1024kg. 12.解:对物块:F1-μmg=ma1,6-0.5×1×10=1·a1,a1=1.0m/s2,s1=(1/2)a1t2=(1/2)×1×0.42=0.08m,v1=a1t=1×0.4=0.4m/s,对小车:F2-μmg=Ma2,9-0.5×1×10=2a2,a2=2.0m/s2,s2=(1/2)a2t2=(1/2)×2×0.42=0.16m,v2=a2t=2×0.4=0.8m/s,撤去两力后,动量守恒,有Mv2-mv1=(M+m)v,v=0.4m/s(向右), ∵((1/2)mv12+(1/2)Mv22)-(1/2)(m+M)v2=μmgs3,s3=0.096m,∴l=s1+s2+s3=0.336m.13.解:设木块到B时速度为v0,车与船的速度为v1,对木块、车、船系统,有 m1gh=(m1v02/2)+((m2+m3)v12/2),m1v0=(m2+m3)v1, 解得v0=5gh 15,v1=gh15. 木块到B后,船以v1继续向左匀速运动,木块和车最终以共同速度v2向右运动,对木块和车系统,有 m1v0-m2v1=(m1+m2)v2,μm1gs=((m1v02/2)+(m2v12/2))-((m1+m2)v22/2), 得v2=v1gh152h. 14.解:(1)小球的角速度与手转动的角速度必定相等均为ω.设小球做圆周运动的半径为r,线速度为v.由几何关系得r=22L R +,v=ω·r,解得v=ω22L R +.(2)设手对绳的拉力为F,手的线速度为v,由功率公式得P=Fv=F·ωR,∴F=P/ωR.小球的受力情况如图4所示,因为小球做匀速圆周运动,所以切向合力为零,即 Fsinθ=f,其中sinθ=R/22L R +,联立解得f=P/ω22L R +.15.解:(1)用v1表示子弹射入木块C后两者的共同速度,由于子弹射入木块C时间极短,系统动量守恒,有 mv0=(m+M)v1,∴v1=mv0/(m+M)=3m/s,子弹和木块C在AB木板上滑动,由动能定理得:(1/2)(m+M)v22-(1/2)(m+M)v12=-μ(m+M)gL,解得v2=21v 2gL -μ=22m/s.(2)用v′表示子弹射入木块C后两者的共同速度,由动量守恒定律,得mv0′+Mu=(m+M)v1′,解得v1′=4m/s.木块C及子弹在AB木板表面上做匀减速运动a=μg.设木块C和子弹滑至AB板右端的时间为t,则木块C和子弹的位移s1=v1′t-(1/2)at2,由于m车≥(m+M),故小车及木块AB仍做匀速直线运动,小车及木板AB的位移s=ut,由图5可知:s1=s+L, 联立以上四式并代入数据得:t2-6t+1=0,解得:t=(3-22)s,(t=(3+22)s不合题意舍去),(11)∴s=ut=0.18m.16.解:(1)设A滑上B后达到共同速度前并未碰到档板,则根据动量守恒定律得它们的共同速度为v,有图5mv0=(M+m)v,解得v=2m/s,在这一过程中,B的位移为sB=vB2/2aB且aB=μmg/M,解得sB=Mv2/2μmg=2×22/2×0.2×1×10=2m.设这一过程中,A、B的相对位移为s1,根据系统的动能定理,得μmgs1=(1/2)mv02-(1/2)(M+m)v2,解得s1=6m.当s=4m时,A、B达到共同速度v=2m/s后再匀速向前运动2m碰到挡板,B碰到竖直挡板后,根据动量守恒定律得A、B最后相对静止时的速度为v′,则Mv-mv=(M+m)v′,解得v′=(2/3)m/s. 在这一过程中,A、B的相对位移为s2,根据系统的动能定理,得 μmgs2=(1/2)(M+m)v2-(1/2)(M+m)v′2, 解得s2=2.67m.因此,A、B最终不脱离的木板最小长度为s1+s2=8.67m(2)因B离竖直档板的距离s=0.5m<2m,所以碰到档板时,A、B未达到相对静止,此时B的速度vB为 vB2=2aBs=(2μmg/M)s,解得vB=1m/s, 设此时A的速度为vA,根据动量守恒定律,得mv0=MvB+mvA,解得vA=4m/s,设在这一过程中,A、B发生的相对位移为s1′,根据动能定理得:。

高考物理专题20动力学中的连接体问题练习(含解析)

高考物理专题20动力学中的连接体问题练习(含解析)

专题20 动力学中的连接体问题1.同一方向的连接体问题:这类问题通常具有相同的加速度,解题时一般采用先整体后隔离的方法.2.不同方向的连接体问题:由跨过定滑轮的绳相连的两个物体,不在同一直线上运动,加速度大小相等,但方向不同,也可采用整体法或隔离法求解.1.(2020·湖南长沙市长沙县第六中学月考)如图1,斜面光滑且固定在地面上,A 、B 两物体一起靠惯性沿光滑斜面下滑,下列判断正确的是( )图1A .图甲中两物体之间的绳中存在弹力B .图乙中两物体之间存在弹力C .图丙中两物体之间既有摩擦力,又有弹力D .图丁中两物体之间既有摩擦力,又有弹力 答案 C解析 图甲:整体法分析,根据(m 1+m 2)g sin θ=(m 1+m 2)a ,隔离A 可知F T +m 1g sin θ=m 1a ,解得绳的拉力F T =0,故A 错误;图乙:对两物体应用整体法,根据牛顿第二定律可知(m 1+m 2)g sin θ=(m 1+m 2)a ,隔离A 可知F N +m 1g sin θ=m 1a ,解得两物体之间的弹力F N =0,故B 错误;图丙:对两物体应用整体法,根据牛顿第二定律可知(m 1+m 2)g sin θ=(m 1+m 2)a ,解得加速度沿斜面向下,隔离A ,将加速度分解到竖直和水平方向,根据牛顿第二定律可知,题图丙中两物体之间既有摩擦力,又有弹力,故C 正确;图丁:对两物体应用整体法,根据牛顿第二定律可知(m 1+m 2)g sin θ=(m 1+m 2)a ,隔离A 可知F f +m 1g sin θ=m 1a ,解得:F f =0,故D 错误.2.(2020·湖南长沙市模拟)如图2所示,光滑水平面上,质量分别为m 、M 的木块A 、B 在水平恒力F 作用下一起以加速度a 向右做匀加速直线运动,木块间的水平轻质弹簧劲度系数为k ,原长为L 0,则此时木块A 、B 间的距离为( )图2A .L 0+MakB .L 0+ma kC .L 0+MFk M +mD .L 0+F -mak答案 B解析 以A 、B 整体为研究对象,加速度为:a =FM +m,隔离A 木块,弹簧的弹力:F 弹=ma=k Δx ,则弹簧的长度L =L 0+ma k =L 0+mFk M +m,故选B.3.(2020·辽宁沈阳东北育才学校月考)如图3所示,质量分别为m A 、m B 的A 、B 两物块紧靠在一起放在倾角为θ的固定斜面上,两物块与斜面间的动摩擦因数相同,用始终平行于斜面向上的恒力F 推A ,使它们沿斜面匀加速上升,为了减小A 、B 间的压力,可行的办法是( )图3A .减小倾角θB .减小B 的质量C .减小A 的质量D .换粗糙程度小的斜面答案 B解析 由牛顿第二定律得,对A 和B 整体有F -(m A +m B )g sin θ-μ(m A +m B )g cos θ=(m A +m B )a ,对B 有F 1-m B g sin θ-μm B g cos θ=m B a ,联立解得F 1=m B m A +m BF ,故减小B 的质量可减小A 、B 间的压力,B 正确,A 、C 、D 错误.4.(多选)如图4,水平地面上有三个靠在一起的物块P 、Q 和R ,质量分别为m 、2m 和3m ,物块与地面间的动摩擦因数都为μ.用大小为F 的水平外力推动物块P ,记R 和Q 之间相互作用力与Q 与P 之间相互作用力大小之比为k .下列判断正确的是( )图4A .若μ≠0,则k =56B .若μ≠0,则k =35C .若μ=0,则k =12D .若μ=0,则k =35答案 BD5.(多选)(2020·湖北鄂东南联盟模拟)如图5所示,A 物体的质量是B 物体的k 倍.A 物体放在光滑的水平桌面上通过轻绳与B 物体相连,两物体释放后运动的加速度为a 1,轻绳的拉力为F T1;若将两物体互换位置,释放后运动的加速度为a 2,轻绳的拉力为F T2.不计滑轮摩擦和空气阻力,则( )图5A.a1∶a2=1∶k B.a1∶a2=1∶1C.F T1∶F T2=1∶k D.F T1∶F T2=1∶1答案AD解析由牛顿第二定律m B g=(m A+m B)a1,F T1=m A a1,同理两物体互换位置,则m A g=(m A+m B)a2,F T2=m B a2,解得a1∶a2=m B∶m A=1∶k,F T1∶F T2=1∶1,故A、D正确.6.(2020·江苏七市第二次调研)如图6所示,车厢水平底板上放置质量为M的物块,物块上固定竖直轻杆,质量为m的球用细线系在杆上O点.当车厢在水平面上沿直线加速运动时,球和物块相对车厢静止,细线偏离竖直方向的角度为θ,此时车厢底板对物块的摩擦力为F f、支持力为F N,已知重力加速度为g,则( )图6A.F f=Mg sin θB.F f=Mg tan θC.F N=(M+m)g D.F N=Mg答案 C解析以m为研究对象,受力如图甲所示由牛顿第二定律得mg tan θ=ma,解得a=g tan θ以M、m整体为研究对象,受力如图乙所示在竖直方向上,由平衡条件有F N=(M+m)g在水平方向上,由牛顿第二定律有F f=(M+m)a=(M+m)g tan θ,故C正确,A、B、D错误.7.(2020·安徽安庆市三模)如图7所示,质量为M的木块置于小车光滑的水平上表面,跨过光滑定滑轮的细绳一端水平连接木块,另一端竖直悬挂质量为m的物块,且m贴着小车光滑竖直右壁,当小车水平向右做加速度为a的匀加速运动时,M、m能与小车保持相对静止,则加速度a、细绳的拉力F T及m所受合力F为( )图7A .a =mg MB .F T =mMgm +MC .F =0D .F =m a 2+g 2答案 A解析 以物块为研究对象,竖直方向根据平衡条件可得细绳的拉力:F T =mg ;对木块水平方向根据牛顿第二定律可得:F T =Ma ,解得:a =mg M,故A 正确,B 错误;以物块为研究对象,竖直方向受力平衡,则物块受到的合力F =ma ,故C 、D 错误.8.(多选)质量分别为M 和m 的物块a 、b 形状、大小均相同,将它们通过轻绳跨过光滑定滑轮连接,如图8甲所示,绳子平行于倾角为α的斜面,a 恰好能静止在斜面上,不考虑两物块与斜面之间的摩擦,若互换两物块位置,按图乙放置,然后释放a ,斜面仍保持静止,关于互换位置之后下列说法正确的是( )图8A .轻绳的拉力等于mgB .轻绳的拉力等于MgC .a 运动的加速度大小为(1-sin α)gD .a 运动的加速度大小为M -mMg 答案 ACD解析 按图甲放置时,对a 由平衡条件可知Mg sin α=F T ,对b 有F T ′=mg ,F T =F T ′,则有Mg sinα=mg ;按图乙放置时,对a 由牛顿第二定律可知Mg -F T1=Ma ,对b 有F T2-mg sin α=ma ,F T1=F T2,则有Mg -mg sin α=(M +m )a ,联立解得a =(1-sin α)g ,故C 正确;由于Mg sin α=mg ,所以a =(1-sin α)g =(1-mgMg )g =M -mMg ,故D 正确;将F T2-mg sin α=ma 和a =(1-sin α)g ,联立解得F T2=mg ,故A 正确,B 错误.。

高中物理力学题目(含答案)解析

高中物理力学题目(含答案)解析

1、( )如图所示,斜面小车M静止在光滑水平面上,一边紧贴墙壁。

若再在斜面上加一物体m,且M、m都静止,此时小车受力个数为A.3B.4C.5D.62、 ( )如图所示,带支架的平板小车沿水平面向左做直线运动,小球A用细线悬挂于支架前端,质量为m的物块B始终相对于小车静止地摆放在右端。

B与小车平板间的动摩擦因数为μ。

若观察到细线偏离竖直方向θ角,则此刻小车对物块B产生的作用力的大小和方向为A.mg,斜向右上方B.mg,斜向左上方C.mgtanθ,水平向右D.mg,竖直向上3、( )如图所示,实线记录了一次实验中得到的小车运动的v-t图象,为了简化计算,用虚线作近似处理,下列表述正确的是A.小车做曲线运动B.小车先做加速运动,再做匀速运动,最后做减速运动C.在t1时刻虚线反映的加速度比实际小D.在0~t1的时间内,由虚线计算出的平均速度比实际的小4、( )2015年9月28日,年度最大最圆的月亮(“超级月亮”)现身天宇,这是月球运动到了近地点的缘故。

然后月球离开近地点向着远地点而去,“超级月亮”也与我们渐行渐远。

在月球从近地点到达远地点的过程中,下面说法错误的是A.月球运动速度越来越大B.月球的向心加速度越来越大C.地球对月球的万有引力做正功D.虽然离地球越来越远,但月球的机械能不变5、( )一环状物体套在光滑水平直杆上,能沿杆自由滑动,绳子一端系在物体上,另一端绕过定滑轮,用大小恒定的力F拉着,使物体沿杆自左向右滑动,如图所示,物体在杆上通过a、b、c三点时的动能分别为E a、E b、E c,且ab=bc,滑轮质量和摩擦均不计,则下列关系中正确的是A.E b-E a=E c-E bB.E b-E a<E c-E bC.E b-E a>E c-E bD.E a>E b>E c6、( )消防员用绳子将一不慎落入井中的儿童从井内加速向上提的过程中,不计绳子的重力,以下说法正确的是A.绳子对儿童的拉力大于儿童对绳子的拉力B.绳子对儿童的拉力大于儿童的重力C.消防员对绳子的拉力与绳子对消防员的拉力是一对作用力与反作用力D.消防员对绳子的拉力与绳子对儿童的拉力是一对平衡力7、( )汽车沿平直的公路以恒定功率P从静止开始启动,经过一段时间t达到最大速度v,若所受阻力始终不变,则在t这段时间内,下面说法错误的是A.汽车牵引力恒定B.汽车牵引力做的功为PtC.汽车加速度不断增大D.汽车牵引力做的功为mv28、( )图甲中的塔吊是现代工地必不可少的建筑设备,图乙为150kg的建筑材料被吊车竖直向上提升过程的简化运动图象,g取10m/s2,下列判断正确的是A.前10 s悬线的拉力恒为1 500 NB.46 s末材料离地面的距离为22 mC.0~10 s材料处于失重状态D.在0~10 s钢索最容易发生断裂9、( )如图所示,轻质弹簧上端固定,下端系一物体,物体在A处时,弹簧处于原长状态。

2020高考物理计算题专题练习——力学综合计算(共24题,含解析)

2020高考物理计算题专题练习——力学综合计算(共24题,含解析)1.在竖直平面内,某一游戏轨道由直轨道AB 和弯曲的细管道BCD 平滑连接组成,如图所示.小滑块以某一初速度从A 点滑上倾角为θ=37°的直轨道AB ,到达B 点的速度大小为2m/s ,然后进入细管道BCD ,从细管道出口D 点水平飞出,落到水平面上的G 点.已知B 点的高度h 1=1.2m ,D 点的高度h 2=0.8m ,D 点与G 点间的水平距离L =0.4m ,滑块与轨道AB 间的动摩擦因数μ=0.25,sin37°= 0.6,cos37°= 0.8.(1)求小滑块在轨道AB 上的加速度和在A 点的初速度;(2)求小滑块从D 点飞出的速度;(3)判断细管道BCD 的内壁是否光滑.2.如图,物块A 通过一不可伸长的轻绳悬挂在天花板下,初始时静止;从发射器(图中未画出)射出的物块B 沿水平方向与A 相撞,碰撞后两者粘连在一起运动;碰撞前B 的速度的大小v 及碰撞后A 和B 一起上升的高度h 均可由传感器(图中未画出)测得.某同学以h 为纵坐标,v 2为横坐标,利用实验数据作直线拟合,求得该直线的斜率为k =1.92 ×10-3 s 2/m .已知物块A 和B 的质量分别为m A =0.400 kg 和m B =0.100 kg ,重力加速度大小g =9.80 m/s 2.(1)若碰撞时间极短且忽略空气阻力,求h –v 2直线斜率的理论值k 0;(2)求k 值的相对误差δ(δ=00k k k ×100%,结果保留1位有效数字).3.雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关.雨滴间无相互作用且雨滴质量不变,重力加速度为g.(1)质量为m的雨滴由静止开始,下落高度h时速度为u,求这一过程中克服空气阻力所做的功W.(2)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数.a.设雨滴的密度为ρ,推导雨滴下落趋近的最大速度v m与半径r的关系式;b.示意图中画出了半径为r1、r2(r1>r2)的雨滴在空气中无初速下落的v–t图线,其中_________对应半径为r1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v–t图线.(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零.将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f ∝v2(提示:设单位体积内空气分子数为n,空气分子质量为m0).4.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m的小物块a相连,如图所示.质量为35m的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为x0,从t=0时开始,对b施加沿斜面向上的外力,使b始终做匀加速直线运动.经过一段时间后,物块a、b分离;再经过同样长的时间,b距其出发点的距离恰好也为x0.弹簧的形变始终在弹性限度内,重力加速度大小为g.求:(1)弹簧的劲度系数;(2)物块b加速度的大小;(3)在物块a、b分离前,外力大小随时间变化的关系式.5.如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切.BC为圆弧轨道的直径.O为圆心,OA和OB之间的夹角为α,sinα=35,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求:(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.6.我国自行研制、具有完全自主知识产权的新一代大型喷气式客机C919首飞成功后,拉开了全面试验试飞的新征程,假设飞机在水平跑道上的滑跑是初速度为零的匀加速直线运动,当位移x=1.6×103 m时才能达到起飞所要求的速度v=80 m/s。

高考物理力学计算题(二十四)含答案与解析

高考物理力学计算题(二十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,用外力推P物体压着轻质弹簧静置于A点(A物体与弹簧接触但不连结),Q 物体静止在B点,P和Q的质量均为m=1kg,它们的大小相对于轨道来说可忽略。

光滑轨道ABCD中的AB部分水平,BC部分为曲线,CD部分为直径d=5m圆弧的半圆,该圆弧轨迹与地面相切,D点为圆弧的最高点,各段连接处对滑块的运动无影响。

现撤去外力,P沿轨道运动至B点,与Q相碰后不再分开,最后两物体从D点水平抛出,测得水平射程s=2m。

(g=10m/s2)。

求:(1)两物体水平抛出时的速度;(2)两物体运动到D点时对圆弧的压力F N;(3)轻弹簧被压缩时的弹性势能E P。

2.如图所示,在光滑的水平地面上,每隔L=6m的距离就会铺上一条宽度d=3.5m的特殊材料的薄膜,且薄膜边界与地面平滑相接,某一时刻,一物块(可视为质点)从光滑地面以大小v0=4m/s的初速度滑上薄膜,并最终停在某一薄膜上,取重力加速度g=10m/s2,物块与薄膜间的动摩擦因数μ=0.1,求:(1)物块滑过薄膜的条数(不含停止在薄膜上的那条);(2)物块运动的总时间t。

3.图所示,可视为质点的两个小球通过长度L=6m的轻绳连接,甲球的质量为m1=0.2kg,乙球的质量为m2=0.1kg。

将两球从距地面某一高度的同一位置先后释放,甲球释放△t=1s后再释放乙球,绳子伸直后即刻绷断(细绳绷断的时间极短,可忽略),此后两球又下落t=1.2s同时落地。

可认为两球始终在同一竖直线上运动,不计空气阻力,重力加速度g=10m/s2。

(1)从释放乙球到绳子绷直的时间t0;(2)绳子绷断的过程中绳对甲球拉力的冲量大小。

4.如图所示,一质量为2m的足够长木板C静止在光滑的水平面上,质量均为m的小物块A、B静止在木板C上,A位于木板C的左端,B位于木板C的右端,t=0时刻分别给A、C以向右的速度3v0和v0,最终物块A、B都停在木板C上,其A、B未发生碰撞,已知量物块与木板间的动摩擦因数均为μ,重力加速度为g,求:①最终A、B、C的共同速度为多大?②在这个运动过程中,因摩擦产生的热量是多少?5.我国在无人机的应用方面越来越广泛。

2019年高考物理双基突破:专题20-安培力(精讲)(含解析)

一、安培力的大小1.安培力计算公式:当磁感应强度B的方向与导线方向成θ角时,F=BIL sinθ。

这是一般情况下的安培力的表达式,以下是两种特殊情况:(1)磁场和电流垂直时:F=BIL。

(2)磁场和电流平行时:F=0。

磁场对磁铁一定有力的作用,而对电流不一定有力的作用。

当电流方向和磁感线方向平行时,通电导体不受安培力作用。

2.公式的适用范围:一般只适用于匀强磁场.对于非匀强磁场,仅适用于电流元。

3.弯曲通电导线的有效长度L:等于两端点所连直线的长度,相应的电流方向由始端指向末端,因为任意形状的闭合线圈,其有效长度L =0,所以通电后在匀强磁场中,受到的安培力的矢量和一定为零。

4.公式F=BIL的适用条件:(1)B与L垂直;(2)匀强磁场或通电导线所在区域的磁感应强度的大小和方向相同;(3)安培力表达式中,若载流导体是弯曲导线,且与磁感应强度方向垂直,则L是指导线由始端指向末端的直线长度。

【题1】如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。

线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135°。

流经导线的电流为I,方向如图中箭头所示。

导线段abcd所受到的磁场的作用力的合力A.方向沿纸面向上,大小为(2+1)ILBB.方向沿纸面向上,大小为(2-1)ILBC.方向沿纸面向下,大小为(2+1)ILBD.方向沿纸面向下,大小为(2-1)ILB【答案】A【解析】ad 间通电导线的有效长度为图中的虚线L ′=(2+1)L ,电流的方向等效为由a 沿直线流向d ,所以安培力的大小F =BIL ′=(2+1)ILB .根据左手定则可以判断,安培力方向沿纸面向上,选项A 正确。

【题2】如图,两根平行放置的长直导线a 和b 载有大小相同、方向相反的电流,a 受到的磁场力大小为F 1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为F 2,则此时b 受到的磁场力大小变为A .F 2B .F 1-F 2C .F 1+F 2D .2F 1-F 2 【答案】A【题3】如图所示,AC 是一个用长为L 的导线弯成的、以O 为圆心的四分之一圆弧,将其放置在与平面AOC 垂直的磁感应强度为B 的匀强磁场中。

高考物理模拟专题力学计算题(二十五)含答案与解析

高考物理力学计算题(二十五)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,长度为L=15m的木板C静止在光滑的水平面上,木板C的左端和中点各静置可视为质点的物块A和B,物块A、B和木板C的质量均为1kg,物块A、B与木板C 之间的动摩擦因数均为0.2.现突然给物块A一水平向右的速度v0=9m/s,A、B发生碰撞时间极短且碰撞后立即粘在一起,最后A、B整体在木板C上某处与木板保持相对静止。

已知物块所受最大静摩擦力与滑动摩檫力大小相等,g=10m/s2.求:(1)A、B碰撞刚结束时的瞬时速度;(2)A、B、C相对静止时,A、B整体与木板C中点之间的距离。

2.如图为固定在竖直平面内的轨道,粗糙的直轨道AB与光滑圆弧轨道BC相切,圆弧轨道的圆心角为37°,半径为r=0.25m,C端水平,竖直墙壁CD高H=0.2m,紧靠墙壁在地面上固定一个和CD等高,底边长L=0.3m的斜面。

一个质量m=0.1kg的小物块(视为质点)在倾斜轨道上从距离B点l=0.5m处由静止释放,滑到C点时对圆弧轨道压力为2.2N.重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)AB段的动摩擦因数为多少?(2)小物块从C点抛出到击中斜面的时间。

3.如图所示,有一质量为M=2.0kg、内表面光滑的水平金属盒,其长度L=1.4m,静止放置在粗糙且较大的水平桌面上,在水平金属盒的左、右两端各有一个挡板,金属盒与水平桌面间的动摩擦因数μ=0.1,在金属盒内的最右端静止放置一个质量为m=2.0kg、半径为r=0.2m的光滑金属小球。

现在某时刻金属盒获得一个水平向右的初速度v0=3m/s,不计挡板的厚度、小球与挡板碰撞的时间及能量损失,重力加速度g=10m/s2.则:(1)金属盒在水平桌面上运动的加速度是多少?(2)最后系统处于静止状态时,金属小球的球心距左边档板的水平距离是多少?4.如图所示,质量为0.2kg的小物块B用不可伸长的细绳悬挂于O点,静止时恰好位于0.8m 高的光滑平台的右端,质量为0.4kg的小物块A以2m/s的初速度向右运动并与小物块B 发生对心碰撞,碰后小物块A滑下平台落于水平面上M点,水平射程为0.48m,已知碰后小物块B运动过程中细绳不松弛且小物块B运动至最高点时动能为0,小物块A、B 均可视为质点,重力加速度g=10m/s2,求:(1)小物块A、B碰撞过程中损失的机械能;(2)细绳的长度应满足什么条件;若要求小物块B对细绳的拉力最大,则此时的绳长和最大拉力分别为多少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理力学计算题(二十)组卷老师一.计算题(共50小题)1.甲、乙两运动员在做花样滑冰表演,沿同一直线相向运动,速度大小都是1m/s,甲、乙相遇时用力推对方,此后都沿各自原方向的反方向运动,速度大小分别为1m/s和2m/s.求甲、乙两运动员的质量之比.2.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a相连,如图所示。

质量为m的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为x0,从t=0时开始,对b施加沿斜面向上的外力,使b始终做匀加速直线运动。

经过一段时间后,物块a、b分离;再经过同样长的时间,b距其出发点的距离恰好也为x0.弹簧的形变始终在弹性限度内,重力加速度大小为g.求(1)弹簧的劲度系数;(2)物块b加速度的大小;(3)在物块a、b分离前,外力大小随时间变化的关系式。

3.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为m A=2kg、m B=1kg.初始时A静止于水平地面上,B悬于空中.先将B竖直向上再举高h=1.8m(未触及滑轮)然后由静止释放.一段时间后细绳绷直,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触.取g=10m/s2.(1)B从释放到细绳绷直时的运动时间t;(2)A的最大速度v的大小;(3)初始时B离地面的高度H.4.游船从某码头沿直线行驶到湖对岸,小明对过程进行观测,记录数据如表:(1)求游船匀加速运动过程中加速度大小a1及位移大小x1;(2)若游船和游客的总质量M=8000kg,求游船匀减速运动过程中所受的合力大小F;(3)求游船在整个行驶过程中的平均速度大小.5.为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1<s0)处分别设置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板:冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v1.重力加速度为g.求(1)冰球与冰面之间的动摩擦因数;(2)满足训练要求的运动员的最小加速度.6.如图,两个滑块A和B的质量分别为m A=1kg和m B=5kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10m/s2.求(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.7.如图所示,两个半圆柱A、B紧靠着静置于水平地面上,其上有一光滑圆柱C,三者半径均为R.C的质量为m,A、B的质量都为,与地面的动摩擦因数均为μ.现用水平向右的力拉A,使A缓慢移动,直至C恰好降到地面.整个过程中B保持静止.设最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)未拉A时,C受到B作用力的大小F;(2)动摩擦因数的最小值μmin;(3)A移动的整个过程中,拉力做的功W.8.一质量为8.00×104kg的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105 m处以7.5×103 m/s的速度进入大气层,逐渐减慢至速度为100m/s时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8m/s2.(结果保留2位有效数字)(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%.9.图中给出了一段“S”形单行盘山公路的示意图,弯道1、弯道2可看作两个不同水平面上的圆弧。

圆心分别为O1、O2,弯道中心线半径分别为r1=10m,r2=20m,弯道2比弯道1高h=12m,有一直道与两弯道圆弧相切,质量m=1200kg的汽车通过弯道时做匀速圆周运动,路面对轮胎的最大径向静摩擦力是车重的1.25倍,行驶时要求汽车不打滑。

(sin37°=0.6,cos37°=0.8)(1)求汽车沿弯道1中心线行驶时的最大速度v1;(2)汽车以v1进入直道,以P=30kW的恒定功率直线行驶了t=8.0s进入弯道2,此时速度恰好为通过弯道2中心线的最大速度,求直道上除重力以外的阻力对汽车做的功;(3)汽车从弯道1的A点进入,从同一直径上的B点驶离,有经验的司机会利用路面宽度用最短时间匀速安全通过弯道,设路宽d=10m,求此最短时间(A、B两点都在轨道的中心线上,计算时视汽车为质点)。

10.风洞是研究空气动力学的实验设备.如图,将刚性杆水平固定在风洞内距地面高度H=3.2m处,杆上套一质量m=3kg,可沿杆滑动的小球.将小球所受的风力调节为F=15N,方向水平向左.小球以速度v0=8m/s向右离开杆端,假设小球所受风力不变,取g=10m/s2.求:(1)小球落地所需时间和离开杆端的水平距离;(2)小球落地时的动能.(3)小球离开杆端后经过多少时间动能为78J?11.如图所示,倾角为α的斜面A被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B相连,B静止在斜面上.滑轮左侧的细线水平,右侧的细线与斜面平行.A、B的质量均为m.撤去固定A的装置后,A、B均做直线运动.不计一切摩擦,重力加速度为g.求:(1)A固定不动时,A对B支持力的大小N;(2)A滑动的位移为x时,B的位移大小s;(3)A滑动的位移为x时的速度大小v x.12.在真空环境内探测微粒在重力场中能量的简化装置如图所示.P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h的探测屏AB 竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h,重力加速度为g.(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系.13.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.(i)求斜面体的质量;(ii)通过计算判断,冰块与斜面体分离后能否追上小孩?14.轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示.物块P与AB间的动摩擦因数μ=0.5.用外力推动物块P,将弹簧压缩至长度l,然后释放,P开始沿轨道运动,重力加速度大小为g.(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点间的距离;(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量m p的取值范围.15.水平地面上有质量分别为m和4m的物A和B,两者与地面的动摩擦因数均为μ.细绳的一端固定,另一端跨过轻质动滑轮与A相连,动滑轮与B相连,如图所示.初始时,绳处于水平拉直状态.若物块A在水平向右的恒力F作用下向右移动了距离s,重力加速度大小为g.求(1)物块B克服摩擦力所做的功;(2)物块A、B的加速度大小.16.如图,在竖直平面内由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为.一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.17.如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直,a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为m,两物块与地面间的动摩擦因数均相同,现使a以初速度v0向右滑动,此后a与b发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g,求物块与地面间的动摩擦因数满足的条件.18.我国将于2022年举办冬奥运会,跳台滑雪是其中最具观赏性的项目之一,如图所示,质量m=60kg的运动员从长直轨道AB的A处由静止开始以加速度a=3.6m/s2匀加速下滑,到达助滑道末端B时速度v B=24m/s,A与B的竖直高度差H=48m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧,助滑道末端B与滑道最低点C的高度差h=5m,运动员在B、C间运动时阻力做功W=﹣1530J,取g=10m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大.19.如图,物块A通过一不可伸长的轻绳悬挂在天花板下,初始时静止;从发射器(图中未画出)射出的物块B沿水平方向与A相撞,碰撞后两者粘连在一起运动,碰撞前B的速度的大小v及碰撞后A和B一起上升的高度h均可由传感器(图中未画出)测得.某同学以h为纵坐标,v2为横坐标,利用实验数据作直线拟合,求得该直线的斜率为k=1.92×10﹣3s2/m.已知物块A和B的质量分别为m A=0.400kg和m B=0.100kg,重力加速度大小g=9.8m/s2.(i)若碰撞时间极短且忽略空气阻力,求h﹣v2直线斜率的理论值k0.(ii)求k值的相对误差δ(δ=×100%),结果保留1位有效数字.20.避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图竖直平面内,制动坡床视为水平面夹角为θ的斜面.一辆长12m的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23m/s时,车尾位于制动坡床的低端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4m时,车头距制动坡床顶端38m,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cosθ=1,s inθ=0.1,g=10m/s2.求:(1)货物在车厢内滑动时加速度的大小和方向;(2)制动坡床的长度.21.如图,装甲车在水平地面上以速度v0=20m/s沿直线前进,车上机枪的枪管水平,距地面高为h=1.8m.在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v=800m/s.在子弹射出的同时,装甲车开始做匀减速运动,行进s=90m后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g=10m/s2)(1)求装甲车做匀减速运动时的加速度大小;(2)当L=410m时,求第一发子弹的弾孔离地的高度,并计算靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,求L的范围.22.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t0=0.4s,但饮酒会导致反应时间延长,在某次试验中,志愿者少量饮酒后驾车以v1=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m,减速过程中汽车位移x与速度v的关系曲线如同乙所示,此过程可视为匀变速直线运动,取重力加速度的大小g=10m/s2,求:(1)减速过程汽车加速度的大小及所用时间;(2)饮酒使志愿者反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值.23.如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中,m1=0.5kg,m2=0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g=10m/s2.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?24.反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图所示,在虚线MN两侧分别存在着方向相反的两个匀强电场,一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动.已知电场强度的大小分别是E1=2.0×103N/C和E2=4.0×103N/C,方向如图所示,带电微粒质量m=1.0×10﹣20kg,带电量q=1.0×10﹣9C,A点距虚线MN的距离d1=1.0cm,不计带电微粒的重力,忽略相对论效应.求:(1)B点距虚线MN的距离d2;(2)带电微粒从A点运动到B点所经历的时间t.25.质量分别为M A=m,M B=m1,M C=M﹣m1的三个物体A、B、C依次自左向右静止在光滑水平面上的同一条直线上,B、C用一根劲度系数k为的弹簧连接.突然给A一个向右的初速度v,A与B发生碰撞后粘在一起继续沿三者所在直线向前运动并压缩弹簧.(i)求碰撞过程中损失的机械能和弹簧的弹性势能最大值.(ii)根据计算结果分析,一个质量为m的物体以一定的初速度跟另一个质量为M的静止的物体怎样碰撞损失的机械能最大?26.质量为m=10kg的物体在F=90N的平行于斜面向上的拉力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°.力F作用t1=8s后撤去,物体在斜面上继续上滑了t2=1s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移s.(已知sin37°=0.6,cos37°=0.8,g=10m/s2)27.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量4kg的物块C静止在前方,如图所示,B与C碰撞后二者会粘在一起运动.求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系统中弹性势能的最大值是多少?28.如图所示,一水平放置的半径为r=0.5m的薄圆盘绕过圆心O点的竖直轴转动,圆盘边缘有一质量m=1.0kg的小滑块(可看成是质点).当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,滑块与圆盘间的动摩擦因数μ=0.2,圆盘所水平面离水平地面的高度h=2.5m,g取10m/s2.(1)当圆盘的角速度多大时,滑块从圆盘上滑落?(2)小滑块落地时的速度大小?(3)若落地点为C,求OC之间的距离.29.从中国航天科技集团获悉,2015年,我国计划完成20次宇航发射,将超过40颗航天器送入太空,无论是发射航天器的次数还是数量,都将创下中国航天历史新高。

相关文档
最新文档