压阻式加速度传感器对ADC的要求
压阻式传感器

4.兵器上的应用
由于固有频率高,动态响应快,体积小等特点,压阻式压力传感器适合测量 枪炮膛内的压力。测量时,传感器安装在枪炮的身管上或装在药筒底部。另 外,压阻式传感器也用来测试武器发射时产生的冲击波。
此外,在石油工业中,硅压阻式压力传感器用来测量油井压力,以便分析油 层情况。压阻式加速度计作为随钻测向测位系统的敏感元件,用于石油勘探 和开发。在机械工业中,可用来测量冷冻机、空调机、空气压缩机、燃气涡 轮发动机等气流流速,监测机器的工作状态。在邮电系统中,用作地面和地 下密封电缆故障点的检测和确定,比机械式传感器精确和节省费用。在航运 上,测量水的流速,以及测量输水管道,天然气管道内的流速等。
利用这种效应制成的电阻称为固态压敏电阻,也叫力 敏电阻。用压敏电阻制成的器件有两类:一种是利用半导 体材料制成黏贴式的应变片;另一种是在半导体的基片上 用集成电路的工艺制成扩散型压敏电阻,用它作传感器元 件制成的传感器,称为固态压阻式传感器,也叫扩散型压 阻式传感器。
2. 体型半导体电阻应变片
这种半导体应变片是将单晶硅锭切片、研磨、腐蚀压焊引线, 最后粘贴在锌酚醛树脂或聚酰亚胺的衬底上制成的。体型半导体 应变片可分为6种。
3. 扩散型压阻式压力传感器
在弹性变形限度内,硅的压阻效应是可逆的,即在应力作用下硅 的电阻发生变化,而当应力除去时,硅的电阻又恢复到原来的数值。 硅的压阻效应因晶体的取向不同而不同,即对不同的晶轴方向其压阻 系数不同。虽然半导体压敏电阻的灵敏系数比金属高很多,但是有时 还是不够。因此为了进一步增大灵敏度,压敏电阻常常扩散(安装) 薄的硅膜上,让硅膜起一个放大作用。
电桥输出电压与ΔR成正比,环境温度的变化对其没有影响。
2.3 半导体应变片的优缺点
半导体应变片最突出的优点是灵敏度高,这为它的应用提供 了有利条件。另外,由于机械滞后小、横向效应小以及它本身体 积小等特点,扩大了半导体应变片的使用范围。
电子气压计的工作原理

电子气压计的工作原理电子气压计是一种用于测量大气压强的仪器,其工作原理基于电子技术和气体物理学原理。
它利用传感器感知大气压强,并将其转化为相应的电信号,从而实现气压的测量和显示。
一、传感器原理电子气压计的关键部件是压力传感器。
压力传感器通常采用压阻式传感器或压电式传感器。
1. 压阻式传感器压阻式传感器利用压阻材料的电阻随压强的变化而产生相应的电信号。
当气压作用于传感器的感受面时,感受面上的压阻物质会产生位移,从而改变电阻值。
通过测量电阻值的变化,即可确定气压的大小。
2. 压电式传感器压电式传感器是利用压电材料的压电效应实现气压测量的。
压电材料是一种特殊的晶体,当外力作用于其表面时,会产生电荷的分离,从而产生电信号。
通过测量电信号的强度或电荷的分离程度,可以推断气压的大小。
二、信号处理传感器所产生的电信号一般是微弱的模拟信号,需要经过信号处理电路进行放大、滤波和转换等处理,使其能够被后续的电子器件或显示装置所接受和理解。
信号处理电路一般包括放大器、滤波器、模数转换器等。
放大器的作用是将传感器输出的微弱信号放大到适合处理的范围。
滤波器则可以去除干扰信号,提取出所需信号。
模数转换器将模拟信号转换为数字信号,方便后续的计算和处理。
三、显示及输出经过信号处理后,电子气压计将气压转换为数字信号,并通过显示装置进行显示。
显示装置可以是LCD液晶显示屏、LED数字显示管或数码显示面板等。
数字显示装置可以直接显示气压数值,也可以配合其他指示灯或指针进行更直观的显示。
除了显示功能,电子气压计还可以通过接口输出信号,以便与其他设备进行数据传输和共享。
常见的输出接口包括串口、USB接口、无线通信接口等。
通过输出接口,电子气压计可以将测量数据传输到计算机、手机或其他外部设备上,实现数据的存储、分析和远程监测等功能。
四、应用领域电子气压计在气象学、地质学、气体工程、导航、航空航天等领域都有广泛的应用。
因为其精确度高、响应速度快、体积小、重量轻等特点,电子气压计成为了现代化测量和控制系统不可或缺的重要组成部分。
智能压力传感器的采集和处理数据功能

智能压力传感器的采集和处理数据功能智能压力传感器的采集数据功能主要是通过传感器内部的压阻和放大电路来实现的。
当物体施加压力时,传感器内部的压阻会发生变化,通过与电路连接的控制器将这一变化转化为电信号进行采集。
传感器还可以通过无线通信技术将采集到的数据传输给外部的设备,实现远程实时监测和数据采集。
智能压力传感器的处理数据功能包括数据清洗、数据转化和数据分析等多个环节。
首先,在数据采集过程中,传感器可能会受到噪声、干扰或漂移等因素的影响,导致采集数据存在一定的误差。
因此,需要对采集到的数据进行清洗和滤波,去除异常值和噪声,确保数据的准确性和可靠性。
接下来,采集到的数据通常是模拟信号,需要将其转化为数字信号进行处理。
这一过程称为数模转换(ADC),可以通过采样和量化的方式将模拟信号转化为数字形式的数据。
转化后的数据可以更方便地进行存储、处理和传输。
对于处理后的数据,可以进行多方面的分析和应用。
例如,可以通过数据可视化的方式将采集到的数据以图表或曲线的形式展示出来,帮助用户更直观地了解压力变化的趋势和规律。
同时,还可以通过数据统计和挖掘的方法,对大量数据进行分析,提取其中的关键特征和规律,为用户提供更多的信息和决策支持。
此外,智能压力传感器还可以与其他设备和系统进行集成,实现更复杂的功能和应用。
例如,在工业生产环境中,可以将智能压力传感器与自动控制系统连接,实现对压力变化的实时监测和调节。
在医疗卫生领域,可以将智能压力传感器与健康监测设备结合使用,帮助医生和护士监测患者的生命体征和疾病状态。
总而言之,智能压力传感器的采集和处理数据功能是其核心的技术特点之一、通过采集和处理数据,智能压力传感器可以实现对压力变化的准确监测和分析,为用户提供更全面的信息和决策支持,推动相关领域的发展和进步。
压力传感器工作原理

压力传感器工作原理压力传感器是一种用于测量压力的装置,它能够将压力信号转换为可读取的电信号。
在工业自动化、汽车工程、医疗设备等领域中广泛应用。
本文将详细介绍压力传感器的工作原理。
一、压力传感器的基本原理压力传感器的基本原理是利用压力作用于传感器感应元件上,产生相应的信号,经过信号处理电路转换为标准电信号输出。
常见的压力传感器有压阻式、电容式、电感式等。
1. 压阻式压力传感器压阻式压力传感器的核心是一个压阻元件,它的电阻值随着受力的增加而发生变化。
当压力作用于压阻元件上时,导致其阻值发生变化,进而改变电路中的电流或者电压。
通过测量电路中的电流或者电压变化,可以间接得到压力的大小。
2. 电容式压力传感器电容式压力传感器的核心是一个可变电容结构,当压力作用于传感器时,使得电容结构的间隙发生变化,进而改变电容的值。
通过测量电容的变化,可以得到压力的大小。
3. 电感式压力传感器电感式压力传感器利用感应线圈和铁芯的磁耦合效应来测量压力。
当压力作用于传感器时,使得感应线圈和铁芯之间的距离发生变化,从而改变感应线圈的电感值。
通过测量电感的变化,可以得到压力的大小。
二、压力传感器的工作过程压力传感器的工作过程可以分为感应元件受力、信号转换和信号输出三个阶段。
1. 感应元件受力当压力作用于压力传感器的感应元件上时,感应元件会发生形变或者位移。
这个形变或者位移可以是压阻元件的阻值变化、电容结构的间隙变化或者感应线圈和铁芯之间的距离变化。
2. 信号转换感应元件受力后,传感器内部的信号转换电路会将感应元件产生的变化转换为电信号。
具体的转换方式取决于传感器的类型,可以是电流、电压或者电容的变化。
3. 信号输出经过信号转换后,压力传感器会将转换后的电信号输出。
输出的电信号可以是摹拟信号,也可以是数字信号。
摹拟信号通常是电压或者电流的变化,而数字信号通常是经过ADC(模数转换器)转换后的二进制数据。
三、压力传感器的特点和应用压力传感器具有以下特点:1. 高精度:压力传感器能够提供高精度的压力测量结果,通常可以达到几个百分点的精度。
第2章1压阻式传感器

绝缘电阻是指应变片的引线与被测件之间的电阻值。
(六)应变片的电阻值 应变片在未经安装也不受外力情况下,于室温下测得
的电阻值,是使用应变片时需知道的一个特性参数.
四、转换电路
为什么要有电桥呢? 应变效应 R/R= k 其中 k 2,(应变片的灵敏系数)
传感器工作方式,也是选择传感器时应考 虑的重要因素。例如,接触与非接触测量、破 坏与非破坏性测量、在线与非在线测量等。
2.2 常用传感器
2.2.1传感器的构成
弹性元件(敏感元件)
直接感受被测量,并输出与被测量成确定关系的物理量
传感元件(转换元件)敏感元源自的输出就是它的输入,抟换成电路参量
辅助件
主要用于支撑和安装弹性元件、传感元件及输出接头的
化),其它为标准电阻(不是应变片)。
R2 R3 R4 0
则
U 0
1U 4
R1 R
1 Uk
4
b.相邻两臂工作:
R1,R2为工作片,R3,R4为标准电阻,
R3 R4 0
U0
1 U ( R1 4R
R2 R
)
1 4
Uk(
1
2)
当1 2 ,即R1 R2时, U0 0
此时没有意义,应避免。
构件。
被测量
敏感 元件
转换
电量
元件
1-壳体; 2-膜盒; 3-电感线圈; 4-磁芯
2.2.2 传感器分类
传感器分类方法较多,大体有以下几种: 1) 按被测物理量分类 物理量传感器 化学量传感器 生物量传感器 2)按转换能量的情况分类 能量转换型 能量控制型 3)按传感器的工作原理分类 结构型传感器 物性型传感器 复合型传感器
压力传感器工作原理

压力传感器工作原理压力传感器是一种用于测量压力的装置,它能将压力信号转换为电信号输出。
压力传感器广泛应用于工业、医疗、汽车等领域,用于监测和控制系统中的压力变化。
一、压力传感器的基本原理压力传感器的基本原理是利用压力对传感器内部的敏感元件产生的变形进行测量。
常见的压力传感器有压阻式传感器、压电式传感器和半导体式传感器。
1. 压阻式传感器压阻式传感器是利用压力对敏感元件阻值的变化进行测量的。
敏感元件通常由金属或者半导体材料制成,当受到外部压力时,敏感元件的阻值会发生变化。
通过测量阻值的变化,可以确定压力的大小。
2. 压电式传感器压电式传感器是利用压力对压电材料产生的电荷或者电压变化进行测量的。
压电材料具有压电效应,即在受到压力作用时会产生电荷或者电压变化。
通过测量电荷或者电压的变化,可以确定压力的大小。
3. 半导体式传感器半导体式传感器是利用压力对半导体材料电阻的变化进行测量的。
半导体材料的电阻会随着压力的变化而发生变化,通过测量电阻的变化,可以确定压力的大小。
二、压力传感器的工作过程压力传感器的工作过程可以分为以下几个步骤:1. 压力采集压力传感器首先需要采集外部的压力信号。
这可以通过传感器上的压力接口或者压力导管来实现。
当外部压力作用于传感器时,传感器的敏感元件会受到压力的作用而发生变形。
2. 信号转换传感器的敏感元件发生变形后,会产生相应的物理信号,如电阻变化、电荷变化或者电压变化。
这些物理信号需要经过信号转换电路进行处理,将其转换为可供测量和分析的电信号。
3. 信号处理经过信号转换后,传感器输出的电信号需要进行进一步的处理。
这包括放大、滤波、线性化等处理步骤,以确保输出信号的准确性和稳定性。
4. 数据输出经过信号处理后,传感器将最终的压力信号以电信号的形式输出。
这些电信号可以是摹拟信号或者数字信号,可以通过摹拟输出接口或者数字输出接口传输给其他设备或者系统进行进一步的处理和分析。
三、压力传感器的应用领域压力传感器在各个领域都有广泛的应用,下面以几个典型的应用领域为例进行介绍:1. 工业领域在工业领域,压力传感器被广泛用于监测和控制系统中的压力变化。
高速轨道交通安全检测系统的传感器选择与布置

高速轨道交通安全检测系统的传感器选择与布置随着城市交通的快速发展和人们对出行的需求增加,高速轨道交通已成为现代城市中不可或缺的交通方式之一。
然而,高速轨道交通存在一定的安全隐患,如列车超速、道路施工等情况可能会引发严重的事故。
因此,为了保障高速轨道交通的安全运行,高速轨道交通安全检测系统的传感器选择与布置变得尤为关键。
在高速轨道交通安全检测系统中,传感器是收集数据、监测列车状态和环境变化的关键组成部分。
传感器的选择与布置将直接影响到系统的性能和有效性。
下面将从传感器的选择、布置和注意事项等方面进行详细介绍。
一、传感器的选择1. 速度传感器:高速轨道交通的安全与速度密切相关。
因此,选择准确可靠的速度传感器至关重要。
常见的速度传感器主要有霍尔效应传感器、光电传感器和激光雷达传感器。
这些传感器可以通过测量车轮转动的频率来计算列车的速度,并向系统提供实时的速度数据。
2. 温度传感器:高速轨道交通在运行过程中会由于电器设备的工作产生大量热能,因此温度传感器的选择及其布置至关重要。
常见的温度传感器包括热电偶传感器、热敏电阻传感器和红外线传感器。
这些传感器可以实时检测车体和关键设备的温度变化,从而帮助系统及时发现并处理可能存在的隐患。
3. 加速度传感器:高速轨道交通的运行过程中,会受到各种因素的影响,如风力、地震等。
因此,选择合适的加速度传感器对于监测列车的运行状态和安全性至关重要。
常见的加速度传感器有压阻式加速度传感器、电容式加速度传感器和光纤加速度传感器。
4. 摄像头和图像传感器:高速轨道交通的安全检测系统还需要监控列车的行驶状态和乘客的安全情况。
因此,在系统中选择高清晰度的摄像头和图像传感器是必要的。
这些传感器可以实时捕捉列车和乘客的图像,并通过图像处理和识别技术分析车厢内的情况,如人员拥挤度、物品遗留等。
二、传感器的布置1. 位置选择:传感器的布置位置应尽量选择在车辆的关键部位,如车轮、车轴、车门等。
mems压阻式传感器产品结构

MEMS压阻式传感器产品结构
MEMS压阻式传感器是一种基于微电子机械系统(MEMS)技术的压力传感器,其结构通常由以下几个部分组成:
1. 压力敏感元件:MEMS压阻式传感器的核心部分是一个薄膜压力敏感元件,通常由硅或其他MEMS材料制成。
这个元件通常是一个圆形或方形的薄片,其表面被刻有许多微小的电极,这些电极可以感应到施加在元件上的压力,从而改变元件的电阻值。
2. 信号处理电路:MEMS压阻式传感器需要将压力信号转换成电信号输出,因此需要信号处理电路来将压力信号转换为电压信号。
这个电路通常包括一个放大器、一个模数转换器(ADC)等组件。
3. 封装结构:MEMS压阻式传感器需要被封装起来以保护其内部结构不受外界干扰。
常见的封装结构包括气密性良好的柔性封装、刚性封装等。
4. 接口引脚:MEMS压阻式传感器需要与外部电路相连接,因此需要一些接口引脚来传递信号和电源等信息。
总体来说,MEMS压阻式传感器具有体积小、重量轻、响应速度快、成本低等优点,被广泛应用于汽车、医疗、工业自动化等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压阻式加速度传感器对ADC的要求
为具体应用选择适当的压阻式加速度传感器取决于待测温度范围和所需的精度。
系统精度取决于压阻式加速度传感器的精度和对传感器的输出数字化的模数转换器(ADC)的性能。
多数情况下,由于传感器信号非常微弱,因此需要高分辨率ADC。
ΣΔADC具有高分辨率,并且这种ADC通常包含温度测量系统所需的内置电路,例如激励电流源。
本文主要介绍可以利用的温度传感器[热电偶、电阻温度检测器(RTD)、热敏电阻器与热敏二极管]和连接传感器与ADC所需的电路,以及对ADC的性能要求。
热电偶
热电偶由两种不同类型的金属组成。
当温度高于零摄氏度时,在两种金属的连接处会产生温差电压,电压大小取决于温度相对于零摄氏度的偏差。
热电偶具有体积小、工作温度范围宽等优点,非常适合恶劣环境中的极高温度(高达2300℃)测量。
但是,热电偶的输出为mV级,因此需要经过精密放大才能作进一步处理。
不同类型热电偶的灵敏度也不一样,一般仅为每摄氏度几mV,因此需要高分辨率、低噪声ADC。
图1给出利用3通道、16/24位AD7792/AD7793ΣΔADC的热电偶系统。
其片内仪表放大器首先对热电偶电压进行放大,然后通过ADC对放
大的电压信号进行模数转换。
热电偶产生的电压偏置在地电平附近。
片内激励电压源将其偏置到放大器线性范围以内,因此系统能够利用单电源工作。
这种
低噪声、低漂移、片内带隙基准电压源,能够确保模数转换的精度,从而保证整个温度测量系统的精度。
电阻温度探测器
电阻温度探测器的电阻随着温度变化而变化。
电阻温度探测器的常用材料是镍、铜、铂,其中电阻在100Ω~1000Ω之间的铂电阻温度探测器是最常见的。
电阻温度探测器适用于在-200℃~+800℃的整个温度范围内具有接近线性响应的温度测量。
一只电阻温度探测器包括3根或4根导线。
热敏电阻器
热敏电阻器的电阻也随着温度的变化而变化,但是其精度不如电阻温度探测器。
热敏电阻通常使用单电流电源。
同使用电阻温度探测器一样,一个精密电阻器用于基准电压源,一个电流源驱动该精密基准电阻器和热敏电阻器,这意味着可以实现一种比率配置。
这也说明电流源的精度并不重要,因为电流源温漂既影响热敏电阻器,同时也影响基准电阻器,因此抵消了漂移影响。
在热电偶应用中,通常利用热敏电阻器进行冷接点补偿。
热敏电阻器的标称电阻值通常为1000Ω或更高。
热敏二极管
也可以用热敏二极管进行温度测量:通过测量二极管(一般为晶体管的基极到发射极)的电压计算温度。
采用两种不同的电流分别通过热敏二极管,测量在两种情况下从基极到发射极的电压。
由于知道电流的比率,因此可以通过测量从基极到发射极电压在两种不同电流情况下的差,从而准确计算温度。
例如,我们将AD7792/AD7793的激励电流源设置为10mA与210mA(也可以选择其它值)。
首先,让210mA的激励电流通过二极管,利用ADC测量从基极到发射极的电压。
然后,利用10mA激励电流重复上述测量。
这意味着电流降低到原来的1/21。
在测量中电流绝对值并不重要,但是要求电流比率固定。
压阻式加速度传感器对ADC的要求
温度测量系统通常是低速(每秒采样最多100次)的,因此窄带ADC比较适合;但是,ADC必须具有高分辨率。
窄带与高分辨率的要求,使得ΣΔADC成为这种应用的理想选择。
在这种结构下,开关电容器前端模拟输入连续采样,采样频率明显高于有用带宽。
ΣΔ调节器将采样的输入信号转换为数字脉冲串,其“1”的密度包括数字量信息。
ΣΔ调节其还能进行噪声整形。
通过噪声整形,有用带宽内的噪声被移到有用带宽以外,到达无用的频率范围。
调节器的阶数越高,在有用带宽内对噪声整形的作用就越明显。
但是,较高阶调节器容易不稳定。
因此,必须在调节器
阶数与稳定性之间进行权衡。
在窄带ΣΔADC中,通常使用二阶或三阶调节器,器件稳定性良好。
调节器后面的数字滤波器对调节器输出进行采样,给出有效的数据转换结果。
该滤波器还能滤除带外噪声。
数字滤波器图像频率会出现在主时钟频率的多倍频处,因此,利用ΣΔ结构意味着所需的唯一外部元件是一个简单的RC滤波器,用于消除主时钟频率倍频处的数字滤波器镜像频率。
ΣΔ结构使24位ADC 具有20.5字节的峰峰分辨率(稳定或无闪烁的字节)。
精量电子-美国MEAS传感器掌握着世界领先的MEMS制造技术,专业生产:压力传感器及动态压力传感器、位移传感器、倾角及角位移传感器、霍尔编码器、磁阻传感器、加速度传感器、振动传感器、湿度传感器、温度传感器、红外传感器、光电传感器、压电薄膜传感器、智能交通传感器。
产品广泛应用于航天航空、国防军工、机械设备、工业自动控制、汽车电子、医疗、家用电器、暖通空调、石油化工、空压机、气象检测、仪器仪表等领域。